L¹ Stability for scalar balance laws. Control of the continuity equation with a non-local flow.

Magali Mercier

Institut Camille Jordan, Lyon

Parma, 15th February 2010

Introduction

Scalar balance laws:

$$\begin{cases} \partial_t u + \operatorname{Div} f(t, x, u) = F(t, x, u) & (t, x) \in \mathbb{R}^*_+ \times \mathbb{R}^N \\ u(0, x) = u_0(x) \in \mathsf{L}^1 \cap \mathsf{L}^\infty \cap \mathsf{BV} & x \in \mathbb{R}^N, \end{cases}$$

where $f \in C^2([0, T] \times \mathbb{R}^N \times \mathbb{R}; \mathbb{R}^N)$, $F \in C^1([0, T] \times \mathbb{R}^N \times \mathbb{R}; \mathbb{R})$.

- Existence and uniqueness, dependence w.r.t. initial conditions: Kružkov Theorem;
- Dependence w.r.t. flow and source ?

Continuity equation:

$$\partial_t u + \operatorname{Div}(uV(u(t))) = 0, \qquad u(0, \cdot) = u_0 \in L^1 \cap L^\infty \cap \mathsf{BV},$$

where $V : L^1(\mathbb{R}^N; \mathbb{R}) \to C^2(\mathbb{R}^N; \mathbb{R})$ is a non-local averaging functional, for example, if $v : \mathbb{R} \to \mathbb{R}$ is a regular function:

- $V(u) = v\left(\int_{\mathbb{R}} u \, dx\right)$ for a supply-chain
- $V(u) = v(\eta *_x u)w(x)$, for pedestrian traffic.

3 / 30

Goal :

- Existence and uniqueness of an entropy solution ?
- Gâteaux differentiability of the semi-group w.r.t. initial conditions ?

Goal :

- Existence and uniqueness of an entropy solution ?
- Gâteaux differentiability of the semi-group w.r.t. initial conditions ?

Table of contents

L¹ Stability with respect to flow and source

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

2 The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

L¹ Stability for scalar balance laws.

L¹ Stability with respect to flow and source

Previous Results

Plan

Previous Results

- Estimate on the total variation
- Dependence with respect to flow and source

The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

Previous Results

Theorem (Kružkov (1970))

Let us denote $\Omega_A = [0, T] \times \mathbb{R}^N \times [-A, A]$ for all $A \ge 0$. If

(K)
$$\forall A > 0$$
, $\partial_u f \in \mathsf{L}^{\infty}(\Omega_A)$, $\partial_u (F - \operatorname{div} f) \in \mathsf{L}^{\infty}(\Omega_A)$
and $F - \operatorname{div} f \in \mathsf{L}^{\infty}(\Omega_A)$

then for all $u_0 \in (\mathbf{L}^{\infty} \cap \mathbf{L}^1)(\mathbb{R}^N; \mathbb{R})$ such that $||u_0||_{\mathbf{L}^{\infty}} \leq M_0$, there exists a unique weak entropy solution $u \in \mathbf{L}^{\infty}([0, T]; \mathbf{L}^1(\mathbb{R}^N; \mathbb{R}))$ continuous from the right in time and there exists M > 0 such that $||u||_{\mathbf{L}^{\infty}} \leq M$. Let $v_0 \in (\mathbf{L}^1 \cap \mathbf{L}^{\infty})(\mathbb{R}^N; \mathbb{R})$ be such that $||v_0||_{\mathbf{L}^{\infty}} \leq M_0$, then

$$\|(u-v)(t)\|_{L^1} \leq e^{\gamma t} \|u_0-v_0\|_{L^1},$$

where $\gamma = \left\| \partial_u (F - \operatorname{div} f) \right\|_{\mathsf{L}^{\infty}(\Omega_M)}$

Previous Results

Theorem (Kružkov (1970))

Let us denote $\Omega_A = [0, T] \times \mathbb{R}^N \times [-A, A]$ for all $A \ge 0$. If

(K)
$$\forall A > 0$$
, $\partial_u f \in \mathsf{L}^{\infty}(\Omega_A)$, $\partial_u (F - \operatorname{div} f) \in \mathsf{L}^{\infty}(\Omega_A)$
and $F - \operatorname{div} f \in \mathsf{L}^{\infty}(\Omega_A)$

then for all $u_0 \in (\mathbf{L}^{\infty} \cap \mathbf{L}^1)(\mathbb{R}^N; \mathbb{R})$ such that $\|u_0\|_{\mathbf{L}^{\infty}} \leq M_0$, there exists a unique weak entropy solution $u \in \mathbf{L}^{\infty}([0, T]; \mathbf{L}^1(\mathbb{R}^N; \mathbb{R}))$ continuous from the right in time and there exists M > 0 such that $\|u\|_{\mathbf{L}^{\infty}} \leq M$. Let $v_0 \in (\mathbf{L}^1 \cap \mathbf{L}^{\infty})(\mathbb{R}^N; \mathbb{R})$ be such that $\|v_0\|_{\mathbf{L}^{\infty}} \leq M_0$, then

$$\|(u-v)(t)\|_{L^1} \leq e^{\gamma t} \|u_0-v_0\|_{L^1}$$
,

where $\gamma = \left\| \partial_u (F - \operatorname{div} f) \right\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})}$.

