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Introduction

Scalar balance laws:(
∂tu + Divf (t, x , u) = F (t, x , u) (t, x) ∈ R∗+ × RN

u(0, x) = u0(x) ∈ L1 ∩ L∞ ∩ BV x ∈ RN ,

where f ∈ C2([0,T ]× RN × R; RN), F ∈ C1([0,T ]× RN × R; R).

Existence and uniqueness, dependence w.r.t. initial conditions: Kružkov Theorem;

Dependence w.r.t. flow and source ?
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Introduction.

Continuity equation:

∂tu + Div(uV (u(t))) = 0 , u(0, ·) = u0 ∈ L1 ∩ L∞ ∩ BV ,

where V : L1(RN ; R)→ C2(RN ; R) is a non-local averaging functional, for example, if
v : R→ R is a regular function:

V (u) = v
“R

R u dx
”
for a supply-chain

V (u) = v(η ∗x u)w(x), for pedestrian traffic.
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.

support of !(·− x0) obstacles

x0

pedestrians’ trajectories

.

Goal :

Existence and uniqueness of an entropy solution ?

Gâteaux differentiability of the semi-group w.r.t. initial conditions ?
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L1 Stability with respect to flow and source

Previous Results

Theorem (Kružkov (1970))

Let us denote ΩA = [0,T ]× RN × [−A,A] for all A ≥ 0. If

(K) ∀A > 0 , ∂uf ∈ L∞(ΩA) , ∂u(F − divf ) ∈ L∞(ΩA)

and F − divf ∈ L∞(ΩA)

then for all u0 ∈ (L∞ ∩ L1)(RN ; R) such that ‖u0‖L∞ ≤ M0, there exists a unique weak
entropy solution u ∈ L∞([0,T ]; L1(RN ; R)) continuous from the right in time and there
exists M > 0 such that ‖u‖L∞ ≤ M.
Let v0 ∈ (L1 ∩ L∞)(RN ; R) be such that ‖v0‖L∞ ≤ M0, then‚‚(u − v)(t)

‚‚
L1 ≤ eγt‖u0 − v0‖L1 ,

where γ =
‚‚∂u(F − divf )

‚‚
L∞(ΩM )

.
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L1 Stability with respect to flow and source

Previous Results

Theorem (Lucier)

If f , g : R→ RN are globally lipschitz, then ∃C > 0 such that ∀u0, v0 ∈ L1 ∩ L∞(RN ; R)
initial conditions for

∂tu + Divf (u) = 0 , ∂tv + Divg(v) = 0 .

with furthermore v0 ∈ BV(RN ; R), we have ∀t ≥ 0,‚‚(u − v)(t)
‚‚

L1 ≤ ‖u0 − v0‖L1 + CtTV(v0) Lip (f − g) .

Theorem (Chen & Karlsen)

With f (t, x , u) = λ(x)l(u), g(t, x , v) = µ(x)m(v), no source F = G = 0,‚‚(u − v)(t)
‚‚

L1 ≤ ‖u0 − v0‖L1 + C1t
`
‖λ− µ‖L∞ + ‖λ− µ‖W1,1

+‖l −m‖L∞ + ‖l −m‖W1,∞
´

where C1 = Csup[0,T ]

`
TV(u(t)),TV(v(t))

´
.
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L1 Stability with respect to flow and source

Previous Results

Total Variation

Definition: For u ∈ L1
loc(RN ; R) we denote

TV(u) = sup
Z

RN
udivΨ ; Ψ ∈ C1

c (RN ; RN) , ‖Ψ‖L∞ ≤ 1
ff

;

and
BV(RN ; R) =

n
u ∈ L1

loc; TV(u) <∞
o
.

Remark : When f and F depend only on u we have

u0 ∈ L∞ ∩ BV⇒ ∀t ≥ 0 , u(t) ∈ L∞ ∩ BV

and, denoting γ = ‖∂uF‖L∞(ΩM ),

TV(u(t)) ≤ TV(u0)eγt .

