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Llntroduction.

Introduction

Scalar balance laws:

d:u 4 Divf(t, x, u) = F(t,x, u) (t,x) € Ry xRV
u(0,x) = wo(x) € L' NL>® NBV x € RV,

where f € C3([0, T] x RMN x R;RM), F € C*([0, T] x RY x R;R).
@ Existence and uniqueness, dependence w.r.t. initial conditions: Kruzkov Theorem;

o Dependence w.r.t. flow and source ?
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Llntroduction.

Continuity equation:
deu + Div(uV(u(t)) =0,  u(0,-)=w L' NL®NBV,

where V : LY(R";R) — C?(RV;R) is a non-local averaging functional, for example, if
v:R — R is a regular function:

o V(u)=v (fR udx) for a supply-chain

o V(u) = v(n *x u)w(x), for pedestrian traffic.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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pedestrians’ trajectories

support of 1(- — xo)
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Llntroduction.

pedestrians’ trajectories

|

support of 1(- — xo) obstacles

Goal :
o Existence and uniqueness of an entropy solution ?

o Gateaux differentiability of the semi-group w.r.t. initial conditions ?
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L1

Stability with respect to flow and source

Theorem (Kruzkov (1970))
Let us denote Qa = [0, T] x RN x [—A, A] for all A> 0. If

(K) VA > 0, 8uf € L®(Qa), 8u(F — divf) € L®(Q)
and F —divf € L(Qa4)
then for all uo € (L> N LY)(RY;R) such that ||uol| . < Mo, there exists a unique weak

entropy solution u € L°([0, T]; LY(R";R)) continuous from the right in time and there
exists M > 0 such that ||ul .. < M.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.



L1 Stability for scalar balance laws.

=

Stability with respect to flow and source

Previous Results

Theorem (Kruzkov (1970))
Let us denote Qa = [0, T] x RN x [—A, A] for all A> 0. If

(K) YA> 0, 0uf € L™(Q4), 0u(F — divf) € L™(Q4)
and F —divf € L(Qa4)

then for all uo € (L> N LY)(RY;R) such that ||uol| . < Mo, there exists a unique weak
entropy solution u € L°([0, T]; LY(R";R)) continuous from the right in time and there
exists M > 0 such that ||ul| . < M.

Let vo € (L' NL>°)(R";R) be such that ||vo|| o < Mo, then
[[(r =) x < €™ lluo — vollia

Where v = ||8u(F = dIVf)HLOO(QM)
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L1

Stability with respect to flow and source

Theorem (Lucier)

Iff,g : R — RN are globally lipschitz, then 3C > 0 such that Yuo, vo € L' N L>(RY;R)
initial conditions for

O¢u + Divf(u) =0, Oev + Divg(v) =0.
with furthermore vo € BV(RM; R), we have Vt > 0,

s = V)(@l|us < lluo — vollus + CETV(wo) Lip (£ — ).
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=

Stability with respect to flow and source

Previous Results

Theorem (Lucier)

Iff,g : R — RN are globally lipschitz, then 3C > 0 such that Yuo, vo € L' N L>(RY;R)
initial conditions for

O¢u + Divf(u) =0, Oev + Divg(v) =0.
with furthermore vo € BV(RM; R), we have Vt > 0,

[(u = v)(®)[| . < lluo — volla + CETV(vo) Lip (f — &) -

Theorem (Chen & Karlsen)
With f(t,x,u) = X(x)I(u), g(t, x, v) = u(x)m(v), no source F = G =0,

[|(u = )(®)]|x < lluwo = vollpx + Cut (JIA = pellioe + 1A = prllwra
+|/ - m||L°° + [/ = m||wlv<>0)

where Ci = Csuppo 7 (TV(u(t)), TV(v(t))).
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L1

Stability with respect to flow and source

Total Variation

Definition: For u € Lj,.(R";R) we denote

TV(u) = sup{/ udivw; W e CHRY;RY), V[~ < 1} ;
]KN
and
BV(RV;R) = {u € Lhe; TV(u) < oo} .

Remark : When f and F depend only on u we have
u €ELNBV=Vt>0, u(t)elL®nBV
and, denoting v = [|0uF || (q,,)
TV(u(t)) < TV(uw)e™*.