Previous Results

Theorem (Lucier)

If $f, g : \mathbb{R} \to \mathbb{R}^N$ are globally lipschitz, then $\exists C > 0$ such that $\forall u_0, v_0 \in L^1 \cap L^{\infty}(\mathbb{R}^N; \mathbb{R})$ initial conditions for

$$\partial_t u + \operatorname{Div} f(u) = 0, \qquad \partial_t v + \operatorname{Div} g(v) = 0.$$

with furthermore $v_0 \in \mathsf{BV}(\mathbb{R}^N; \mathbb{R})$, we have $\forall t \ge 0$,

$$\|(u-v)(t)\|_{L^1} \le \|u_0-v_0\|_{L^1} + CtTV(v_0) \operatorname{Lip}(f-g).$$

Theorem (Chen & Karlsen)

With $f(t, x, u) = \lambda(x)I(u)$, $g(t, x, v) = \mu(x)m(v)$, no source F = G = 0,

$$\| (u-v)(t) \|_{\mathsf{L}^{1}} \leq \| u_{0} - v_{0} \|_{\mathsf{L}^{1}} + C_{1}t \left(\| \lambda - \mu \|_{\mathsf{L}^{\infty}} + \| \lambda - \mu \|_{\mathsf{W}^{1,1}} + \| l - m \|_{\mathsf{L}^{\infty}} + \| l - m \|_{\mathsf{W}^{1,\infty}} \right)$$

where $C_1 = C \sup_{[0,T]} (TV(u(t)), TV(v(t))).$

Previous Results

Theorem (Lucier)

If $f, g : \mathbb{R} \to \mathbb{R}^N$ are globally lipschitz, then $\exists C > 0$ such that $\forall u_0, v_0 \in L^1 \cap L^{\infty}(\mathbb{R}^N; \mathbb{R})$ initial conditions for

$$\partial_t u + \operatorname{Div} f(u) = 0, \qquad \partial_t v + \operatorname{Div} g(v) = 0.$$

with furthermore $v_0 \in \mathsf{BV}(\mathbb{R}^N; \mathbb{R})$, we have $\forall t \geq 0$,

$$\|(u-v)(t)\|_{L^1} \le \|u_0-v_0\|_{L^1} + Ct \operatorname{TV}(v_0) \operatorname{Lip}(f-g).$$

Theorem (Chen & Karlsen)

With $f(t, x, u) = \lambda(x)I(u)$, $g(t, x, v) = \mu(x)m(v)$, no source F = G = 0,

$$\| (u - v)(t) \|_{\mathsf{L}^{1}} \leq \| u_{0} - v_{0} \|_{\mathsf{L}^{1}} + C_{1} t \left(\| \lambda - \mu \|_{\mathsf{L}^{\infty}} + \| \lambda - \mu \|_{\mathsf{W}^{1,1}} + \| l - m \|_{\mathsf{L}^{\infty}} + \| l - m \|_{\mathsf{W}^{1,\infty}} \right)$$

where $C_1 = C \sup_{[0,T]} (TV(u(t)), TV(v(t)))$.

Total Variation

Definition: For $u \in \mathsf{L}^1_{\mathsf{loc}}(\mathbb{R}^N; \mathbb{R})$ we denote

$$\begin{split} \mathrm{TV}(u) &= \sup\left\{\int_{\mathbb{R}^{N}} u \mathrm{div} \Psi \, ; \quad \Psi \in \mathcal{C}^{1}_{c}(\mathbb{R}^{N}; \mathbb{R}^{N}) \, , \quad \|\Psi\|_{L^{\infty}} \leq 1 \right\} \, ; \\ & \text{and} \\ \mathsf{BV}(\mathbb{R}^{N}; \mathbb{R}) &= \left\{ u \in \mathsf{L}^{1}_{\mathsf{loc}}; \mathrm{TV}(u) < \infty \right\} \, . \end{split}$$

Remark : When f and F depend only on u we have

$$u_0 \in \mathsf{L}^{\infty} \cap \mathsf{BV} \Rightarrow \forall t \geq 0, \quad u(t) \in \mathsf{L}^{\infty} \cap \mathsf{BV}$$

and, denoting $\gamma = \|\partial_{\boldsymbol{u}} F\|_{\boldsymbol{L}^{\infty}(\Omega_{\boldsymbol{M}})}$,

$$\mathrm{TV}(u(t)) \leq \mathrm{TV}(u_0) e^{\gamma t}$$
.

Problem: we do not have in general an estimate on the total variation !

L¹ Stability for scalar balance laws.

- igstaclevert L¹ Stability with respect to flow and source
 - Estimate on the total variation

Plan

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

- Estimate on the total variation

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV) Assume (f, F) satisfies (K) + (H1). Let $\kappa_0 = NW_N \left((2N+1) \| \nabla_x \partial_u f \|_{L^{\infty}(\Omega_M)} + \| \partial_u F \|_{L^{\infty}(\Omega_M)} \right)$. If $u_0 \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$, then $\forall t \in [0, T]$, $u(t) \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$ and $TV(u(t)) \leq TV(u_0)e^{\kappa_0 t}$ $+ NW_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \left\| \nabla_x (F - \operatorname{div} f)(\tau, x, \cdot) \right\|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \, \mathrm{d}\tau$.

