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Abstract

We introduce and study the class of linearly rigid metric spaces;
these are the spaces that admit a unique, up to isometry, linearly
dense isometric embedding into a Banach space. The first nontrivial
example of such a space was given by R. Holmes; he proved that the
universal Urysohn space has this property. We give a criterion of
linear rigidity of a metric space, which allows us to give a simple proof
of the linear rigidity of the Urysohn space and other metric spaces.
We relate these questions to the general theory of norms and metrics
in spaces of measures on a metric space, and introduce the notion of
a Banach norm compatible with a given metric; among these norms,
the Kantorovich–Rubinshtein transportation norm is the maximal one,
and the unit ball in this metric has a direct geometric description in
the spirit of root polytopes.

Introduction

The goal of this paper is to describe the class of complete separable metric
(=Polish) spaces which have the following property: there is a unique (up
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to isometry) isometric embedding of this metric space (X, ρ) in a Banach
space such that the linear span of the image of X is dense (in which case we
say that X is linearly dense). One such embedding is well-known; it appears
in Kantorovich’s construction for the Kantorovich-Monge transport problem,
we denote the Banach space generated by (X, ρ) when applying Kantorovich’s
method by E(X,ρ). So we must characterize the separable complete metric
spaces which have no linearly dense isometric embedding in a Banach space
besides Kantorovich’s. We call such metric spaces linearly rigid spaces.

In order to study these spaces we must consider Kantorovich’s construc-
tion from a new point of view: we introduce a ”linear” geometry of metric
spaces which is interesting in itself and nontrivial even for finite metric spaces.
Namely, we define ”root polytopes” for finite metric spaces (a generalization
of root polytopes in the theory of simple Lie algebras) and study their ge-
ometry (section 1). We will return to this geometry elsewhere. The main
result (section 3) is the criterion of linear rigidity in terms of distance matrix
of the dense countable set in the Polish space. The formulation of the crite-
rion uses the geometry of the space of distance matrices see [15] (section 2).
The first nontrivial example of a linearly rigid space was Urysohn’s universal
space; this was proved by R.Holmes [8]. Remember that the Urysohn space
is the unique (up to isometry) Polish space which is universal (in the class of
all Polish spaces) and ultra-homogeneous (= any isometry between compact
subspaces extends to an isometry of the whole space). Roughly speaking,
our criterion states that a linearly rigid metric space must satisfy a weaker
condition of universality; consequently there is more than one space with
this property. We give two proofs of the main result. The formulation of
the criterion and the first proof are due to the second and third author and
are closer to the philosophy of the paper [15] and to the new view on the
construction of the Kantorovich norm. The second proof (section 6), due
to the first author, also uses duality for the transport problem but is more
related to the paper of Holmes [8]. Besides the Urysohn space, an interesting
example is the N-analog of the Urysohn space - the integer valued ultra-
homogeneous universal metric space, which is countable. We provide some
other examples in section 4. In the short section 5 we discuss the extremal
properties of the metric spaces which is also very intriguing for the general
theory of the metric spaces. If (X, ρ) is a linearly rigid space, then the cor-
responding Kantorovich-Banach space EX,ρ is a remarkable space satisfying
a weaker form of the universality property. At the same time (section 5),
we claim that if (X, ρ) is the Urysohn space then EX,ρ is a universal Banach
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space, but is not isometric to the ε-homogeneous universal Gurariy Banach
space.

1 Norms compatible with a metric and the

Kantorovich space

Let (X, ρ) be a complete separable metric space. Consider the free vector
space V = R(X) and the free affine space V0 = R0(X) generated by the space
X (as a set) over the field of real numbers:

V (X) = R(X) =
{∑

ax · δx, x ∈ X, ax ∈ R
}

⊃ V0(X) = R0(X) =
{∑

ax · δx, x ∈ X, ax ∈ R,
∑

ax = 0
}

(all sums are finite). The space V0 is a hyperplane in V . We omit the mention
of the space (and also of the metric, see below) if no ambiguity is possible;
we will mostly consider only the space V0. One of the interpretations of the
space R(X) (respectively, R0(X)) is that this is the space of real measures
with finite support (respectively, the space of measures with total mass equal
to zero:

∑
x ax = 0). Let us fix a metric ρ on X and introduce a class of

norms on V0 compatible with the metric. For brevity, denote by ex,y = δx− δy

the elementary signed measure corresponding to an ordered pair (x, y).

Definition 1. We say that a norm ‖ · ‖ on the space V0 is compatible with
the metric ρ if ‖ex,y‖ = ρ(x, y) for all pairs x, y ∈ X.

The rays {cex,y, c > 0} going through elementary signed measures will
be called fundamental rays (the set of fundamental rays does not depend
on the metric). If the metric is fixed, then a norm compatible with this
metric determines, on each fundamental ray, a unique vector of unit norm;
let us call these vectors (elementary signed measures) fundamental vertices
corresponding to a given metric. They are given by the formula (x 6= y):

ex,y

ρ(x, y)
≡ ēx,y.

Thus the set of norms compatible with a given metric ρ is the set of norms
for which the fundamental vertices corresponding to this metric are of norm
one.
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Lemma 1. Let us fix a Polish space (X, ρ). The unit ball with respect to
every norm compatible with the metric ρ contains the convex hull of the set
of fundamental vertices, hence among all the compatible norms there is a
maximal norm ‖ · ‖max; the unit ball in this norm is the convex hull of the set
of fundamental vertices. This norm coincides with the classical Kantorovich
transportation norm (see [9]). It is defined for every metric space (X, ρ).

In the paper [9] the Kantorovich transportation metric on the space of
probability Borel measures on the compact metric spaces was defined; the
corresponding Banach norm was defined in the later paper [10]. Several
authors rediscovered these metric and norm later (see short history in [16]).
Nevertheless it seems that the definition of the Kantorovich norm in the
lemma above as a maximal compatible norm is a new one. Remark by the
way that during the last several years a great interest in this subject and its
generalizations grew steadily (see [2, 17] for example).