Problem: we do not have in general an estimate on the total variation !
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L1 Stability with respect to flow and source

Estimate on the total variation

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV)

Assume (f ,F ) satisfies (K) + (H1). Let
κ0 = NWN

“
(2N + 1)‖∇x∂uf ‖L∞(ΩM ) + ‖∂uF‖L∞(ΩM )

”
. If u0 ∈ (L∞ ∩ BV)(RN ; R),

then ∀t ∈ [0,T ] , u(t) ∈ (L∞ ∩ BV)(RN ; R) and

TV(u(t)) ≤TV(u0)eκ0t

+ NWN

Z t

0
eκ0(t−τ)

Z
RN

‚‚∇x(F − divf )(τ, x , ·)
‚‚

L∞(du)
dx dτ .

(H1) :
R T
0

R
RN

‚‚∇x(F − divf )
‚‚

L∞(du)
dxdt <∞ et ∇x∂uf ∈ L∞(ΩM)

Remark : In some particular cases, we re-obtain known estimates:

f ,F depending only on u,

f ,F not depending on u.
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L1 Stability with respect to flow and source

Estimate on the total variation

Idea of the proof

Proposition

Let µ ∈ C∞c (R+; R+) be such that ‖µ‖L1 = 1 and µ′ < 0 on R∗+. We denote

µλ(x) = 1
λN µ

“
‖x‖
λ

”
. If there exists C0 > 0 such that ∀λ > 0,

1
λ

Z
RN

Z
RN

˛̨
u(x + y)− u(x)

˛̨
µλ(y)dxdy ≤ C0,

then u ∈ BV and
TV(u)

Z
RN
|y1|µ(‖y‖)dy ≤ C0.

Let us introduce

F(T , λ) =

Z T

0

Z
RN

Z
B(x0,R+M(T0−t))

˛̨
u(x + y)− u(x)

˛̨
µλ(y)dxdydt.
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L1 Stability with respect to flow and source

Estimate on the total variation

The doubling variables method gives the estimate:

∂TF(T , λ) ≤∂TF(0, λ) + Cλ∂λF(T , λ) + C ′F(T , λ) + λ

Z T

0
A(t)dt ,

where A(t) =
R

RN
‚‚∇(F − divf )(t, x ·)

‚‚
L∞(du)

.
We integrate in time and divide by CTλ :

0 ≤
1

Cλ
F(0, λ) + ∂λF(T , λ) +

α(T )

λ
F(T , λ) +

1
C

Z T

0
A(t)dt ,

where α(T ) = N + C ′/C − 1/T → −∞ when T → 0. We choose T small enough and we
integrate on [λ,+∞[.
We obtain

F(T , λ) ≤
λ

−α− 1
KTV(u0) +

λ

C(−α− 1)

Z T

0
A(t)dt .
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L1 Stability with respect to flow and source

Dependence with respect to flow and source

Dependence with respect to flow and source

Theorem (Flow/Source...)

Assume (f ,F ), (g ,G) satisfy (K), (f ,F ) satisfies (H1) and (f − g ,F − G) satisfies (H2).
Let u0, v0 ∈ (L1 ∩ L∞ ∩ BV)(RN ; R). We denote

κ = 2N‖∇x∂uf ‖L∞(ΩM ) + ‖∂uF‖L∞(ΩM ) +
‚‚∂u(F − G)

‚‚
L∞(ΩM )

.

Let u and v be the solutions associated to (f ,F ) and (g ,G) respectively and with initial
conditions (u0, v0).

(H2) : ∂u(F − G) ∈ L∞(ΩM), ∂u(f − g) ∈ L∞(ΩM) andR T
0
R

RN
‚‚F − G − div(f − g)

‚‚
L∞(du)

dxdt <∞.
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L1 Stability with respect to flow and source

Dependence with respect to flow and source

Theorem (...Flow/Source)

then ∀t ∈ [0,T ]:‚‚(u − v)(t)
‚‚

L1 ≤ eκt‖u0 − v0‖L1 +
eκ0t − eκt

κ0 − κ
TV(u0)

‚‚∂u(f − g)
‚‚

L∞

+

Z t

0

eκ0(t−τ) − eκ(t−τ)

κ0 − κ

Z
RN

‚‚∇x(F − divf )(τ, x , ·)
‚‚

L∞(du)
dxdτ

× NWN
‚‚∂u(f − g)

‚‚
L∞

+

Z t

0
eκ(t−τ)

Z
RN

‚‚((F − G)− div(f − g))(τ, x , ·)
‚‚

L∞(du)
dxdτ .