Problem: we do not have in general an estimate on the total variation !
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L1

Stability with respect to flow and source

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV)

Assume (f, F) satisfies (K) + (H1). Let

Ko = NWi ((2N+ )|Vl ey, + ||auF||Loo(QM)). If uo € (L= N BV)(RY;R),
then Vt € [0, T], u(t) € (L> NBV)(R";R) and

TV (u(t)) <TV(uo)e™*

t
+NWN/ e“°(*—f)/ [V(F = divF)(7, %, )| oo gy ¥ A7 -
0 RN
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L1

Stability with respect to flow and source

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV)

Assume (f, F) satisfies (K) + (H1). Let

Ko = NWi ((2N+ )|Vl ey, + ||auF||Loo(QM)). If uo € (L= N BV)(RY;R),
then Vt € [0, T], u(t) € (L> NBV)(R";R) and

TV (u(t)) <TV(uo)e™*

t
+NWN/ e“°(*—f)/ [V(F = divF)(7, %, )| oo gy ¥ A7 -
0 RN

H1) = [T fon || Vx(F - divF)[| o gy dxdE < 00 et Viduf € L™ (Qm)
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Stability with respect to flow and source

Estimate on the total variation

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV)

Assume (f, F) satisfies (K) + (H1). Let

Ko = NWi ((2/\/ + 1)V || e gy + ||auF||LO°(QM)). If uo € (L= N BV)(RY;R),
then VYt € [0, T], u(t) € (L N BV)(RY;R) and

TV (u(t)) <TV(uo)e™*

t
+NWN/ e”"(t*T)‘/ ||VX(F—divf)(T,x,-)HLoo(du)dxdT.
0 RN

H1) = [T fon || Vx(F - divF)[| o gy dxdE < 00 et Viduf € L™ (Qm)
Remark : In some particular cases, we re-obtain known estimates:

o f, F depending only on u,

o f, F not depending on wu.
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L1

Stability with respect to flow and source

Idea of the proof

Proposition

Let p € C°(Ry;Ry) be such that ||ull,1 =1 and i < 0 on R}. We denote
pa(x) = swp (@) If there exists Co > 0 such that Y\ > 0,
1
5 Ly L1 5) = a0l (ixdy < Go
RV JR

then u € BV and
V() [ nlulylDdy < Go
R
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L1

Stability with respect to flow and source

Idea of the proof

Proposition

Let p € C°(Ry;Ry) be such that ||ull,1 =1 and i < 0 on R}. We denote
pa(x) = swp (@) If there exists Co > 0 such that Y\ > 0,

%/RN /RN |u(x +y) = u(x)|pr(y)dxdy < Go,

then u € BV and

V@) [ Inladlydy < Go

Let us introduce

-
F(T,\) = / / / lu(x +y) — u(x)|pa(y)dxdydt.
0 RN J B(x0,R+M(To—t))

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.



L1 Stability for scalar balance laws.
L1

Stability with respect to flow and source

The doubling variables method gives the estimate:
-
OTF(T, ) <OTF(0,)) + CAONF(T, X)) + C'F(T,\) + A/ A(t)dt,
0

where A(t) = [pn ||V(F - din)(t’X')”Lw(du)'
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L L1 Stability with respect to flow and source

The doubling variables method gives the estimate:
-
OTF(T,\) <OTF(0,\) + CAONF(T,A) + C'F(T,A) + A / A(t)dt,
0

where A(t) = [on ||V(F — divf)(t,x-)”l_oo(du).
We integrate in time and divide by CTA\ :

o(T)

0< %}'(O, N+oFTAN+ D rT g L / A(t)dt,

where o(T) =N+ C'/C —1/T — —oco when T — 0. We choose T small enough and we
integrate on [\, +o00].
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L L1 Stability with respect to flow and source

The doubling variables method gives the estimate:
-
OTF(T,\) <OTF(0,\) + CAONF(T,A) + C'F(T,A) + A / A(t)dt,
0

where A(t) = [on ||V(F — divf)(t,x-)”l_oo(du).
We integrate in time and divide by CTA\ :

o(T)

0< %}'(O, N+oFTAN+ D rT g L / A(t)dt,

where o(T) =N+ C'/C —1/T — —oco when T — 0. We choose T small enough and we
integrate on [\, +o00].
We obtain

F(T,\) <

KTV(uo)+71)/ A(t)dt.

- —
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Stability with respect to flow and source

Plan

@ L' Stability with respect to flow and source

o Dependence with respect to flow and source
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L1

Stability with respect to flow and source

Dependence with respect to flow and source

Theorem (Flow/Source...)