Proof. Temporarily denote the norm determined by the closed convex hull
of the set of fundamental vertices by ‖ · ‖′. The Kantorovich norm ‖ · ‖ in
the space of measures of the form φ = φ+ − φ−, where φ± are nonnegative
finitely supported measures with equal mass (φ−(X) = φ+(X)), is defined as

inf

{∑
ax,yρ(x, y) :

∑
y

ax,y = φ+(x),
∑

x

ax,y = φ−(y)

}
.

Since the Kantorovich norms of all fundamental vertices are equal to one,
their closed convex hull lies in the unit ball with respect to the Kantorovich
norm, whence ‖φ‖′ ≥ ‖φ‖. On the other hand, by the duality theorem,
there exists an optimal transportation plan a = {ax,y}: ‖φ‖ =

∑
(u(x) −

u(y))ax,y, where u is a 1-Lipschitz function on X; moreover, if ax,y > 0,
then u(x) − u(y) = ρ(x, y). Hence ‖φ‖ =

∑
ρ(x, y)ax,y =

∑ ‖ex,y‖ax,y =∑ ‖ex,y‖′ax,y ≥ ‖∑
ex,yax,y‖′ = ‖∑

(δx − δy)ax,y‖ = ‖φ+ − φ−‖′ = ‖φ‖′.
Thus the Kantorovich norm is the maximal norm ‖ ·‖max compatible with the
metric ρ.

In the following lemma we describe in the geometrical terms of V0(X) all
metrics on a space X.

Lemma 2. Let X be a set. Consider the linear space V0(X) and specify
some points c(x, y) ·ex,y on the fundamental rays R+ ·ex,y, where the function
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c(x, y) is defined for all pairs (x, y), x 6= y, positive, and symmetric: c(x, y) =
c(y, x). This set of points is the set of fundamental vertices of some metric
on X if and only if no point lies in the relative interior of the convex hull of
a set consisting of finitely many other fundamental vertices and the zero.

Proof. Assume that we are given a set of fundamental vertices c(x, y) · ex,y.
Consider the function defined by the formulas ρ(x, y) = c(x, y)−1, x 6= y,
and ρ(x, x) = 0. Let us check that the triangle inequality for this function is
equivalent to the property of convex hulls mentioned in the lemma. Assume

ēa,b =
n−1∑
i=1

λiēxi,xi+1
, x1 = a, xn = b,

n−1∑
i=1

λi < 1, λi > 0,

(taking into account that ēa,b = δa− δb this is only way to represent ēa,b as a
convex combination of other fundamental vectors). Equating the coefficients
of δxi

, i = 1, 2, . . . n in both sides, we see that λi/ρ(xi, xi+1) = 1/ρ(a, b); i =
1 . . . n− 1. So λi = ρ(xi, xi+1)/ρ(a, b). It follows that condition

∑n−1
i=1 λi < 1

contradicts the triangle inequality. Conversely, the latter relation is equiva-
lent to the above decomposition of ēa,b into a convex combination.

The completion of the space V0 with respect to the norm ‖ · ‖max is the
space defined by Kantorovich and Rubinshtein for compact metric spaces (see
[10]) when studying the so-called transport problem. But we can complete
V0 with respect to a maximal norm ‖ · ‖max for an arbitrary metric space,
denote it by EX,ρ. In the paper [10] and in all subsequent papers, one usually
considers only compact metric spaces; in this case, the completion contains
all Borel measures of bounded variation, but is not exhausted by them. For
an arbitrary metric space, this completion and the space of Borel measures
are in general position.

The correspondence
(X, ρ) 7→ EX,ρ

is a functor from the category of Polish spaces (with Lipschitz maps as mor-
phisms) to the category of Banach spaces (with linear bounded maps as mor-
phisms).

Consider an arbitrary norm on V0 compatible with the metric and extend
it to the space V by setting ‖δx‖ = 0 for some point x ∈ X (there is no
canonical extension, but the choice of the point x is not essential). Consider
the completions V̄0 and V̄ of the spaces V0 and V with respect to these norms.
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Obviously, the metric space (X, ρ) has a canonical isometric embedding into
V̄ , and, conversely, it is easy to see that if there exists an isometric embedding
of the space (X, ρ) into some Banach space E, then the closure of the affine
hull of the image of X in E is isometric to the completion of V with respect
to some norm compatible with the metric. We will say that an isometric
embedding of X into a Banach space E is linearly dense if the affine hull
of the image of X coincides with E. Thus every metric space has a linearly
dense isometric embedding into the Banach space EX,ρ. It turns out that
for some metric spaces (X, ρ) the Kantorovich norm is the unique norm on
V0(X, ρ) compatible with the metric ρ; such spaces have a unique linearly
dense isometric embedding into a Banach space (up to isometry). A trivial
example of such a space is the metric space consisting of one or two points.
The first nontrivial (and, as we will see below, necessarily infinite) example of
such a space was discovered by R. Holmes [8], who showed that the universal
Urysohn space has this property.

The main result of this paper is a description of metric spaces that have
a unique (up to isometry) linearly dense isometric embedding into a Banach
space. We call such metric spaces linearly rigid.

Remark 1. Let (Xn, ρ) be a finite metric space with n points in which the
distance between any two points is equal to one: ρ(i, j) = δi,j. In this case,
the convex hull of the set of fundamental vertices in the space V0 is a classical
root polytope (= the convex hull of the set of all roots of a Lie algebra of series
An; in this interpretation, V0 is the conjugate space to the Cartan algebra).
Thus the term “the root polytope of a finite metric space” will be used
for the convex hull of the set of fundamental vertices of an arbitrary finite
metric space, i.e., for the ball in the Kantorovich metric. The geometry of
root polytopes, in particular, their convex type, provides invariants of metric
spaces; we will return to this subject elsewhere.

Recall that conjugate space of the Banach space V̄0 with the maximal
(Kantorovich) norm is the quotient of the space Lip(X, ρ) of all Lipschitz
functions on (X, ρ) by the subspace of constants. This fact is a basis for the
duality theorem; it was obtained for compact spaces in the first works by
L. V. Kantorovich and his coworkers on this subject.

