Enoncé V

Soit $f:[0,+\infty[\to [0,+\infty[$ une fonction continue décroissante, de limite nulle en $+\infty$. On pose $u_n=\int_{n\pi}^{(n+1)\pi}f(t)\sin(t)dt$.

- 1. Montrer que la série de terme général u_n est convergente.
- **2.** En déduire que l'intégrale $\int_0^{+\infty} f(t) \sin(t) dt$ est convergente. Quel est son signe?
- 3. On suppose $f(x) \ge 1/x$ pour $x \ge x_0$. Prouver que $\int_0^{+\infty} f(t) \sin(t) dt$ n'est pas absolument convergente.

Indication >

Corrigé 🕨

Exercice 8 * - Différence d'exponentielles [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé 🔻

Soient 0 < a < b.

- 1. Justifier la convergence de $\int_0^{+\infty} \frac{e^{-at}-e^{-bt}}{t} dt$.
- 2. Soient 0 < x < y. Démontrer que

$$\int_x^y rac{e^{-at}-e^{-bt}}{t}dt = \int_{ax}^{bx} rac{e^{-t}}{t}dt - \int_{ay}^{by} rac{e^{-t}}{t}dt.$$

3. Démontrer que, pour tout réel z > 0,

$$e^{-bz}\lnrac{b}{a}\leq \int_{az}^{bz}rac{e^{-t}}{t}dt\leq e^{-az}\lnrac{b}{a}.$$

En déduire que

$$\int_0^{+\infty} rac{e^{-at}-e^{-bt}}{t} dt = \lnrac{b}{a}.$$

Indication >

Corrigé 🕨

Exercice 9 * - Fonction décroissante [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé V

Soit $f:[0,+\infty[o\mathbb{R}$ une fonction continue décroissante telle que $\int_0^{+\infty}f(t)dt$ converge.

- **1.** Démontrer que $f \geq 0$.
- **2.** Démontrer que f tend vers 0 en $+\infty$.
- **3.** Justifier que $\int_{x/2}^x f(t)dt$ tend vers 0 lorsque x tend vers $+\infty$.
- **4.** En déduire que xf(x) tend vers 0 lorsque x tend vers $+\infty$.

Indication >

Exercice 10 * + Équivalence [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé V

- 1. Montrer que pour tout x>0, l'intégrale $\int_{x}^{+\infty} \frac{e^{-t}}{t} dt$ est convergente.

On pose $F(x)=\int_{t}^{+\infty}rac{e^{-t}}{t}\,dt$ si x>0.

- **2.** Montrer que F est de classe C^1 sur $]0, +\infty[$ et calculer F'.
- 3. Calculer $\lim_{x \to 0^+} F(x)$ et $\lim_{x \to +\infty} F(x)$.
- **4.** On cherche un équivalent de F(x) lorsque $x \to 0^+$.
 - **4.1.** Démontrer que la fonction $t\mapsto \frac{e^{-t}-1}{t}$ se prolonge par continuité en 0.
 - **4.2.** Démontrer qu'il existe une constante C>0 telle que, pour tout $x\in]0,1]$,

$$\left|\int_{x}^{1}\frac{e^{-t}-1}{t}dt\right|\leq C.$$

- **4.3.** En déduire que $F(x) \sim -\ln x$ lorsque $x \to 0^+$.
- **5.** On cherche un équivalent de F(x) lorsque $x \to +\infty$.
- **5.1.** Montrer que pour tout x>0, l'int\'egrale $\int_{-t^2}^{+\infty} \frac{e^{-t}}{t^2} dt$ est convergente.
 - **5.2.** Montrer que pour tout x>0, $\int_{x}^{+\infty} \frac{e^{-t}}{t^2} dt \leq \frac{1}{x} F(x)$.
 - **5.3.** A l'aide d'une intégration par parties, en déduire que $F(x)\sim rac{e^{-x}}{x}$ lorsque $x o +\infty$.

