Examen partiel du 22 octobre 2025 - éléments de correction

Exercice 1.

Soit H un espace de Hilbert et $T: H \to H$ une application linéaire continue et telle que $\langle T(x), x \rangle \ge ||x||^2$ pour tout $x \in H$.

- 1. Montrer que $\operatorname{Im}(T)$ est dense dans H. Soit $y \in \operatorname{Im}(T)^{\perp}$. On a en particulier $0 = \langle T(y), y \rangle \geq \|y\|^2$ donc y = 0. On en conclut que $\operatorname{Im}(T)^{\perp} = \{0\}$, ce qui implique (puisque $\operatorname{Im}(T)$ est un sous-espace vectoriel de H) que $\operatorname{Im}(T)$ est dense.
- 2. Montrer que $||T(x)|| \ge ||x||$ pour tout $x \in H$, puis que $\operatorname{Im}(T)$ est fermé dans H. Il suffit de montrer l'inégalité attendue pour $x \ne 0$; pour cela on applique Cauchy–Schwarz pour obtenir $||x||^2 \le \langle T(x), x \rangle \le ||T(x)|| ||x||$ et on divise des deux côtés par ||x||. Pour montrer que $\operatorname{Im}(T)$ est fermé, on considère une suite de Cauchy $(T(x_n))_{n \in \mathbb{N}}$ dans $\operatorname{Im}(T)$. Par hypothèse sur T on a pour tout n, m que $||T(x_n) T(x_m)|| = ||T(x_n x_m)|| \ge ||x_n x_m||$ donc $(x_n)_{n \in \mathbb{N}}$ est de Cauchy, et par conséquent converge vers $x \in H$. Donc $(T(x_n))_{n \in \mathbb{N}}$ converge vers $T(x) \in \operatorname{Im}(T)$. Il suit que $(\operatorname{Im}(T), ||\cdot||)$ est complet et donc $\operatorname{Im}(T)$ est fermé dans H.
- 3. Montrer que T est un isomorphisme et que T^{-1} est continu. On a déjà montré que T est surjectif. Si $x \in \ker(T)$ alors $\|x\|^2 \le \langle T(x), x \rangle = 0$ donc $\ker(T) = \{0\}$: T est injective. Puisque $\|T(x)\| \ge \|x\|$ pour tout $x \in H$ et T est bijective on obtient que $\|y\| \ge \|T^{-1}(y)\|$ pour tout $y \in H$, donc T^{-1} (qui est linéaire) est continu.

Exercice 2. Soit $f \in L^1(\mathbf{R})$.

1. Pour $x \in \mathbf{R}$ et $h \in \mathbf{R}_+$, exprimer $\int_x^{x+h} f(t) dt$ comme produit de convolution de f par une fonction φ_h . Soit φ_h la fonction caractéristique de [-h,0]. On a par définition

$$f * \varphi_h(x) = \int_{\mathbf{R}} f(t) \varphi_h(x - t) dt = \int_{-h \le x - t \le 0} f(t) dt = \int_x^{x + h} f(t) dt.$$

2. Pour $x \in \mathbf{R}$ et $h \in \mathbf{R}_+^*$ on pose $F_h(x) = \frac{1}{h} \int_x^{x+h} f(t) \, dt$. Montrer que $F_h \xrightarrow[h \to 0]{} f$ dans $(L^1(\mathbf{R}), \|\cdot\|_1)$. Puisque $F_h = f * \left(\frac{1}{h} \varphi_h\right)$ et que $f \in L^1(\mathbf{R})$ il nous suffit de vérifier que si $h_n \xrightarrow[n \to +\infty]{} 0$ alors $\psi_n = \frac{1}{h_n} \varphi_{h_n}$ est une unité approchée pour la convolution.

C'est presque immédiat : déjà, pour tout n on a $\|\psi_n\|_1 = \int_{\mathbb{R}} \psi_n(t) \, dt = \frac{1}{h_n} \int_{[-h_n,0]} dt = 1$. Ensuite, fixons $\delta > 0$. Alors pour tout n suffisamment grand on a $[-h_n,0] \cap \{t: |t| \geq \delta\} = \emptyset$, donc $\int_{|t| \geq \delta} \psi_n(t) \, dt = 0$ pour tout n suffisamment grand.

On conclut en appliquant le théorème vu en TD dans la fiche de rappels sur la convolution.

Exercice 3. Soit Ω un ouvert borné non vide de \mathbf{R}^d et $H = L^2(\Omega, \mathbf{R})$ muni de son produit scalaire usuel. On considère $C = \left\{ f \in H : \int_{\Omega} f(t) \, dt \ge 1 \right\}$.

1. Montrer que C est convexe et fermé dans H.

Soit χ la fonction constante égale à 1 sur Ω .