In the modern literature (see, e.g., [17, 2]), there is an intensive study
of metrics on the simplex of probability Borel measures compatible with a
metric, i.e., metrics % on this simplex such that %(δx, δy) = ρ(x, y). We will
call such metrics on the simplex of probability Borel measures - compatible
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metrics with metrics ρ on X. The Kantorovich metric first suggested in [9]
is one of such metrics, and again it is maximal among all the compatible
metrics. Conversely, if we are given any compatible norm on the space of
signed measures, then the corresponding compatible metric on the simplex
of the measures can be recovered by the formula %(µ, ν) = ‖µ − ν‖, where
µ, ν are finitely supported positive measures on (X, ρ) with total mass equal
to one. But, in general, not every compatible metric on this simplex can
be extended to a compatible norm. For example, in the case when a norm
compatible with the metric ρ is unique (i.e., in the case when the space
under consideration is linearly rigid), there are many distinct (nonisometric)
metrics % on the simplex of measures compatible with the metric ρ, but only
one of them (the maximal one) generates a norm. The following problem then
arises: which compatible metrics generate a norm? In other words, when can
the distance between the positive and the negative parts of a signed measure
be taken as the norm of this signed measure? The solution of this problem
will undoubtedly extend the possibilities of estimation of transportation-type
metrics with the help of the more powerful machinery of norms in Banach
spaces.

2 The cone of distance matrices

A natural method of studying metric spaces is the method of distance ma-
trices. It is considered in [15]. A distance matrix is a finite or infinite
matrix r = {ri,j} that determines a metric or a semimetric on N or on
n={1, 2, . . . , n}. Distance matrices form a convex weakly closed cone in the
space of all real matrices of the corresponding finite or infinite order.

If in an (infinite) Polish metric space (X, ρ) there is a distinguished count-
able everywhere dense set {xn}∞n=1, then the distance matrix {ρ(xi, xj)} asso-
ciated with this set contains all the information on (X, ρ), and one can study
the properties of the space (X, ρ), for example, universality or linear rigid-
ity, using this distance matrix (see [15]). Denote by Xn = {x1, x2, . . . , xn}
the set of the first n points of the distinguished everywhere dense sequence
chosen in X.

Definition 2. We say that a vector {ai}, i = 1, 2, . . . , n, is admissible for a
finite distance matrix {ri,j}n

i,j=1 if

|ai − aj| ≤ ri,j ≤ ai + aj for all i, j = 1, . . . , n .
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An admissible vector is a 1-Lipschitz function on the metric space (Xn, r).
Not every 1-Lipschitz function f corresponds to an admissible vector, but
there always exists a constant C > 0 (depending on f) such that the function
f +C does correspond to an admissible vector. The set of admissible vectors
(denote it by Admr) is a convex polyhedral set. It is unbounded: together
with every vector v it contains the ray v + R+ · (1, 1, . . . ). It is easy to see
that Admr is the Minkowski sum of a convex compact polyhedron Mr and
the ray Λ = {(λ, λ, . . . ), λ > 0}

Admr = Mr + Λ

(see [15]). An extreme ray (i.e., a ray that is the precise intersection of Admr

with a supporting plane to Admr), will be called an extremal admissible ray;
the initial points of these rays are the extreme points of the unit ball in the
quotient of the space of Lipschitz functions by the one-dimensional space
of constants, which is dual to the Kantorovich space EXn,r. A point of the
extremal admissible ray will be called an extremal admissible vector.

Recall that in his last remarkable paper [14] P. S. Urysohn proved the
existence and uniqueness up to isometry of a universal Polish space, i.e., a
complete metric separable space such that every Polish space can be iso-
metrically embedded into it (proper universality) and which is absolutely
homogeneous, in the sense that every isometry between finite subsets can
be extended to a global isometry. The following theorem gives a necessary
and sufficient condition for a distance matrix to be the distance matrix of a
countable everywhere dense system of points in the Urysohn space.

Theorem 1 (Universality criterion, [15]). A space (X, r) is the universal
Urysohn space if and only if the distance matrix {ri,j} of some (and hence
every) countable everywhere dense system has the following universality prop-
erty: for any n ∈ N, ε > 0, and a vector a ∈ Adm(rn) admissible for the
distance matrix rn = {ri,j}n

i,j=1, there exists m such that ‖a−{rm,j}n
j=1‖ < ε.

This criterion does not differ much from the condition used by Urysohn
[14] or the conditions of Katětov [11] and Gromov [6]. However, the above
formulation provides a more convenient method of constructing the universal
space and allows one to prove the generic property of universal spaces, which
is done in [15].

Remark 2. The following almost literal reformulation of the criteria
above gives very useful characterization of the Urysohn space via extension
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of the Lipschitz functions from finite sets. It can be considered as a dual
characterization of the Urysohn space. The Polish space (X, r) is isometric
to the universal Urysohn space iff for any ε > 0, any finite subset F ⊂ X
and any positive Lipschitz function u on the set F with induced metric rF ,
there exist a point x ∈ X such that supy∈F |r(x, y)− u(y)| < ε.

3 Linear rigidity

The following theorem provides a criterion of linear rigidity (cf. the criterion
of universality).

Theorem 2. Consider a Polish space (X̄, ρ) and an arbitrary everywhere
dense sequence X = {xn}, n = 1, 2, . . . , of points of X̄. The space (X̄, ρ)
is linearly rigid if and only if the distance matrix M = {ri,j}∞i,j=1 of the
sequence X satisfies the following condition: for every ε > 0, n ∈ N, and
any extremal ray L of the set Adm(rn) of admissible vectors for the distance
matrix rn ≡ {ri,j}n

i,j=1 of the first n points of the sequence X, there exists a
vector v ∈ L on this ray and a number m such that ‖v − {rm,j}n

j=1‖ < ε.

Remark 3. As a parallel to the remark 2 we can reformulate also Theo-
rem 2 as follows: a Polish space (X, r) is linearly rigid iff for any ε > 0, any
finite subset F ⊂ X and any extremal positive Lipschitz function u on the
set F with the induced metric rF there exist a point x ∈ X and a constant a
such that supy∈F |r(x, y)− u(y)− a| < ε.