(H1): $\int_0^T \int_{\mathbb{R}^N} \left\| \nabla_x (F - \operatorname{div} f) \right\|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \mathrm{d}t < \infty$ et $\nabla_x \partial_u f \in L^{\infty}(\Omega_M)$ Remark : In some particular cases, we re-obtain known estimates:

- f, F depending only on u,
- f, F not depending on u.

- Estimate on the total variation

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV) Assume (f, F) satisfies (K) + (H1). Let $\kappa_0 = NW_N \left((2N+1) \| \nabla_x \partial_u f \|_{L^{\infty}(\Omega_M)} + \| \partial_u F \|_{L^{\infty}(\Omega_M)} \right)$. If $u_0 \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$, then $\forall t \in [0, T]$, $u(t) \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$ and $TV(u(t)) \leq TV(u_0)e^{\kappa_0 t}$ $+ NW_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \| \nabla_x (F - \operatorname{div} f)(\tau, x, \cdot) \|_{L^{\infty}(\mathrm{d} u)} \mathrm{d}x \, \mathrm{d}\tau$.

(H1): $\int_0^T \int_{\mathbb{R}^N} \left\| \nabla_x (F - \operatorname{div} f) \right\|_{\mathsf{L}^\infty(\mathrm{d} u)} \mathrm{d} x \mathrm{d} t < \infty \text{ et } \nabla_x \partial_u f \in \mathsf{L}^\infty(\Omega_M)$

Remark : In some particular cases, we re-obtain known estimates:

- *f*, *F* depending only on *u*,
- *f*, *F* not depending on *u*.

- Estimate on the total variation

Estimate on the total variation (Colombo, Mercier, Rosini)

Theorem (TV) Assume (f, F) satisfies (K) + (H1). Let $\kappa_0 = NW_N \left((2N+1) \| \nabla_x \partial_u f \|_{L^{\infty}(\Omega_M)} + \| \partial_u F \|_{L^{\infty}(\Omega_M)} \right)$. If $u_0 \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$, then $\forall t \in [0, T]$, $u(t) \in (L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$ and $\mathrm{TV}(u(t)) \leq \mathrm{TV}(u_0) e^{\kappa_0 t}$ $+ NW_N \int_0^t e^{\kappa_0 (t-\tau)} \int_{\mathbb{R}^N} \| \nabla_x (F - \operatorname{div} f)(\tau, x, \cdot) \|_{L^{\infty}(\mathrm{d}u)} \mathrm{d}x \, \mathrm{d}\tau$.

(H1): $\int_0^T \int_{\mathbb{R}^N} \left\| \nabla_x (F - \operatorname{div} f) \right\|_{\mathsf{L}^\infty(\mathrm{d} u)} \mathrm{d} x \mathrm{d} t < \infty \text{ et } \nabla_x \partial_u f \in \mathsf{L}^\infty(\Omega_M)$ Remark : In some particular cases, we re-obtain known estimates:

- f, F depending only on u,
- f, F not depending on u.

- - Estimate on the total variation

Idea of the proof

Proposition

Let $\mu \in C_c^{\infty}(\mathbb{R}_+; \mathbb{R}_+)$ be such that $\|\mu\|_{L^1} = 1$ and $\mu' < 0$ on \mathbb{R}^*_+ . We denote $\mu_{\lambda}(x) = \frac{1}{\lambda^N} \mu\left(\frac{\|x\|}{\lambda}\right)$. If there exists $C_0 > 0$ such that $\forall \lambda > 0$, $\frac{1}{\lambda} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |u(x+y) - u(x)| \mu_{\lambda}(y) dx dy \leq C_0$,

then $u \in \mathbf{BV}$ and

$$\mathrm{TV}(u)\int_{\mathbb{R}^{N}}|y_{1}|\mu(\|y\|)\mathrm{d} y\leq C_{0}.$$

Let us introduce

$$\mathcal{F}(T,\lambda) = \int_0^T \int_{\mathbb{R}^N} \int_{B(x_0,R+M(T_0-t))} \left| u(x+y) - u(x) \right| \mu_\lambda(y) \mathrm{d}x \mathrm{d}y \mathrm{d}t.$$

- - Estimate on the total variation

Idea of the proof

Proposition

Let $\mu \in C_c^{\infty}(\mathbb{R}_+; \mathbb{R}_+)$ be such that $\|\mu\|_{L^1} = 1$ and $\mu' < 0$ on \mathbb{R}^*_+ . We denote $\mu_{\lambda}(x) = \frac{1}{\lambda^N} \mu\left(\frac{\|x\|}{\lambda}\right)$. If there exists $C_0 > 0$ such that $\forall \lambda > 0$, $\frac{1}{\lambda} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |u(x+y) - u(x)| \mu_{\lambda}(y) dx dy \leq C_0$,

then $u \in \mathbf{BV}$ and

$$\mathrm{TV}(u)\int_{\mathbb{R}^{N}}|y_{1}|\mu(\|y\|)\mathrm{d} y\leq C_{0}.$$

Let us introduce

$$\mathcal{F}(T,\lambda) = \int_0^T \int_{\mathbb{R}^N} \int_{B(x_0,R+M(T_0-t))} |u(x+y) - u(x)| \mu_\lambda(y) \mathrm{d}x \mathrm{d}y \mathrm{d}t.$$