Par définition du produit scalaire on a $f \in H \Leftrightarrow \langle f, \chi \rangle \geq 1$. Comme $f \mapsto \langle f, \chi \rangle$ est linéaire et continue on en déduit que C est convexe et fermé.

2. Soit $g \in H$. Déterminer le projeté de g sur C et calculer d(g,C).

Si
$$\int_{\Omega} g(t) dt \ge 1$$
 alors g est son propre projeté et $d(g, C) = 0$.

On peut donc supposer que $\int_{\Omega} g(t) \, dt < 1$. Alors soit r tel que $\int_{\Omega} g(t) \, dt + r\lambda(\Omega) = 1$ (où λ désigne la mesure de Lebesgue sur \mathbf{R}^d ; notons que nécessairement r>0 et qu'un tel r existe parce que $0<\lambda(\Omega)<+\infty$). Montrons que $f=g+r\chi$ est le projeté de g sur C. Déjà, f appartient bien à C. Soit h un élément de C; on a :

$$\begin{split} \langle g - f, h - f \rangle &= -r \int_{\Omega} (h(t) - g(t) - r) \, dt \\ &= -r \left(\int_{\Omega} h(t) \, dt - 1 \right) \\ &< 0. \end{split}$$

Ceci prouve que f satisfait la caractérisation du projeté, et donc f est bien le projeté de g sur C.

On a donc
$$d(g, C) = ||g - f||_2 = ||r\chi||_2 = r\sqrt{\lambda(\Omega)}$$
.

Un calcul immédiat nous donne
$$r=\frac{1-\int_\Omega g(t)\,dt}{\lambda(\Omega)}$$
 et finalement $d(g,C)=\frac{1-\int_\Omega g(t)\,dt}{\sqrt{\lambda(\Omega)}}$.

Exercice 4. Soit H un espace de Hilbert séparable, de dimension infinie. Soit $(e_n)_{n\in\mathbb{N}}$ et $(f_k)_{k\in\mathbb{N}}$ deux bases hilbertiennes de H. Soit T une application linéaire continue de H dans lui-même.

1. En appliquant l'égalité de Parseval à chaque $T(e_n)$ dans la base $(f_k)_{k \in \mathbb{N}}$, montrer que

$$\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{k=0}^{+\infty} ||T^*(f_k)||^2$$

et en déduire que

$$\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{k=0}^{+\infty} ||T(f_k)||^2.$$

Pour tout n on a $||T(e_n)||^2 = \sum_{k=0}^{+\infty} |\langle T(e_n), f_k \rangle|^2$. On obtient donc (toutes les sommes ci-dessous sont des sommes de réels positifs, ce qui justifie les échanges d'ordre de sommation et fait qu'on n'a pas à s'interroger sur la sommabilité) :

$$\sum_{n=0}^{+\infty} ||T(e_n)||^2 = \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |\langle T(e_n), f_k \rangle|^2$$

$$= \sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |\langle e_n, T^*(f_k) \rangle|^2$$

$$= \sum_{k=0}^{+\infty} \sum_{n=0}^{+\infty} |\langle T^*(f_k), e_n \rangle|^2$$

$$= \sum_{k=0}^{+\infty} ||T^*(f_k)||^2.$$

Il s'ensuit en particulier que $\sum_{k=0}^{+\infty} \|T^*(f_k)\|^2 = \sum_{k=0}^{+\infty} \|T(f_k)\|^2$ (en appliquant le résultat précédent avec $e_k = f_k$ pour tout k) d'où finalement $\sum_{n=0}^{+\infty} \|T(e_n)\|^2 = \sum_{k=0}^{+\infty} \|T(f_k)\|^2$.

On dit que T est un opérateur de Hilbert–Schmidt si $\sum_{n=0}^{+\infty} ||T(e_n)||^2 < +\infty$. On note HS l'ensemble des opérateurs de Hilbert–Schmidt.

2. Montrer qu'on obtient une norme sur HS en posant

$$||T||_{HS} = \left(\sum_{n=0}^{+\infty} ||T(e_n)||^2\right)^{\frac{1}{2}}$$

et que $||T|| \le ||T||_{HS}$ pour tout $T \in HS$.