In this paper, we give two proofs of this theorem, corresponding to two
possible points of view. The first proof, given below, is more measure-
theoretic in nature, while the other one (given in the last section of the
article), more elementary but less conceptual, is obtained by looking at the
dual space to the space generated by X and using some known properties of
Kantorovich spaces.

Proof. 1. The “only if” part. Let us first prove that if for some ε, a positive
integer n, and an extremal ray L ⊂ Adm(rn), the reverse inequality

‖v − {rm,j}n
j=1‖ ≥ ε

holds for every vector v ∈ L and every number m, then the space X is not
linearly rigid. First of all we can assume that n > 2 because the extremal
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admissible rays L ⊂ R2 for two-point spaces are of the form {(r1,2 +λ, λ)}λ≥0

and {(λ, r1,2+λ)}λ≥0, and in this case the vectors (r1,2, 0) and (0, r1,2) already
belong to the set of extremal rays. Thus, we can omit these extremal rays.

Let us define a structure of a directed graph on Xn for n > 2 as follows:
draw an edge xi → xj if vi − vj = ri,j for some v ∈ L (the equality does not
depend on the choice of v ∈ L, v 6= 0, since adding the same constant to all
the vi preserves the equalities and allows us to move the vector arbitrarily
along the ray). Note that the constructed graph regarded as an undirected
graph is connected. Indeed, if it is not connected, then we may assume
without loss of generality that there are no edges between xi and xj for all
indices i, j with i ≤ i0, j > i0. Choose an arbitrary vector w ∈ L and add
a sufficiently large constant to its coordinates, w := w + C · (1, 1, . . . , 1),
so as to make all the coordinates greater than max n

i,j=1 rij. Consider the
vector δw = (1, 1, . . . , 1, 0, 0, . . . , 0) (with 1’s in positions with indices i ≤
i0) and introduce the vectors w1, w2 := v ± ε · δw, where ε is a sufficiently
small constant. We see from construction that w1, w2 ∈ Admrn \ L and
w = (w1 + w2)/2, which contradicts the extremality of L. Denote the edge
set of the graph Xn by e(Xn).

Let us define an element µ ∈ V0(Xn) as the sum

µ :=
∑

(a→b)∈e(Xn)

ea,b,

and consider µ and other elements of V0(Xn) as measures on Xn. Vectors v ∈
Admrn are Lipschitz functions on Xn, and we can integrate them with respect
to these measures. By the definition of the measure µ, the vector v, regarded
as a Lipschitz function on Xn, is the solution of the dual transportation
problem with the measures µ+ and µ−, where µ = µ+ − µ−; hence, by the
duality theorem,

‖µ‖K =

∫
vdµ =

∑

(a→b)∈e(Xn)

ρ(a, b).

Note that if the support of µ consists of two points (without loss of gener-
ality we may assume that these points are x1, x2 and n = 2), then, taking x1

as xm, we obtain a contradiction with the assumption ||v − {rm,j}n
j=1|| ≥ ε;

indeed, as the vector v lying on the extremal ray we can take the vector
(0, ρ(x1, x2)), in other words, take m = 1.
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Because we assume that n > 2 we have µ 6= ea,b, i.e., the support of µ
consists of more than two points. In this case, the construction of a new
norm ‖ · ‖n on V0(Xn) compatible with the metric uses a corrected measure
µ. Namely, let us define the unit ball Bn of the new norm ‖ ·‖n as the convex
hull in V0(X) of the unit ball BK with respect to the Kantorovich norm, i.e.,
the convex hull of the elements ēa,b = ea,b /ρ(a, b) ∈ V0(X) and the point
ν := µ

‖µ‖K−ε
.

Let us prove that the ‖ · ‖n-norms of points of the form ēa,b are equal
to one, as well as the ‖ · ‖K-norms. Since ‖µ‖n ≤ ‖µ‖K − ε (actually, the
equality holds), this will prove that there exists another norm compatible
with the metric apart from the maximal one, i.e., that the space X is not
linearly rigid.

Assume that it is not true. This means that one of the points of the form
ēc,d can be written as

ēc,d = λ · ν +
N∑

k=1

λk · ēak,bk
, λ +

∑
λk < 1

(and hence ‖ēc,d‖n < 1). Note that the positivity of λ follows from our
assumption that µ 6= ea,b for any a, b from X. Let us integrate the admissible
function ρ(c, ·) with respect to the measures in the left- and right-hand sides.

We obtain

1 = λ

∫
ρ(c, ·)dν +

∑
λk

(ρ(c, ak)− ρ(c, bk))

ρ(ak, bk)
< λ

∫
ρ(c, ·)dν + 1− λ,

which implies that
∫

ρ(c, ·)dν > 1, and, taking into account the definition of
the measure ν, we obtain

∑

(a→b)∈e(Xn)

(
ρ(c, a)− ρ(c, b)− ρ(a, b)

) ≥ −ε

This implies the inequality

0 ≤ ρ(a, b) + ρ(c, b)− ρ(a, c) ≤ ε.

Thus the differences of the distances from the point c to all (by the con-
nectedness of the graph Xn) points of Xn are determined (up to ε), and the
vector of distances from c to the points of Xn is close to the vector v ∈ L
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chosen above. But the sequence {xk} is everywhere dense, hence it con-
tains a point arbitrarily close to c whose vector of distances to the points
of Xn coincides with the vector v ∈ L up to ε, contradicting the original
assumption.

We can say briefly that the essence of the proof was the link between the
distance (ε) between the admissible vector (v) on the extremal ray (L) and
functions (c → ρ(c, .)), and the Kantorovich norm (‖µ‖K) of the measure (µ)
which corresponds to that vector (v).

2. The “if” part. Let us prove that if for all n ∈ N, ε > 0, and an
extremal ray L ⊂ Admrn there exists a desired vector v ∈ L and a point
xm ∈ {x1, x2, . . . } whose vector of distances to {x1, . . . , xn} coincides with v
up to ε, then the space X is linearly rigid.