- Estimate on the total variation

The doubling variables method gives the estimate:

$$\partial_T \mathcal{F}(T,\lambda) \leq \partial_T \mathcal{F}(0,\lambda) + C \lambda \partial_\lambda \mathcal{F}(T,\lambda) + C' \mathcal{F}(T,\lambda) + \lambda \int_0^T A(t) dt$$

where $A(t) = \int_{\mathbb{R}^N} \left\| \nabla (F - \operatorname{div} f)(t, x \cdot) \right\|_{\mathsf{L}^{\infty}(\mathrm{d} u)}$.

We integrate in time and divide by $CT\lambda$:

$$0 \leq \frac{1}{C\lambda} \mathcal{F}(0,\lambda) + \partial_{\lambda} \mathcal{F}(T,\lambda) + \frac{\alpha(T)}{\lambda} \mathcal{F}(T,\lambda) + \frac{1}{C} \int_{0}^{T} A(t) \mathrm{d}t \,,$$

where $\alpha(T) = N + C'/C - 1/T \rightarrow -\infty$ when $T \rightarrow 0$. We choose T small enough and we integrate on $[\lambda, +\infty[$. We obtain

$$\mathcal{F}(T,\lambda) \leq \frac{\lambda}{-\alpha-1} K \mathrm{TV}(u_0) + \frac{\lambda}{C(-\alpha-1)} \int_0^T A(t) \mathrm{d}t$$

Estimate on the total variation

The doubling variables method gives the estimate:

$$\partial_{\mathcal{T}}\mathcal{F}(\mathcal{T},\lambda) \leq \partial_{\mathcal{T}}\mathcal{F}(0,\lambda) + C\lambda\partial_{\lambda}\mathcal{F}(\mathcal{T},\lambda) + C'\mathcal{F}(\mathcal{T},\lambda) + \lambda \int_{0}^{\mathcal{T}} A(t) dt,$$

where $A(t) = \int_{\mathbb{R}^N} \|\nabla (F - \operatorname{div} f)(t, x \cdot)\|_{L^{\infty}(\mathrm{d} u)}$. We integrate in time and divide by $CT\lambda$:

$$0 \leq \frac{1}{C\lambda} \mathcal{F}(0,\lambda) + \partial_{\lambda} \mathcal{F}(T,\lambda) + \frac{\alpha(T)}{\lambda} \mathcal{F}(T,\lambda) + \frac{1}{C} \int_{0}^{T} A(t) \mathrm{d}t \,,$$

where $\alpha(T) = N + C'/C - 1/T \rightarrow -\infty$ when $T \rightarrow 0$. We choose T small enough and we integrate on $[\lambda, +\infty[$.

We obtain

$$\mathcal{F}(T,\lambda) \leq rac{\lambda}{-lpha-1} K \mathrm{TV}(u_0) + rac{\lambda}{C(-lpha-1)} \int_0^T A(t) \mathrm{d}t$$

Estimate on the total variation

The doubling variables method gives the estimate:

$$\partial_{\mathcal{T}}\mathcal{F}(\mathcal{T},\lambda) \leq \partial_{\mathcal{T}}\mathcal{F}(0,\lambda) + C\lambda\partial_{\lambda}\mathcal{F}(\mathcal{T},\lambda) + C'\mathcal{F}(\mathcal{T},\lambda) + \lambda \int_{0}^{\mathcal{T}} A(t) dt,$$

where $A(t) = \int_{\mathbb{R}^N} \|\nabla (F - \operatorname{div} f)(t, x \cdot)\|_{L^{\infty}(\mathrm{d} u)}$. We integrate in time and divide by $CT\lambda$:

$$0 \leq \frac{1}{C\lambda} \mathcal{F}(0,\lambda) + \partial_{\lambda} \mathcal{F}(T,\lambda) + \frac{\alpha(T)}{\lambda} \mathcal{F}(T,\lambda) + \frac{1}{C} \int_{0}^{T} \mathcal{A}(t) \mathrm{d}t \,,$$

where $\alpha(T) = N + C'/C - 1/T \rightarrow -\infty$ when $T \rightarrow 0$. We choose T small enough and we integrate on $[\lambda, +\infty[$. We obtain

$$\mathcal{F}(T,\lambda) \leq rac{\lambda}{-lpha-1} \mathcal{K}\mathrm{TV}(u_0) + rac{\lambda}{\mathcal{C}(-lpha-1)} \int_0^T \mathcal{A}(t) \mathrm{d}t$$

L¹ Stability for scalar balance laws.

L¹ Stability with respect to flow and source

Dependence with respect to flow and source

Plan

L¹ Stability with respect to flow and source

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

Dependence with respect to flow and source

Dependence with respect to flow and source

Theorem (Flow/Source...)

