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Exercise 8.

5. We claim first that for every v ∈ C, we have

|f − g| ≤ |f − v| a.e. (1)

Indeed, let x ∈ X. If f(x) ≥ 0 , then g(x) = f(x) and so the inequality is satisfied. If f(x) < 0,
then g(x) = 0 and so |f(x) − g(x)| = |f(x)| = −f(x). The right hand side is |v(x) − f(x)| =
v(x) − f(x) (for almost every x < 0) since v(x) ≥ 0 and −f(x) > 0. The inequality becomes
−f(x) ≤ v(x)− f(x) which is true because v(x) ≥ 0. It follows that

||f − g||∞ ≤ ||f − v||∞

and this means that ||f − g||∞ = d(f, C) (distance in L∞). On the other hand, C is convex and
closed in L∞. Indeed, let f, g ∈ C and t ∈ [0, 1], then f + g ∈ L∞ and (1− t)f + tg ≥ 0 a.e. This
proves that C is convex. To prove that C is closed in L∞(X), let (fn) be a sequence of C that
converges to f in L∞(X). Then, fn ≥ 0 a.e. and fn converges a.e. to f . It follows that f ≥ 0 a.e.
and so f ∈ C.

The argument we used to prove uniqueness breaks down because ||f − g||∞ = ||f − v||∞ does
not imply that |f − g| = |f − v|. Here’s a counterexample. Equip R2 with the infinity norm.
This is L∞({1, 2}) where {1, 2} is equipped with the counting measure. Let f = (−1, 0) and let
v0 = (0, 1). Then f+ = (0, 0). However ||f − f+||∞ = ||f − v0||∞ = 1.

6. Let us check that C := {f ∈ Lp; |f | ≤ h} is convex and closed in Lp(X) for all p ∈ [1,∞].
Indeed, let f, g ∈ C and t ∈ [0, 1], then f + g ∈ Lp and

|(1− t)f + tg| ≤ (1− t)|f |+ t|g| ≤ (1− t)h+ th = h a.e.

This proves that C is convex. To prove that C is closed in Lp(X), let (fn) be a sequence of C that
converges to f in Lp(X). Then, |fn| ≤ h a.e. and there is a subsequence fnk

that converges a.e.
to f . It follows that |f | ≤ h a.e. and so f ∈ C. Now, let

g =


f if |f | ≤ h

h if f > h

−h if f < −h.

Then g ∈ C and ||f − g||p = d(f, C) for every p ∈ [1,∞]. Indeed, we claim first that for every
v ∈ C,

|f − g| ≤ |f − v| a.e. (2)

If |f | ≤ h, then g = f and the inequality holds. If f > h, then |f − g| = f −h and |f − v| = f − v.
In this case the inequality is equivalent to f − h ≤ f − v or which is equivalent to −h ≤ −v which
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is equivalent to v ≤ h, which is true because v ∈ C. Finally, if f < −h, then g = −h and so
|f − g| = f + h. On the other hand, |f − v| = v − f . The inequality becomes = −h− f ≤ v − f
or −h ≤ v, which is true because v ∈ C. It follows from this inequality that for every p ∈ [1,∞]
and every v ∈ C.

||f − g||p ≤ ||f − v||p,

and so ||f − g||p = d(f, C). We prove uniqueness for p < ∞. Suppose that there is an element
v0 ∈ C such that ||f − g||p = ||f − v0||p. This means that∫

X
(|f − v0|p − |f − g|p) = 0.

But, the integrand is nonnegative. Therefore, it must vanish a.e. and this gives

|f − g| = |f − v0| a.e.

If |f | ≤ h, then g = f and so |f − v0| = 0, i.e., v0 = f . If f > h, then g = h and we
get f − h = f − v0. Therefore v0 = h. If f < −h, then g = −h and the equality becomes
−h− f = v0 − f and so v0 = −h. This means that v0 = g. Hence uniqueness.
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