Namely, let us prove that for every signed measure µ ∈ V0(Xn) and every
norm ‖ · ‖ on V0(X) compatible with the metric, ‖µ‖ = ‖µ‖K . This will
suffice, because ∪nXn is dense in X. Let

µ =
N∑

k=1

αkēak,bk
, ak, bk ∈ Xn, αk ≥ 0, ‖µ‖K =

∑
αk.

The points ēak,bk
lie on some face of the unit ball of the space EXn . We

may assume without loss of generality that it is a face of codimension 1.
The corresponding supporting plane is determined by some linear functional
of norm 1, i.e., a 1-Lipschitz function. Denote this function by f : f(ak) −
f(bk) = ρ(ak, bk). This is an admissible vector from AdmXn,r lying at an
extremal ray L in AdmXn,r.

First consider the case when all the ak are equal: ak = a.
By assumption, there is a point c ∈ X such that ρ(c, a) ≥ ρ(c, bk) +

ρ(a, bk) − ε, its distance vector to the points {x1, . . ., xn} will be close to a
vector on the ray L).

We have

‖µ‖ =

∥∥∥∥
∑

αk
(δa − δc) + (δc − δbk

)

ρ(a, bk)

∥∥∥∥

≥
∑

αk · ρ(a, bk)

ρ(a, c)
−

∑
αk · ρ(c, bk)

ρ(a, bk)
≥

∑
αk

(
1− ε

mink ρ(a, bk)

)
.

Letting ε → 0, we obtain

‖µ‖ =
∑

αk = ‖µ‖K .
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Now consider the general case. Find a point d such that ρ(d, ak) ≥
ρ(d, bk) + ρ(ak, bk)− ε. Then we obtain

‖µ‖ =

∥∥∥∥
∑

αk
(δak

− δd) + (δd − δbk
)

ρ(ak, bk)

∥∥∥∥

≥
∥∥∥∥
∑

αk
δak

− δd

ρ(ak, bk)

∥∥∥∥−
∑

αk

∥∥∥∥
δd − δbk

ρ(ak, bk)

∥∥∥∥

≥
∑

αk
ρ(ak, d)

ρ(ak, bk)
−

∑
αk

ρ(d, bk)

ρ(ak, bk)
≥

∑
αk + o(1),

which completes the proof in this general case too.

The theorem below explains how one can construct linearly rigid spaces by
induction, successively increasing the number of points. Namely, it provides
a universal procedure similar to the inductive construction of the Urysohn
space (see [15]), and allows one to obtain (after completion) an arbitrary lin-
early rigid Polish space. This procedure should be described in the geometric
terms of root polytopes in the finite dimensional space V0(X).

Theorem 3 (Piercing theorem). Let (X, r) be an arbitrary finite metric
space, ε > 0, and Γ be a face of the unit ball of the space EX . Then the space
(X, r) can be isometrically embedded into a finite metric space (Y, ρ) so that
there exists a face ∆ of the unit ball of the space EY,ρ containing Γ and two
vectors ēz1,z2 and ēu1,u2 such that the line segment connecting them intersects
the face ∆ at an interior point.

The proof is similar to the proof of the “if” part of Theorem 1. Using this
theorem, it is not difficult to justify the above procedure. Note that if an
interior point of a face is of norm one, then all points of the face are also of
norm one. Enumerating the sequences of faces of the root polytopes already
constructed and “piercing” them by new line segments, we obtain a sequence
of finite metric spaces for which all faces of all root polytopes are rigid; hence
the completion of the constructed countable space will be linearly rigid. Thus
the recursive construction of a linearly rigid space consists in adding points
satisfying the conditions of the piercing theorem so that eventually all faces
become pierced.

The next theorem shows that a linearly rigid space cannot have a finite di-
ameter if it has more than two points. This means (and is partially explained
by the fact) that the unit sphere in the Banach space EX,ρ corresponding to
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a linearly rigid space is very degenerate: its finite-dimensional approxima-
tions, i.e., the root polytopes of finite metric spaces, have decreasing cross

sections for growing dimensions ēab =
ea.b

ρ(a, b)
, and hence the distances ρ(a, b)

are not bounded. This follows from the considerations of the previous theo-
rem. Note that such a degeneracy of the unit sphere is typical for universal
constructions (cf. the Poulsen simplex).

Theorem 4. A linearly rigid metric space X containing more than two points
is of infinite diameter and, in particular, noncompact.

Proof. Assume the converse. Without loss of generality we assume that the
space X is complete. Fix a point a ∈ X, denote by ra the supremum of
the distances ρ(a, x) over x ∈ X, and choose a sequence of points (xn) such
that ρ(a, xn) ≥ ra − 1/n. Then pick a countable dense subset {yn} of X,
and define a sequence (zn) by setting z2n = xn and z2n+1 = yn. Consider the
points ēa,zk

, k = 1, . . ., N . They lie on the same face of the unit ball of the
space EXN

, where XN = {a, z1, z2, . . . , zN}. Let us find the supporting ray
in the set of admissible vectors Adm corresponding to this face. Applying
Theorem 2 for this ray, we may find a point cN such that

ρ(a, cN) ≥ ρ(a, zk) + ρ(zk, cN)− 1/N, k ≤ N.

In particular, ρ(a, cN) ≥ ρ(a, xk)+ρ(xk, cN)−1/N, 2k ≤ N. Hence ρ(xk, cN) →
0 as k, N → ∞, so that the sequences (xk), (ck) are fundamental and have
a common limit a′. The point a′ satisfies the equalities ρ(a, x) + ρ(x, a′) =
ρ(a, a′) for all x ∈ X (this is why we used the countable dense set {yn} in
the definition of our sequence (zn)).

Such a construction may be done for any point a ∈ X; note that for any
a, b ∈ X such that a 6= b 6= a′ (such a, b do exist if X has more than two
points) we have 2ρ(a, a′) = ρ(a, b) + ρ(a, b′) + ρ(a′, b) + ρ(a′, b′) = 2ρ(b, b′),
whence ρ(a, a′) ≡ D < ∞. It also follows that ρ(a, b) = ρ(a′, b′).