Assume (f, F), (g, G) satisfy **(K)**, (f, F) satisfies **(H1)** and (f - g, F - G) satisfies **(H2)**. Let $u_0, v_0 \in (L^1 \cap L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$. We denote

$$\kappa = 2N \|\nabla_{\mathbf{x}} \partial_{u} f\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{u} F\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{u} (F - G)\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})}$$

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial conditions (u_0, v_0) .

 $\begin{aligned} & (\mathbf{H2}): \quad \partial_u(F-G) \in \mathsf{L}^{\infty}(\Omega_M), \ \partial_u(f-g) \in \mathsf{L}^{\infty}(\Omega_M) \text{ and} \\ & \int_0^T \int_{\mathbb{R}^N} \left\| F - G - \operatorname{div}(f-g) \right\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} x \mathrm{d} t < \infty. \end{aligned}$

Dependence with respect to flow and source

Dependence with respect to flow and source

Theorem (Flow/Source...)

Assume (f, F), (g, G) satisfy **(K)**, (f, F) satisfies **(H1)** and (f - g, F - G) satisfies **(H2)**. Let $u_0, v_0 \in (L^1 \cap L^{\infty} \cap BV)(\mathbb{R}^N; \mathbb{R})$. We denote

$$\kappa = 2N \|\nabla_{\mathbf{x}} \partial_{u} f\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{u} F\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})} + \|\partial_{u} (F - G)\|_{\mathsf{L}^{\infty}(\Omega_{\mathbf{M}})}$$

Let u and v be the solutions associated to (f, F) and (g, G) respectively and with initial conditions (u_0, v_0) .

$$\begin{array}{ll} (\textbf{H2}): & \partial_u(F-G) \in \mathsf{L}^{\infty}(\Omega_M), \, \partial_u(f-g) \in \mathsf{L}^{\infty}(\Omega_M) \text{ and} \\ & \int_0^T \int_{\mathbb{R}^N} \left\| F - G - \operatorname{div}(f-g) \right\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} x \mathrm{d} t < \infty. \end{array}$$

L^1 Stability with respect to flow and source

Dependence with respect to flow and source

Theorem (...Flow/Source)

then $\forall t \in [0, T]$:

$$\begin{split} \big\| (u-v)(t) \big\|_{\mathsf{L}^{1}} &\leq e^{\kappa t} \|u_{0} - v_{0}\|_{\mathsf{L}^{1}} + \frac{e^{\kappa_{0} t} - e^{\kappa t}}{\kappa_{0} - \kappa} \mathrm{TV}(u_{0}) \big\| \partial_{u}(f-g) \big\|_{\mathsf{L}^{\infty}} \\ &+ \int_{0}^{t} \frac{e^{\kappa_{0}(t-\tau)} - e^{\kappa(t-\tau)}}{\kappa_{0} - \kappa} \int_{\mathbb{R}^{N}} \big\| \nabla_{\mathsf{x}}(F - \operatorname{div} f)(\tau, \mathsf{x}, \cdot) \big\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} \mathsf{x} \mathrm{d} \tau \\ &\times NW_{N} \big\| \partial_{u}(f-g) \big\|_{\mathsf{L}^{\infty}} \\ &+ \int_{0}^{t} e^{\kappa(t-\tau)} \int_{\mathbb{R}^{N}} \big\| ((F-G) - \operatorname{div}(f-g))(\tau, \mathsf{x}, \cdot) \big\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} \mathsf{x} \mathrm{d} \tau \,. \end{split}$$

Remark : As before, we re-obtain known estimates in some particular cases

- f, g depend only on u, F = G = 0,
- f, g, F, G not depend on u.

Dependence with respect to flow and source

Theorem (...Flow/Source)

then $\forall t \in [0, T]$:

$$\begin{split} \big\| (u-v)(t) \big\|_{\mathsf{L}^{1}} &\leq e^{\kappa t} \|u_{0} - v_{0}\|_{\mathsf{L}^{1}} + \frac{e^{\kappa_{0} t} - e^{\kappa t}}{\kappa_{0} - \kappa} \mathrm{TV}(u_{0}) \big\| \partial_{u}(f-g) \big\|_{\mathsf{L}^{\infty}} \\ &+ \int_{0}^{t} \frac{e^{\kappa_{0}(t-\tau)} - e^{\kappa(t-\tau)}}{\kappa_{0} - \kappa} \int_{\mathbb{R}^{N}} \big\| \nabla_{\mathsf{x}}(F - \operatorname{div} f)(\tau, \mathsf{x}, \cdot) \big\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} \mathsf{x} \mathrm{d} \tau \\ &\times NW_{N} \big\| \partial_{u}(f-g) \big\|_{\mathsf{L}^{\infty}} \\ &+ \int_{0}^{t} e^{\kappa(t-\tau)} \int_{\mathbb{R}^{N}} \big\| ((F-G) - \operatorname{div}(f-g))(\tau, \mathsf{x}, \cdot) \big\|_{\mathsf{L}^{\infty}(\mathrm{d} u)} \mathrm{d} \mathsf{x} \mathrm{d} \tau \,. \end{split}$$

Remark : As before, we re-obtain known estimates in some particular cases

- f, g depend only on u, F = G = 0,
- f, g, F, G not depend on u.