Assume (f, F), (g, G) satisfy (K), (f, F) satisfies (H1) and (f — g, F — G) satisfies (H2).
Let up, vo € (L' NL> NBV)(RY;R). We denote

= 2N VaBuF [l gy + 10 o gy F 106(F = Gl iceig -

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial
conditions (ug, vo).
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L1

Stability with respect to flow and source

Dependence with respect to flow and source

Theorem (Flow/Source...)

Assume (f, F), (g, G) satisfy (K), (f, F) satisfies (H1) and (f — g, F — G) satisfies (H2).
Let up, vo € (L' NL> NBV)(RY;R). We denote

= 2N VaBuF [l gy + 10 o gy F 106(F = Gl iceig -

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial
conditions (ug, vo).

(H2) : 84(F — G) € L°®(Qp), 8u(f — g) € L=(Qp) and
Jo Juw [IF = G = div(F — &)|] oo g, dxdt < 0.
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L1

Stability with respect to flow and source

Theorem (...Flow/Source)
then Vt € [0, T]:

kot _ Kt
[(u =)D x < € lluo — vollys + S———TV(w0) || 0u(f — &) e
Ko K

t eno(t—f) _ e"‘(t_f) q
[ I e e

Ko — R

< N9 ~ 8

+ /Ot e™t=") /RN [((F = G) = div(f — £))(7, %, )| oo gy X7 -
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L1

Stability with respect to flow and source

Theorem (...Flow/Source)
then Vt € [0, T]:

kot _ Kt
[(u =)D x < € lluo — vollys + S———TV(w0) || 0u(f — &) e
Ko K

t eno(t—f) _ e"‘(t_f) q
[ I e e

Ko — R

< N9 ~ 8

+ /Ot e™t=") /RN [((F = G) = div(f — £))(7, %, )| oo gy X7 -

Remark : As before, we re-obtain known estimates in some particular cases
o f,g depend onlyon u, F=G =0,
e f,g,F,G not depend on wu.
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© The continuity equation with a non-local flow
o Existence and uniqueness of a solution
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LThe continuity equation with a non-local flow

Pedestrian Traffic (Colombo, Herty, Mercier)

We now consider equations of the type
deu+ Div(uV (1)) =0;  w € (L' NL>® NBV)(RY;R)

where V : L} — (C? is a non-local functional.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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I*The continuity equation with a non-local flow

and uni of a

Existence of a solution

Theorem (Traffic)

If V satisfies (V1), then there exists a time Tex > 0 and a unique entropy solution
u e C[0, Te[; L' NL>® N BV)
and we denote Siup = u(t,-).

We can bound by below the time of existence by

In(a o . . .
Tex > sup { Z (C(’Z:fl)n) (an)n strict. increasing, co = ||uo|||_<x,}.

If furthermore, V satisfies (V2) then

w € WNL® =Vt € [0, Tex[, u(t) e W',

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws. Parma, 15th February 2010 19 / 30
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LThe continuity equation with a non-local flow

Hypotheses

(V1) There exists C € L2 (R ; Ry ) such that Vu € LY(RY; R)
V(u) eL™, VeV ()| o < Cllulli) s
Vv @) < CClull) Vv, < clul).
and Vui, u2 € LY(RV; R)

V(1) = V(w2)]] e < Cllunllpoe)lun — 21,
[Vx(V () = V()| 2 < Cllluallpoe)un = v2]lya -

(V2) There exists C € L (R4; R.) such that HViV(u)HLw < C(||ufl0)-

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

Idea of the proof:

Let us introduce the space X, = L N BV(RV; [0, a]) and the application Q that associates to
w € Xg = CO([0, T[, X3) the solution u € X of the Cauchy problem

Oru+ Div(uV(w)) =0, u(0,-) =ug € Xo

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

Idea of the proof:

Let us introduce the space X, = L N BV(RV; [0, a]) and the application Q that associates to
w € Xg = CO([0, T[, X3) the solution u € X of the Cauchy problem

Otu+ Div(uV(w)) =0, u(0,) = ug € Xo
For w1, wa, we obtain thanks to the estimate of Thm (Flow/Source)
||Q(W1) - Q(W2)||Loo([o,7—[7|_1) < f(T)”Wl - W2||L°°([0,T[,L1) ’

where f is increasing , f(0) =0 and f —1_. o 0.
Then we apply the Banach Fixed Point Theorem.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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© The continuity equation with a non-local flow

o Gateaux derivative of the semi-group
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LThe continuity equation with a non-local flow

Definition :  The application S : L}(RY; R) — L}(RV;R) is said to be L' Gateaux
differentiable in up € LY in the direction ro € L if there exists a linear continuous
application DS(uo) : L' — L' such that

—h—0 0.