Without loss of generality, ρ(a, b′) = ρ(b, a′) ≥ ρ(a, b) = ρ(a′, b′) = 1. Let
A = {a, b, a′, b′}. Define a function ϕ by the formulas ϕ(a) = ϕ(a′) = 0,
ϕ(b) = ϕ(b′) = 1.

Such a function will be Lipschitz on {a, b, a′, b′}; the corresponding face
contains the points ēa,b, ēa′,b′ . Hence there exists a point c such that

ρ(c, a′) ≥ ρ(c, b′) + 1/2, ρ(c, a) ≥ ρ(c, b) + 1/2.
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We have

ρ(c, c′) = ρ(c, a′)+ρ(a′, c′) = ρ(c, a′)+ρ(c, a) ≥ (ρ(c, b′)+ρ(c, b)+1) ≥ D+1.

The obtained contradiction proves the theorem.

4 Corollaries

1. Theorem 5 (R. Holmes [8]). The Urysohn space is linearly rigid.

Proof. It suffices to compare the assumptions of the criterions of universality
(Theorem 1) and linear rigidity (Theorem 2): the assumptions of the latter
criterion require that the columns of the matrix should approximate only ex-
tremal admissible vectors rather than any admissible vectors as in the former
one.

The proof in [8] consists in a detailed study of embeddings of the Urysohn
space into the Banach space C([0, 1]) of continuous functions on the interval
and proving that they are isometric; thus it does not allow one to study other
examples (and even does not contain indications of their existence); some of
the ideas in that proof led to the other proof of Theorem 2 that we give at
the end of the paper. Roughly speaking our criterion of linear rigidity shows
that linearly rigid spaces must ”almost contain” up to isometry all extremely
degenerated finite spaces and Urysohn space contains up to isometry all finite
metric spaces (see next section).

Consider another two examples of linearly rigid universal spaces.

2. Let us consider the countable metric space denoted by QU≥1. It is a
universal and absolutely homogeneous space in the class of countable metric
spaces with rational distances not smaller than one. Such a space can be
constructed in exactly the same way as the Urysohn space.

Theorem 6. The space QU≥1 is linearly rigid.

Indeed, the assumptions of the criterion of linear rigidity (Theorem 2) are
obviously satisfied.

This example, as well as the next one, is of interest because it is an
example of a discrete countable linearly rigid space. Thus the corresponding
Banach space EQU≥1

has a basis. It is not known whether the space EU has
a basis.
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3. The following example is of special interest also for another reason. Con-
sider the space ZU, the universal and absolutely homogeneous space in the
class of metric spaces with integer distances between points. Let us show that
it is also linearly rigid. For this, let us check the condition of the criterion
of linear rigidity. Fix Xn and a ray L of the admissible set Adm. Note that
the differences of the coordinates of every vector from Xn are integers; this
follows from the connectivity of the graph in the proof of Theorem 1. Hence
on this ray there is a vector with integer coordinates, which is realized as the
vector of distances from some point x ∈ X to Xn.

Let us introduce a structure of a graph on this space by assuming that
pairs of points at distance one are neighbors. This graph has remarkable
properties: it is universal but not homogeneous (as a graph), its group of
isomorphisms coincides with the group of isometries of this space regarded
as a metric space. As follows from [3, 4], there exists an isometry that
acts transitively on this space; hence the incidence matrix has a Toeplitz
realization.

4. Another example of a linearly rigid space is any of the three above spaces
with an arbitrary open bounded set removed. It easily follows from the
universality criterion that if we remove the unit ball, then the obtained space
will be isometric to the original one.

5 Extremality and the properties of the Ba-

nach–Kantorovich space EX,ρ

Recall (see [15]) that the set of infinite distance matrices is a convex weakly
closed cone. Its extreme rays correspond to metrics on N, and hence to
metrics on the completion, that cannot be written as the half sums of any
other nonproportional metrics. Note that the universal real (Urysohn) space
U is extremal in this sense (see [15]). It follows that the distance matrices
of everywhere dense systems of points of extremal metric spaces form an
everywhere dense Gδ-set in the space of distance matrices. The integer space
ZU is also extremal; the extremality of both spaces follows from a result
of Avis [1], which states that every finite metric space with commensurable
distances can be embedded into a finite extremal metric space, and hence the
assumptions of the criterion of linear rigidity are satisfied. It is not known
whether any linearly rigid space is extremal.
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Apparently, the Banach–Kantorovich spaces EX,ρ corresponding to lin-
early rigid metric spaces (X, ρ) have not been studied, and they are un-
doubtedly of interest. For example, if (U, ρ) is the universal Urysohn space,
then, as was observed in [13], EU,ρ is a universal Banach space, i.e., every
separable space can be linearly isometrically embedded into it. This follows
from a strong theorem of Godefroy and Kalton [5], which states that if some
separable Banach space F has an isometric embedding into a Banach space
B, then it also has a linear isometric embedding into B. However, EU,ρ is
not a homogeneous universal space — linearly isometric finite-dimensional
subspaces in this space must not necessarily be sent to each other by a linear
isometry, and even linear ε-isometry, of the whole space, as is the case for the
Gurariy space [7, 12]. Hence the space EU,ρ is not isometric to the Gurariy
space. The authors do not know any characterization of EU,ρ as a Banach
space. The same holds for the spaces EQU≥1

and EZU. Such a characterization
is undoubtedly of interest.

6 Proof of the main result from a dual point

of view.