Remark : As before, we re-obtain known estimates in some particular cases

f , g depend only on u, F = G = 0,

f , g ,F ,G not depend on u.
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Existence and uniqueness of a solution

Pedestrian Traffic (Colombo, Herty, Mercier)

We now consider equations of the type

∂tu + Div(uV (u)) = 0 ; u0 ∈ (L1 ∩ L∞ ∩ BV)(RN ; R)

where V : L1 → C2 is a non-local functional.
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The continuity equation with a non-local flow

Existence and uniqueness of a solution

Existence of a solution

Theorem (Traffic)

If V satisfies (V1), then there exists a time Tex > 0 and a unique entropy solution

u ∈ C0([0,Tex [; L1 ∩ L∞ ∩ BV)

and we denote Stu0 = u(t, ·).

We can bound by below the time of existence by

Tex ≥ sup
nX

n

ln(αn+1/αn)

C(αn+1)
; (αn)n strict. increasing , α0 = ‖u0‖L∞

o
.

If furthermore, V satisfies (V2) then

u0 ∈W2,1 ∩ L∞ ⇒ ∀t ∈ [0,Tex [ , u(t) ∈W2,1 .
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Existence and uniqueness of a solution

Hypotheses

(V1) There exists C ∈ L∞loc(R+; R+) such that ∀u ∈ L1(RN ; R)

V (u) ∈ L∞ ,
‚‚∇xV (u)

‚‚
L∞ ≤ C(‖u‖L∞) ,‚‚∇xV (u)

‚‚
L1 ≤ C(‖u‖L∞) ,

‚‚‚∇2
xV (u)

‚‚‚
L1
≤ C(‖u‖L∞) ,

and ∀u1, u2 ∈ L1(RN ; R)‚‚V (u1)− V (u2)
‚‚

L∞ ≤ C(‖u1‖L∞)‖u1 − u2‖L1 ,‚‚∇x(V (u1)− V (u2))
‚‚

L1 ≤ C(‖u1‖L∞)‖u1 − u2‖L1 .

(V2) There exists C ∈ L∞loc(R+; R+) such that
‚‚‚∇3

xV (u)
‚‚‚

L∞
≤ C(‖u‖L∞).
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Existence and uniqueness of a solution

Idea of the proof:

Let us introduce the space Xα = L1 ∩ BV(RN ; [0, α]) and the application Q that associates to
w ∈ Xβ = C0([0,T [,Xβ) the solution u ∈ Xβ of the Cauchy problem

∂tu + Div(uV (w)) = 0 , u(0, ·) = u0 ∈ Xα

For w1,w2, we obtain thanks to the estimate of Thm (Flow/Source)‚‚Q(w1)−Q(w2)
‚‚

L∞([0,T [,L1)
≤ f (T )‖w1 − w2‖L∞([0,T [,L1) ,

where f is increasing , f (0) = 0 and f →T→∞ ∞.
Then we apply the Banach Fixed Point Theorem.
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

Plan

1 L1 Stability with respect to flow and source
Previous Results
Estimate on the total variation
Dependence with respect to flow and source

2 The continuity equation with a non-local flow
Existence and uniqueness of a solution
Gâteaux derivative of the semi-group
Extrema of a Cost Functional
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

Definition : The application S : L1(RN ; R)→ L1(RN ; R) is said to be L1 Gâteaux
differentiable in u0 ∈ L1 in the direction r0 ∈ L1 if there exists a linear continuous
application DS(u0) : L1 → L1 such that‚‚‚‚S(u0 + hr0)− S(u0)

h
− DS(u0)(r0)

‚‚‚‚
L1
→h→0 0 .

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the
linearized problem:

∂tr + Div(rV (u) + uDV (u)(r)) = 0 , r(0, ·) = r0 .

Magali Mercier (Institut Camille Jordan, Lyon) L1 Stability for scalar balance laws. Parma, 15th February 2010 23 / 30



L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

Definition : The application S : L1(RN ; R)→ L1(RN ; R) is said to be L1 Gâteaux
differentiable in u0 ∈ L1 in the direction r0 ∈ L1 if there exists a linear continuous
application DS(u0) : L1 → L1 such that‚‚‚‚S(u0 + hr0)− S(u0)

h
− DS(u0)(r0)

‚‚‚‚
L1
→h→0 0 .

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the
linearized problem:

∂tr + Div(rV (u) + uDV (u)(r)) = 0 , r(0, ·) = r0 .