Exercice 5 * - Un calcul un peu sophistiqué [Signaler une erreur] [Ajouter à ma feuille d'exos]

Fnoncé V

Soit n > 1 et 1 < k < n.

- 1. Calculer la dérivée k-ème de $x\mapsto x^{n-1}$ et $x\mapsto \ln(1+x)$.
- **2.** En déduire la dérivée n-ième de la fonction suivante : $x\mapsto x^{n-1}\ln(1+x)$.

Indication >

Corrigé 🕨

Pour progresser

Exercice 6 ** - Valeur approchée de $\ln 2$ [Signaler une erreur] [Ajouter à ma feuille d'exos]

Soient $f,g:\mathbb{R}_+ o\mathbb{R}$ définies par

$$g(x)=(x-2)e^x+(x+2), \ f(x)=rac{x}{e^x-1} ext{ si } x
eq 0 ext{ et } f(0)=1.$$

- 1. Démontrer que $g \geq 0$ sur \mathbb{R}_+ .
- **2.** Démontrer que f est de classe C^1 sur \mathbb{R}_+ . Que vaut f'(0)?
- **3.** Vérifier que $f''(x)=rac{e^xg(x)}{(e^x-1)^3}$ pour tout x>0. En déduire que $|f'(x)|\leq 1/2$ sur \mathbb{R}_+ .
- **4.** On définit une suite (u_n) par $u_0=0$ et $u_{n+1}=f(u_n)$ pour tout entier naturel n. Prouver que, pour tout $n\in\mathbb{N}$, on a

$$|u_n-\ln 2| \leq \left(rac{1}{2}
ight)^n \ln 2.$$

Indication 🕨

Corrigé 🕨

Exercice 8 *** - Un grand classique! [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé V

On considère $f:\mathbb{R} o \mathbb{R}$ définie par

$$f(x) = \left\{ egin{array}{ll} 0 & ext{si } x \leq 0 \ e^{-rac{1}{x}} & ext{si } x > 0. \end{array}
ight.$$

- 1. Montrer que f est C^{∞} sur $]0,+\infty[$ et que, pour tout x>0, on a $f^{(n)}(x)=e^{-\frac{1}{x}}P_n(1/x)$ où $P_n\in\mathbb{R}[X]$.
- **2.** Montrer que f est C^{∞} sur \mathbb{R} .

Indication 🕨

Corrigé 🕨

Exercice 9 **** - Théorème du point fixe [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé V

Soit $f:[a;b] \to [a,b]$ une application dérivable. On suppose qu'il existe $k \in]0,1[$ tel que, pour tout $x \in [a,b]$, on a $|f'(x)| \le k$. On dit que $\gamma \in [a,b]$ est un point fixe de f si $f(\gamma) = \gamma$.

- 1. Démontrer que f admet un point fixe.
- 2. Démontrer que ce point fixe est unique. On le note γ .
- 3. Soit (u_n) une suite récurrente définie par $u_0 \in [a,b]$ et $u_{n+1} = f(u_n)$. Démontrer que (u_n) converge vers γ .

Indication 🕨

Corrigé 🕨

Exercice 10 ** - Une étude de fonction, fonction réciproque [Signaler une erreur] [Ajouter à ma feuille d'exos]

Enoncé V

Soit f la fonction définie sur \mathbb{R} par $f(x) = \cos(\arctan(2x+1))$.

- 1. Étudier le sens de variation de f, ses limites en $\pm \infty$.
- **2.** Résoudre l'équation $f(x) = \frac{1}{\sqrt{2}}$.
- **3.** Montrer que la restriction de f à $[-1/2,+\infty[$ admet une fonction réciproque g dont on précisera l'ensem<u>b</u>le de définition.
- **4.** Calculer $g'(\sqrt{2}/2)$.

Indication 🕨

Corrigé 🕨