As promised, we give another proof of Theorem 2; to explain it, we need
to set some notation. First, if (X, x0) is a pointed metric space and B is a
Banach space, we say that (X, x0) is embedded in (B, 0) if X is isometrically
embedded in B in such a way that x0 is mapped to 0. The norm on the linear
span of (X, x0) is then said to be compatible with the metric on (X, x0). This
is the same definition as before, except that now we specify which δx has
norm equal to 0; the reason why we have to consider pointed metric spaces
here is that we want to use the dual space of the Kantorovich space of X,
and it depends on the choice of a constant. Different choices of that constant
lead to isometric linear structures, but one needs it to write down formulas.
If (X, x0) is a pointed metric space then we denote by (X, x0)

′ the set of all
1-Lipschitz maps f on X such that f(x0) = 0 (this is the unit ball in the dual
to the Kantorovich space of (X, x0)). Recall that f ∈ (X, x0)

′ is extremal if
it is an extreme point of that convex set. In that case, one can see that f
is extremal if, and only if, one may change the indices X = {x0, x1, . . . , xn}
in such a way that there exists j ≤ n such that one of the following things
happen:

17



f(xi) = ρ(x0, xi) for all i ≤ j, and f(xi) = sup{ρ(x0, xk)− ρ(xi, xk) : k ≤ j},
or
f(xi) = −ρ(x0, xi) for all i ≤ j, and f(xi) = inf{ρ(x0, xk)+ρ(xi, xk) : k ≤ j}.
The first line means that f takes values as big as possible on x1, . . . , xj, then
values as small as possible (knowing the first j values) on xj+1, . . . , xn; the
second line means that f takes values as small as possible on x1, . . . , xj, then
values as large as possible (knowing the first j values) on xj+1, . . . , xn.

We may now proceed with the proof; its principle is to look at the dual
formula for the Kantorovich norm. Given a pointed metric space (X, x0),
and a vector v =

∑
ax · δx ∈ V (X), that formula is

‖v‖ = sup{|
∑

axf(x)| : f ∈ (X, x0)
′} .

As explained before, the choice of the point x0 ∈ X is not important (different
choices of x0 yield isometric linear structures). Furthermore, it is easy to see
(because of the Hahn-Banach theorem) that any norm ‖ · ‖′ compatible with
the metric on (X, x0) is defined by a similar formula, namely

‖v‖′ = sup{|
∑

axf(x)| : f ∈ N‖·‖′} ,

where N‖·‖′ is some subset of (X, x0)
′ such that for any x, y ∈ X there exists

f ∈ N‖·‖′ satisfying |f(x) − f(y)| = ρ(x, y); one can think of N‖·‖′ as being
the unit ball of the dual space to the Banach space in which X is embedded.
Then, one possible way of understanding linear rigidity is to look at what one
might say about such subsets N‖·‖′ of (X, x0)

′, which we call below norming
sets of X. In particular, it is natural to wonder which maps come close to
realizing the supremum which appears in the definition of the Kantorovich
norm on V ; this is where extremal maps come into the picture.

Indeed, a consequence of the duality theorem is that, for any extremal
map on a finite subset {x1, . . . , xn} of X, there exists a linear combination
of x1, . . . , xn such that the only way of coming close to realizing the sup in
the definition of the Kantorovich norm of that combination is to pick a map
g close to ±f . In turn, this means that extremal maps have to somehow
”appear” in any norming set of X if X is to be linearly rigid.

Given a pointed metric space (X, x0) define fx,y : X → R (x, y ∈ X2) by

fx,y(z) =
ρ(x, z)− ρ(y, z)

2
+

ρ(y, x0)− ρ(x, x0)

2
.
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Then |fx,y(x) − fx,y(y)| = ρ(x, y) for any x, y ∈ X, so the discussion above
shows that the norm ‖ · ‖′ on V defined by

‖v‖′ = sup{|
∑

axfy,z(x)| : (y, z) ∈ X2}

is compatible with the metric on (X, x0). Pick now x1, . . . , xn ∈ X.
Assume now that X is linearly rigid; then we know that, because of the
property of extremal maps explained above, for any ε > 0 and any extremal
map f on {x0, x1, . . . , xn} there must exist some (x, y) ∈ X2 and δ = ±1
such that |fx,y(xi) + δf(xi)| ≤ ε for all i = 1, . . . , n.
Reindexing x1, . . . , xn and replacing f by −f if necessary, we may assume
that there exists j ≤ n such that f(xi) = ρ(x0, xi) for all i ≤ j and
f(xi) = sup{ρ(x0, xk) − ρ(xk, xi) : k ≤ j} for all i > j. Exchanging x and y
if necessary, we assume that δ = −1 above.

Claim. Pick ε > 0, and let x1, . . . , xn, f and fx,y be as above. Then there
exist constants c, c′ such that |ρ(x, xi)− (c+f(xi))| ≤ 6ε and |ρ(y, xi)− (c′−
f(xi))| ≤ 6ε for all i = 1, . . . , n.

The inequalities above are not optimal but are sufficient for our proof
to work; given the discussion before the claim, it is clear that proving it is
enough to conclude the proof of the ”only if” part of Theorem 2. Indeed,
it shows that (X, x0) can only be linearly rigid if for all x1, . . . , xn ∈ X, all
extremal f ∈ ({x1, . . . , xn}, x0)

′ and all ε > 0 there exist x, y and constants
c, c′ such that |c + f(xi)− ρ(x, xi)| ≤ ε and |f(xi)− c′ + ρ(y, xi)| ≤ ε for all
i = 1, . . . , n. We are only interested in proving the existence of x; it turns
out that for the proof to work we have to prove the existence of x and y at
the same time (we say more on this after the proof of the Claim).

Proof of the Claim. For i ≤ j we have fx,y(xi) ≥ ρ(x0, xi) − ε. Given the
definition of fx,y, this means that

ρ(x, xi) + ρ(y, x0) ≥ 2ρ(x0, xi) + ρ(y, xi) + ρ(x, x0)− 2ε, so

ρ(x, xi) + ρ(y, x0) ≥ (ρ(x0, xi) + ρ(x, x0)) + (ρ(x0, xi) + ρ(y, xi))− 2ε .

The triangle inequality then implies that |ρ(x, xi)−(ρ(x, x0)+ρ(x0, xi))| ≤ 2ε,
and |ρ(y, xi) − (ρ(y, x0) − ρ(x0, xi))| ≤ 2ε. Thus, setting c = ρ(x, x0) and
c′ = ρ(y, x0), we get a better inequality than what we wanted for i ≤ j (recall
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that f(xi) = ρ(x0, xi) for all i ≤ j).
Now, if i ≥ j + 1, one has f(xi) = ρ(x0, xk)− ρ(xk, xi) for some k ≤ j. This
implies that fx,y(xi) ≤ ρ(x0, xk)− ρ(xk, xi) + ε. Because of the definition of
fx,y, this means that

ρ(xk, xi)− ρ(y, xi) + ρ(y, x0)− ρ(x, x0) ≤ 2ρ(x0, xk)− 2ρ(xi, xk) + 2ε .