Existence and uniqueness of a solution

Plan

L¹ Stability with respect to flow and source

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

2 The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

Existence and uniqueness of a solution

Pedestrian Traffic (Colombo, Herty, Mercier)

We now consider equations of the type

$$\partial_t u + \operatorname{Div}(uV(u)) = 0; \quad u_0 \in (\mathsf{L}^1 \cap \mathsf{L}^\infty \cap \mathsf{BV})(\mathbb{R}^N; \mathbb{R})$$

where $V : \mathbf{L}^1 \to \mathcal{C}^2$ is a non-local functional.

Existence and uniqueness of a solution

Existence of a solution

Theorem (Traffic)

If V satisfies (V1), then there exists a time $T_{ex} > 0$ and a unique entropy solution

$$u \in \mathcal{C}^{0}([0, T_{ex}[; \mathbf{L}^{1} \cap \mathbf{L}^{\infty} \cap \mathbf{BV}))$$

and we denote $S_t u_0 = u(t, \cdot)$.

We can bound by below the time of existence by

$$T_{ex} \geq \sup\left\{\sum_{n} \frac{\ln(\alpha_{n+1}/\alpha_n)}{C(\alpha_{n+1})}; (\alpha_n)_n \text{ strict. increasing, } \alpha_0 = \|u_0\|_{L^{\infty}}\right\}$$

If furthermore, V satisfies (V2) then

$$u_0 \in \mathbf{W}^{2,1} \cap \mathbf{L}^{\infty} \Rightarrow \forall t \in [0, T_{ex}[, u(t) \in \mathbf{W}^{2,1}].$$

- Existence and uniqueness of a solution

Hypotheses

(V1) There exists $C \in \mathsf{L}^{\infty}_{\mathsf{loc}}(\mathbb{R}_+; \mathbb{R}_+)$ such that $\forall u \in \mathsf{L}^1(\mathbb{R}^N; \mathbb{R})$ $V(u) \in \mathsf{L}^{\infty}, \qquad ||\nabla_x V(u)||_{\mathsf{L}^{\infty}} \leq C(||u||_{\mathsf{L}^{\infty}}),$ $||\nabla_x V(u)||_{\mathsf{L}^1} \leq C(||u||_{\mathsf{L}^{\infty}}), \qquad ||\nabla^2_x V(u)||_{\mathsf{L}^1} \leq C(||u||_{\mathsf{L}^{\infty}}),$

and $\forall u_1, u_2 \in \mathsf{L}^1(\mathbb{R}^N; \mathbb{R})$

$$\|V(u_1) - V(u_2)\|_{L^{\infty}} \leq C(\|u_1\|_{L^{\infty}})\|u_1 - u_2\|_{L^1}, \\ \|\nabla_x(V(u_1) - V(u_2))\|_{L^1} \leq C(\|u_1\|_{L^{\infty}})\|u_1 - u_2\|_{L^1}.$$

(V2) There exists $C \in L^{\infty}_{loc}(\mathbb{R}_+;\mathbb{R}_+)$ such that $\left\| \nabla^3_x V(u) \right\|_{L^{\infty}} \leq C(\|u\|_{L^{\infty}}).$

Existence and uniqueness of a solution

Idea of the proof:

Let us introduce the space $X_{\alpha} = \mathbf{L}^1 \cap \mathbf{BV}(\mathbb{R}^N; [0, \alpha])$ and the application \mathcal{Q} that associates to $w \in \mathcal{X}_{\beta} = \mathcal{C}^0([0, T[, X_{\beta})$ the solution $u \in \mathcal{X}_{\beta}$ of the Cauchy problem

$$\partial_t u + \operatorname{Div}(uV(w)) = 0, \quad u(0, \cdot) = u_0 \in X_{\alpha}$$

For w_1, w_2 , we obtain thanks to the estimate of Thm (Flow/Source)

$$\|\mathcal{Q}(w_1) - \mathcal{Q}(w_2)\|_{\mathsf{L}^{\infty}([0,T[,\mathsf{L}^1])} \le f(T)\|w_1 - w_2\|_{\mathsf{L}^{\infty}([0,T[,\mathsf{L}^1])}$$

where f is increasing , f(0) = 0 and $f \rightarrow_{T \to \infty} \infty$. Then we apply the Banach Fixed Point Theorem.

- Existence and uniqueness of a solution

Idea of the proof:

Let us introduce the space $X_{\alpha} = \mathsf{L}^1 \cap \mathsf{BV}(\mathbb{R}^N; [0, \alpha])$ and the application \mathcal{Q} that associates to $w \in \mathcal{X}_{\beta} = \mathcal{C}^0([0, T[, X_{\beta})$ the solution $u \in \mathcal{X}_{\beta}$ of the Cauchy problem

$$\partial_t u + \operatorname{Div}(uV(w)) = 0, \quad u(0, \cdot) = u_0 \in X_{\alpha}$$

For w_1, w_2 , we obtain thanks to the estimate of Thm (Flow/Source)

$$\|\mathcal{Q}(w_1) - \mathcal{Q}(w_2)\|_{L^{\infty}([0,T[,L^1)]} \leq f(T)\|w_1 - w_2\|_{L^{\infty}([0,T[,L^1)]}$$

where f is increasing , f(0) = 0 and $f \rightarrow_{T \rightarrow \infty} \infty$. Then we apply the Banach Fixed Point Theorem.