H S(UO + hro) — S(Uo)
L1

h — DS(UO)(rO)

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

Definition :  The application S : L}(RY; R) — L}(RV;R) is said to be L' Gateaux
differentiable in up € LY in the direction ro € L if there exists a linear continuous
application DS(uo) : LY — L! such that

HS(uo + hrz) — S(uo)

— DS(UQ)(rO)

—h—0 0.
L1

Formally, we expect the Gateaux derivative of the semi-group to be the solution of the
linearized problem:

Oer + Div(rV(u) + uDV(u)(r)) =0, r(0,-)=ro.
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LThe continuity equation with a non-local flow

We introduce the hypotheses:
(V3) V : L! — C? is differentiable and there exists C € L3% such that Yu, r € L,

[V(u+r) = V() = DV(u)(r)|l .o < € (lulloe + llu+rllee) 7l s
[DV()(N)|[wa.oe < Clllulloe)Irllia -

(V4) There exists C € Li2(R+;R;) such that Vu, i1, r € L*

Hdiv (V(@) — V(u) — DV(u)(ii — u))

L S CUEl e + flulle) (118 = lla)?

|aiv (ov()()] , < Cul)lrla -

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

We show that the linearised problem has a unique entropy solution:

Theorem (Linearised)

Assume that V satisfies (V1), (V2), (V3). Let u € C°([0, Tex[; W nWH1),
ro € (LY NL>=)(RN;R). Then the linearised problem

O¢r + Div(rV/(u) + uDV(u)(r)) =0,  with r(0,x) = ro

has a unique entropy solution r € C°([0, Tex[; L*(RV; R)) and we denote X¥¢ry = r(t,-).
If furthermore ro € WY1, then Vt € [0, Tex[, r(t) € WL,

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

Theorem (Gateaux Derivative)

Assume that V satisfies (V1),(V2),(V3),(V4). Let up € WH° NW??, ro € WHI L
and let Tex be the time of existence for the initial problem given by Thm (Trafic). Then,
for all t € [0, Tex| the local semi-group of the pedestrian traffic problem is L' Gateaux
differentiable in the direction ro and

Dst(U())(ro) = Zf'”°ro o

Idea of the proof: Thm (Flow/Source) allows to compare the solution with initial condition
ug + hrg to the solution u + hr.
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LThe continuity equation with a non-local flow

Let u, up, be the solutions of the Cauchy problem 9:u + Div(uV/(u)) = 0 with initial conditions
uo, up + hro. Let r be the solution of the Linerized equation O:r + Div(rV/(u) + uDV(u)(r)) = 0,
with r(0) = rg. We define then z, = u + hr that satisfies

Otzp, + Div (z4(V(u) + hDV(u)(r))) = R2Div(rDV(u)(r)), zu(0) = uo + hro.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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LThe continuity equation with a non-local flow

Let u, up, be the solutions of the Cauchy problem 9:u + Div(uV/(u)) = 0 with initial conditions
ug, up + hrg. Let r be the solution of the Linerized equation 0¢r 4+ Div(rV/(u) + uDV/(u)(r)) =0,
with r(0) = ro. We define then z, = u + hr that satisfies

Otz + Div (z4(V/(u) + hDV(u)(r))) = h®Div(rDV(u)(r)), 2z4(0) = uo + hro.
Next, we use Thm (Flow/Source) to compare uj, and z,. We obtain

1 1 1
o = 2blee o,y <FCT) (G lun = olcquny + 3 o = 2blleeny)

+hC(B) Te T |r|l oo w1y I lloo L1y »

where F is increasing and F(0) = 0.

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.



L1 Stability for scalar balance laws.

LThe continuity equation with a non-local flow
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© The continuity equation with a non-local flow

@ Extrema of a Cost Functional
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LThe continuity equation with a non-local flow

Let J be a cost functional such that

Hw) = [ F(Sepw) vt x)ax.

Proposition

Let f € CY(R;R:) and ¢ € L= (lex x RN;R). Let us assume that

S: I x (LY NL=)(RY;R) — (L* N L) (RY;R) is L' Gateaux differentiable.
If po € (L' N L>)(RN;R) is solution of

Find min J(po) s. t. {Stpo is solution of (Traffic)} .
po

then, for all ro € (L' N L>)(RY;R)

/ F(Sepo) T£° 0 (¢, x) dx = 0.
RN

Magali Mercier (Institut Camille Jordan, Lyon) L~ Stability for scalar balance laws.
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|- Conclusion
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