An equivalent form of this inequality is

(ρ(x, xi)+ρ(xi, xk))+(ρ(y, x0)−ρ(x0, xk)+ρ(xi, xk)) ≤ (ρ(x0, xk)+ρ(x, x0))+ρ(y, xi)+2ε .

Using the inequalities that we proved above for k ≤ j, we finally obtain that

(ρ(x, xi) + ρ(xi, xk)) + (ρ(y, xk) + ρ(xk, xi)) ≤ ρ(x, xk) + ρ(y, xi) + 6ε

This yields ρ(x, xi) + ρ(xi, xk) ≤ ρ(x, xk) + 6ε and ρ(y, xk) + ρ(xk, xi) ≤
ρ(y, xi)+6ε. This implies that ρ(x, xi) ≤ ρ(x, xk)−ρ(xi, xk)+6ε ≤ ρ(x, x0)+
ρ(x0, xk)−ρ(x0, xi)+6ε = c+f(xi)−6ε; also, ρ(x, xi) ≥ ρ(x, xk)−ρ(xk, xi) ≥
ρ(x, x0) + ρ(x0, xk)− 2ε− ρ(xk, xi) ≥ c + f(xi)− 2ε. Put together, these two
inequalities give us what we wanted for x; a similar proof works for y. ¤

Notice that if we only had used functions fx(z) = ρ(x, z) − ρ(x, 0), then
we would have obtained, using a similar proof, that if X is linearly rigid and
f is any extremal map in ({x0, x1, . . . , xn}, x0)

′ then there has to exist some
x and some constant c such that ρ(x, xi) is close to c+ δf(xi) for all i, where
δ = ±1. The problem is that this condition is (at least formally) weaker than
the one in Theorem 2; this is why we need to use two points to define the
functions in our norming set.

We have now finished the proof of the ”only if” part of Theorem 2; one
can prove the ”if” part using similar ideas, which we do with help from the
two lemmas below.

Lemma 3. Assume that X satisfies the hypothesis of Theorem 2 and that
(X, x0) is embedded in some Banach space (B, 0). Then for any ε > 0 and
any x1, . . . , xn ∈ X there exists a linear functional ϕ on B such that ‖ϕ‖ = 1
and ϕ(xi) ≥ ϕ(x1) + ρ(x1, xi) − ε, for all i = 1, . . . , n. This can also be
written as |ϕ(xi)− (ϕ(x1) + ρ(x1, xi))| ≤ ε for all i = 1, . . . , n.
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Proof. Since X satisfies the hypothesis of Theorem 2, there exists z ∈ X such
that ρ(z, x1) ≥ ρ(z, xi) + ρ(xi, x1)− ε for all i = 1, . . . , n. The Hahn-Banach
theorem ensures that there exists some linear functional ϕ such that ‖ϕ‖ = 1
and ϕ(z) = ϕ(x1) + ρ(x1, z). Hence, one has ϕ(xi) ≥ ϕ(z) − ρ(z, xi) =
ϕ(x1) + ρ(x1, z)− ρ(z, xi) ≥ ϕ(x1) + ρ(x1, xi)− ε.

Lemma 4. Assume that X satisfies the hypothesis of Theorem 2, and that
(X, x0) is embedded in some Banach space (B, 0). Then for any x1, . . . , xn ∈
X and any extremal map f on {x0, x1, . . . , xn} there exists a linear functional
ϕ such that ‖ϕ‖ = 1 and |ϕ(xi)− f(xi)| ≤ ε for all i = 1, . . . , n.

Proof. Pick ε > 0; set x0 = 0 and pick some y ∈ X such that |ρ(y, xi) −
c + f(xi)| ≤ ε for some c ∈ R and all i = 0, . . . , n. Then apply Lemma 3
to y, 0, x1, . . . , xn (in that order). This yields ϕ such that ‖ϕ‖ = 1, |ϕ(0) −
(ϕ(y) + ρ(y, 0))| ≤ ε, and |ϕ(xi)− (ϕ(y) + ρ(y, xi))| ≤ ε for all i = 1, . . . , n.
The first inequality gives |ϕ(y) + ρ(y, 0)| ≤ ε, hence |ϕ(y) + c| ≤ 2ε. Then
the second inequality yields that |ϕ(xi)− (−c + ρ(y, xi)| ≤ 3ε; the definition
of y shows that this implies |ϕ(xi) − f(xi)| ≤ 4ε for all i = 1, . . . , n. Since
ε > 0 was arbitrary, this concludes the proof.

Lemma 4 proves the ”if” part in Theorem 2: assume that X satis-
fies the hypothesis of Theorem 2, that (X, x0) is embedded in (B, 0), and
pick x1, . . . , xn ∈ X. Then ‖∑

aixi‖ = sup{∑ aiϕ(xi) : ‖ϕ‖ = 1, ϕ ∈
B∗}, where B∗ is the dual space of B. Lemma 4 then gives ‖∑

aixi‖ ≥
sup{∑ aif(xi) : f ∈ ({x0, x1, . . . , xn}, x0)

′ : f is extremal
)
, and the right-

hand sup is equal to the Kantorovich norm or
∑

aixi. So any norm compat-
ible with the metric on (X, x0) has to be bigger than the Kantorovich norm;
we know that the Kantorovich norm is maximal among compatible norms,
hence this proves that all norms compatible with the metric are equal.

Notice that the definition of linearly rigid metric space can be extended
to spaces of any density character: a metric space is linearly rigid if it admits
a unique (up to isometry) linearly dense embedding into a Banach space.
Theorem 2 is also true in that setting.

Corollary 1. The characterization of linear rigidity provided in the Remark
3 above is true for spaces of any density character.

Indeed, this follows from the second proof of Theorem 2, which does not
depend on any assumptions on the density character of X. One can also
notice that both proofs show that a space X is linearly rigid (in extended
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sense) if, and only if, any finite subset is contained in a separable linearly
rigid subset of X.
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