Gâteaux derivative of the semi-group

Plan

L¹ Stability with respect to flow and source

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

2 The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

Gâteaux derivative of the semi-group

Definition: The application $S : L^1(\mathbb{R}^N; \mathbb{R}) \to L^1(\mathbb{R}^N; \mathbb{R})$ is said to be L^1 *Gâteaux* differentiable in $u_0 \in L^1$ in the direction $r_0 \in L^1$ if there exists a linear continuous application $DS(u_0) : L^1 \to L^1$ such that

$$\left\|\frac{S(u_0+hr_0)-S(u_0)}{h}-DS(u_0)(r_0)\right\|_{L^1}\to_{h\to 0} 0.$$

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the linearized problem:

 $\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0, \quad r(0, \cdot) = r_0.$

Gâteaux derivative of the semi-group

Definition: The application $S : L^1(\mathbb{R}^N; \mathbb{R}) \to L^1(\mathbb{R}^N; \mathbb{R})$ is said to be L^1 *Gâteaux* differentiable in $u_0 \in L^1$ in the direction $r_0 \in L^1$ if there exists a linear continuous application $DS(u_0) : L^1 \to L^1$ such that

$$\left\|\frac{S(u_0+hr_0)-S(u_0)}{h}-DS(u_0)(r_0)\right\|_{L^1}\to_{h\to 0} 0.$$

Formally, we expect the Gâteaux derivative of the semi-group to be the solution of the linearized problem:

$$\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0, \quad r(0, \cdot) = r_0.$$

Gâteaux derivative of the semi-group

We introduce the hypotheses:

(V3) $V : L^1 \to C^2$ is differentiable and there exists $C \in L^{\infty}_{loc}$ such that $\forall u, r \in L^1$,

$$\begin{aligned} \left\| V(u+r) - V(u) - DV(u)(r) \right\|_{\mathsf{W}^{2,\infty}} &\leq C \left(\|u\|_{\mathsf{L}^{\infty}} + \|u+r\|_{\mathsf{L}^{\infty}} \right) \|r\|_{\mathsf{L}^{1}}^{2}, \\ & \left\| DV(u)(r) \right\|_{\mathsf{W}^{2,\infty}} \leq C (\|u\|_{\mathsf{L}^{\infty}}) \|r\|_{\mathsf{L}^{1}}. \end{aligned}$$

(V4) There exists $C \in \mathsf{L}^\infty_{\mathsf{loc}}(\mathbb{R}_+;\mathbb{R}_+)$ such that $\forall u, \tilde{u}, r \in \mathsf{L}^1$

$$\begin{split} \left\| \operatorname{div} \left(V(\tilde{u}) - V(u) - DV(u)(\tilde{u} - u) \right) \right\|_{\mathsf{L}^1} &\leq C(\|\tilde{u}\|_{\mathsf{L}^\infty} + \|u\|_{\mathsf{L}^\infty})(\|\tilde{u} - u\|_{\mathsf{L}^1})^2 \\ \\ \left\| \operatorname{div} \left(DV(u)(r) \right) \right\|_{\mathsf{L}^1} &\leq C(\|u\|_{\mathsf{L}^\infty}) \|r\|_{\mathsf{L}^1} \,. \end{split}$$

Gâteaux derivative of the semi-group

We show that the linearised problem has a unique entropy solution:

Theorem (Linearised)

Assume that V satisfies (V1), (V2), (V3). Let $u \in C^0([0, T_{ex}[; W^{1,\infty} \cap W^{1,1}), r_0 \in (L^1 \cap L^\infty)(\mathbb{R}^N; \mathbb{R})$. Then the linearised problem

 $\partial_t r + \operatorname{Div}(rV(u) + uDV(u)(r)) = 0$, with $r(0, x) = r_0$

has a unique entropy solution $r \in C^0([0, T_{ex}[; L^1(\mathbb{R}^N; \mathbb{R})))$ and we denote $\Sigma_t^u r_0 = r(t, \cdot)$. If furthermore $r_0 \in W^{1,1}$, then $\forall t \in [0, T_{ex}[, r(t) \in W^{1,1}]$.

Gâteaux derivative of the semi-group

Theorem (Gâteaux Derivative)

Assume that V satisfies (V1),(V2),(V3),(V4). Let $u_0 \in W^{1,\infty} \cap W^{2,1}$, $r_0 \in W^{1,1} \cap L^{\infty}$ and let T_{ex} be the time of existence for the initial problem given by Thm (Trafic). Then, for all $t \in [0, T_{ex}[$ the local semi-group of the pedestrian traffic problem is L^1 Gâteaux differentiable in the direction r_0 and

$$DS_t(u_0)(r_0) = \Sigma_t^{S_t u_0} r_0.$$

Idea of the proof: Thm (Flow/Source) allows to compare the solution with initial condition $u_0 + hr_0$ to the solution u + hr.