Il est immédiat que $||0||_{HS}=0$ et que $||\lambda T||_{HS}=|\lambda|||T||_{HS}$ pour tout $\lambda\in \mathbf{K}$. Pour tout $N\in \mathbf{N}$ et tout $T, S \in HS$ on a

$$\sum_{n=0}^{N} \|T(e_n) + S(e_n)\|^2 = \sum_{n=0}^{N} \|T(e_n)\|^2 + \sum_{n=0}^{N} \|S(e_n)\|^2 + 2\operatorname{Re}\left(\sum_{n=0}^{N} \langle T(e_n), S(e_n) \rangle\right)$$

et

$$\left(\sqrt{\sum_{n=0}^{N} \|T(e_n)\|^2} + \sqrt{\sum_{n=0}^{N} \|S(e_n)\|^2}\right)^2 = \sum_{n=0}^{N} \|T(e_n)\|^2 + \sum_{n=0}^{N} \|S(e_n)\|^2 + 2\sqrt{\sum_{n=0}^{N} \|T(e_n)\|^2} \sqrt{\sum_{n=0}^{N} \|S(e_n)\|^2} \\
\geq \sum_{n=0}^{N} \|T(e_n)\|^2 + \sum_{n=0}^{N} \|S(e_n)\|^2 + 2\sum_{n=0}^{N} \|T(e_n)\| \|S(e_n)\|.$$

En comparant ces deux expressions (grâce à l'inégalité de Cauchy-Schwarz), et en faisant tendre *N* vers +∞, on en déduit que $||T + S||_{HS} \le ||T||_{HS} + ||S||_{HS}$.

Il ne nous reste plus qu'à vérifier la propriété de séparation. Si $||T||_{HS} = 0$ alors $T(e_n) = 0$ pour tout n donc (par linéarité) T est nulle sur $Vect(\{e_n : n \in \mathbb{N}\})$ et (par densité et continuité) T est nulle sur *H* tout entier.

Soit $x \in H$ et $T \in HS$. On a :

$$||T(x)||^{2} = \sum_{n=0}^{+\infty} |\langle T(x), e_{n} \rangle|^{2}$$

$$= \sum_{n=0}^{+\infty} |\langle x, T^{*}(e_{n}) \rangle|^{2}$$

$$\leq \sum_{n=0}^{+\infty} ||x||^{2} ||T^{*}(e_{n})||^{2}$$

$$\leq ||x||^{2} ||T||_{HS}^{2}$$

Par définition d'une norme subordonnée, on en conclut que $||T|| \le ||T||_{HS}$

3. Les normes $\|\cdot\|$ et $\|\cdot\|_{HS}$ sont-elles équivalentes sur HS?

Pour $N \in \mathbb{N}$, considérons l'application $P_N \colon x \mapsto \sum_{n=0}^N \langle x, e_n \rangle e_n$ (autrement dit, la projection orthogonale sur Vect($\{e_n : n \leq N\}$)). Sa norme subordonnée vaut 1; de plus $||P_N||_{HS} = N + 1$, donc P_N est un opérateur de Hilbert–Schmidt et la suite $(P_N)_{N\in\mathbb{N}}$ témoigne du fait que les normes $\|\cdot\|$ et $\|\cdot\|_{HS}$ ne sont pas équivalentes sur HS.

4. On suppose que T est de Hilbert Schmidt; montrer qu'alors il existe une suite d'opérateurs $(T_n)_{n\in\mathbb{N}}$ tels que $\dim(\operatorname{Im}(T_n)) < +\infty$ pour tout $n \in \mathbb{N}$ et $T_n \xrightarrow[n \to +\infty]{} T$ dans $\mathcal{L}(H, H)$.

Pour $N \in \mathbb{N}$ considérons $T_N = T \circ P_N$ (en reprenant les notations de la question précédente); c'est un opérateur de rang fini et on a $T(e_n) = T_N(e_n)$ pour tout $n \ge N$. Pour tout n > N on

a
$$T_N(e_n) = 0$$
. Il suit de cela en particulier que l'on a $||T - T_N||_{\mathrm{HS}}^2 = \sum_{n=N+1}^{+\infty} ||T(e_n)||^2 \xrightarrow[N \to +\infty]{} 0$. Comme on a déjà observé que $||T - T_N|| \le ||T - T_N||_{\mathrm{HS}}$ on conclut que $T_N \xrightarrow[n \to +\infty]{} T$ dans $\mathcal{L}(H, H)$.

5. Soit $T \in HS$ et B la boule unité fermée de H. Montrer que $\overline{T(B)}$ est compact dans H. Comme *H* est complet, il nous suffit de montrer que T(B) est précompact; fixons donc $\varepsilon > 0$. D'après le résultat précédent, il existe un opérateur de rang fini S tel que $||T - S|| \le \varepsilon$, et S(B) est précompact puisque borné et contenu dans un espace vectoriel normé de dimension finie. Il existe donc $x_1,\ldots,x_n\in B$ tels que pour tout $x\in B$ il existe $i\in\{1,\ldots,n\}$ tel que $\|S(x)-S(x_i)\|\leq \varepsilon$. À l'aide de l'inégalité triangulaire (et de la définition d'une norme subordonnée), on conclut que pour tout $x\in B$ il existe $i\in\{1,\ldots,n\}$ tel que $\|T(x)-T(x_i)\|\leq 3\varepsilon$. Donc T(B) est précompact, ce qui conclut.