Magali Mercier (Institut Camille Jordan, Lyon) L1 Stability for scalar balance laws. Parma, 15th February 2010 23 / 30



L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

We introduce the hypotheses:
(V3) V : L1 → C2 is differentiable and there exists C ∈ L∞loc such that ∀u, r ∈ L1,‚‚V (u + r)− V (u)− DV (u)(r)

‚‚
W2,∞ ≤ C

`
‖u‖L∞ + ‖u + r‖L∞

´
‖r‖2L1 ,‚‚DV (u)(r)

‚‚
W2,∞ ≤ C(‖u‖L∞)‖r‖L1 .

(V4) There exists C ∈ L∞loc(R+; R+) such that ∀u, ũ, r ∈ L1‚‚‚div
`
V (ũ)− V (u)− DV (u)(ũ − u)

´‚‚‚
L1
≤ C(‖ũ‖L∞ + ‖u‖L∞)(‖ũ − u‖L1)2‚‚‚div

`
DV (u)(r)

´‚‚‚
L1
≤ C(‖u‖L∞)‖r‖L1 .
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

We show that the linearised problem has a unique entropy solution:

Theorem (Linearised)

Assume that V satisfies (V1), (V2), (V3). Let u ∈ C0([0,Tex [;W1,∞ ∩W1,1),
r0 ∈ (L1 ∩ L∞)(RN ; R). Then the linearised problem

∂tr + Div(rV (u) + uDV (u)(r)) = 0 , with r(0, x) = r0

has a unique entropy solution r ∈ C0([0,Tex [; L1(RN ; R)) and we denote Σu
t r0 = r(t, ·).

If furthermore r0 ∈W1,1, then ∀t ∈ [0,Tex [, r(t) ∈W1,1.
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

Theorem (Gâteaux Derivative)

Assume that V satisfies (V1),(V2),(V3),(V4). Let u0 ∈W1,∞ ∩W2,1, r0 ∈W1,1 ∩ L∞
and let Tex be the time of existence for the initial problem given by Thm (Trafic). Then,
for all t ∈ [0,Tex [ the local semi-group of the pedestrian traffic problem is L1 Gâteaux
differentiable in the direction r0 and

DSt(u0)(r0) = ΣStu0
t r0 .

Idea of the proof: Thm (Flow/Source) allows to compare the solution with initial condition
u0 + hr0 to the solution u + hr .
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Gâteaux derivative of the semi-group

Let u, uh be the solutions of the Cauchy problem ∂tu + Div(uV (u)) = 0 with initial conditions
u0, u0 + hr0. Let r be the solution of the Linerized equation ∂t r + Div(rV (u) + uDV (u)(r)) = 0,
with r(0) = r0. We define then zh = u + hr that satisfies

∂tzh + Div
`
zh(V (u) + hDV (u)(r))

´
= h2Div(rDV (u)(r)) , zh(0) = u0 + hr0 .

Next, we use Thm (Flow/Source) to compare uh and zh. We obtain

1
h
‖uh − zh‖L∞([0,T [,L1) ≤F (T )

„
1
h
‖uh − u‖2L∞(L1)

+
1
h
‖uh − zh‖L∞(L1)

«
+ hC(β)TeC(β)T ‖r‖L∞(W1,1)‖r‖L∞(L1) ,

where F is increasing and F (0) = 0.
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L1 Stability for scalar balance laws.

The continuity equation with a non-local flow

Extrema of a Cost Functional

Let J be a cost functional such that

J(ρ0) =

Z
RN

f (Stρ0) ψ(t, x)dx .

Proposition

Let f ∈ C1,1(R; R+) and ψ ∈ L∞(Iex × RN ; R). Let us assume that
S : I × (L1 ∩ L∞)(RN ; R)→ (L1 ∩ L∞)(RN ; R) is L1 Gâteaux differentiable.
If ρ0 ∈ (L1 ∩ L∞)(RN ; R) is solution of

Find min
ρ0

J(ρ0) s. t.
˘
Stρ0 is solution of (Traffic)

¯
.

then, for all r0 ∈ (L1 ∩ L∞)(RN ; R)Z
RN

f ′(Stρ0) Σρ0t r0 ψ(t, x) dx = 0 .
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L1 Stability for scalar balance laws.

Conclusion
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