Gâteaux derivative of the semi-group

Let u, u_h be the solutions of the Cauchy problem $\partial_t u + \text{Div}(uV(u)) = 0$ with initial conditions $u_0, u_0 + hr_0$. Let r be the solution of the Linerized equation $\partial_t r + \text{Div}(rV(u) + uDV(u)(r)) = 0$, with $r(0) = r_0$. We define then $z_h = u + hr$ that satisfies

$$\partial_t z_h + \operatorname{Div} \left(z_h(V(u) + hDV(u)(r)) \right) = h^2 \operatorname{Div}(rDV(u)(r)), \quad z_h(0) = u_0 + hr_0.$$

Next, we use Thm (Flow/Source) to compare u_h and z_h . We obtain

$$\begin{split} \frac{1}{h} \| u_h - z_h \|_{\mathsf{L}^{\infty}([0, \mathcal{T}[, \mathsf{L}^1])} \leq & F(\mathcal{T}) \left(\frac{1}{h} \| u_h - u \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)}^2 + \frac{1}{h} \| u_h - z_h \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)} \right) \\ &+ h C(\beta) \, T \mathrm{e}^{C(\beta) \, \mathcal{T}} \| r \|_{\mathsf{L}^{\infty}(\mathsf{W}^{1, 1})} \| r \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)} \,, \end{split}$$

where F is increasing and F(0) = 0.

Gâteaux derivative of the semi-group

Let u, u_h be the solutions of the Cauchy problem $\partial_t u + \text{Div}(uV(u)) = 0$ with initial conditions $u_0, u_0 + hr_0$. Let r be the solution of the Linerized equation $\partial_t r + \text{Div}(rV(u) + uDV(u)(r)) = 0$, with $r(0) = r_0$. We define then $z_h = u + hr$ that satisfies

$$\partial_t z_h + \operatorname{Div}\left(z_h(V(u) + hDV(u)(r))\right) = h^2 \operatorname{Div}(rDV(u)(r)), \quad z_h(0) = u_0 + hr_0.$$

Next, we use Thm (Flow/Source) to compare u_h and z_h . We obtain

$$\begin{split} \frac{1}{h} \| u_h - z_h \|_{\mathsf{L}^{\infty}([0, T[, \mathsf{L}^1])} \leq & F(T) \left(\frac{1}{h} \| u_h - u \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)}^2 + \frac{1}{h} \| u_h - z_h \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)} \right) \\ &+ h C(\beta) T e^{C(\beta) T} \| r \|_{\mathsf{L}^{\infty}(\mathsf{W}^{1,1})} \| r \|_{\mathsf{L}^{\infty}(\mathsf{L}^1)} \,, \end{split}$$

where F is increasing and F(0) = 0.

L¹ Stability for scalar balance laws.

The continuity equation with a non-local flow

Extrema of a Cost Functional

Plan

L¹ Stability with respect to flow and source

- Previous Results
- Estimate on the total variation
- Dependence with respect to flow and source

2 The continuity equation with a non-local flow

- Existence and uniqueness of a solution
- Gâteaux derivative of the semi-group
- Extrema of a Cost Functional

Extrema of a Cost Functional

Let J be a cost functional such that

$$J(\rho_0) = \int_{\mathbb{R}^N} f(S_t \rho_0) \ \psi(t, x) \mathrm{d}x \,.$$

Proposition

Let $f \in C^{1,1}(\mathbb{R}; \mathbb{R}_+)$ and $\psi \in L^{\infty}(I_{ex} \times \mathbb{R}^N; \mathbb{R})$. Let us assume that $S: I \times (L^1 \cap L^{\infty})(\mathbb{R}^N; \mathbb{R}) \to (L^1 \cap L^{\infty})(\mathbb{R}^N; \mathbb{R})$ is L^1 Gâteaux differentiable. If $\rho_0 \in (L^1 \cap L^{\infty})(\mathbb{R}^N; \mathbb{R})$ is solution of

Find
$$\min_{\rho_0} J(\rho_0)$$
 s. t. $\{S_t \rho_0 \text{ is solution of } (Traffic)\}$.

then, for all $r_0 \in (L^1 \cap L^\infty)(\mathbb{R}^N; \mathbb{R})$

$$\int_{\mathbb{R}^N} f'(S_t\rho_0) \Sigma_t^{\rho_0} r_0 \psi(t,x) \, \mathrm{d} x = 0 \, .$$

References:

- Bouchut, F. and Perthame, B., Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 1998
- Chen, G.-Q. and Karlsen, K. H., Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients, Commun. Pure Appl. Anal., 2005
- Colombo, R. M. and M. M. and Rosini, M.D., Stability and total Variation Estimates on General Scalar Balance Laws, Communications in Mathematical Sciences, 2009
- Colombo, R. M. and Herty, M. and M. M., Control of the Continuity Equation with a Non-local Flow, submitted to Esaim-Cocv in 2009
- Kružkov, S. N., First order quasilinear equations with several independent variables. , Mat. Sb. (N.S.), 1970
 - Lucier, B. J. , A moving mesh numerical method for hyperbolic conservation laws., Math. Comp. , 1986