Solutions to selected problems in TD 4 of the functional analysis course at Lyon 1

By Clement BARDET, Ramon POO RAMOS and Julie SEMAAN

October 29, 2022

Exercise 8.

5. We claim first that for every $v \in C$, we have

$$
\begin{equation*}
|f-g| \leq|f-v| \quad \text { a.e. } \tag{1}
\end{equation*}
$$

Indeed, let $x \in X$. If $f(x) \geq 0$, then $g(x)=f(x)$ and so the inequality is satisfied. If $f(x)<0$, then $g(x)=0$ and so $|f(x)-g(x)|=|f(x)|=-f(x)$. The right hand side is $|v(x)-f(x)|=$ $v(x)-f(x)$ (for almost every $x<0$) since $v(x) \geq 0$ and $-f(x)>0$. The inequality becomes $-f(x) \leq v(x)-f(x)$ which is true because $v(x) \geq 0$. It follows that

$$
\|f-g\|_{\infty} \leq\|f-v\|_{\infty}
$$

and this means that $\|f-g\|_{\infty}=d(f, C)$ (distance in L^{∞}). On the other hand, C is convex and closed in L^{∞}. Indeed, let $f, g \in C$ and $t \in[0,1]$, then $f+g \in L^{\infty}$ and $(1-t) f+t g \geq 0$ a.e. This proves that C is convex. To prove that C is closed in $L^{\infty}(X)$, let $\left(f_{n}\right)$ be a sequence of C that converges to f in $L^{\infty}(X)$. Then, $f_{n} \geq 0$ a.e. and f_{n} converges a.e. to f. It follows that $f \geq 0$ a.e. and so $f \in C$.

The argument we used to prove uniqueness breaks down because $\|f-g\|_{\infty}=\|f-v\|_{\infty}$ does not imply that $|f-g|=|f-v|$. Here's a counterexample. Equip \mathbb{R}^{2} with the infinity norm. This is $L^{\infty}(\{1,2\})$ where $\{1,2\}$ is equipped with the counting measure. Let $f=(-1,0)$ and let $v_{0}=(0,1)$. Then $f^{+}=(0,0)$. However $\left\|f-f^{+}\right\|_{\infty}=\left\|f-v_{0}\right\|_{\infty}=1$.
6. Let us check that $C:=\left\{f \in L^{p} ;|f| \leq h\right\}$ is convex and closed in $L^{p}(X)$ for all $p \in[1, \infty]$. Indeed, let $f, g \in C$ and $t \in[0,1]$, then $f+g \in L^{p}$ and

$$
|(1-t) f+t g| \leq(1-t)|f|+t|g| \leq(1-t) h+t h=h \quad \text { a.e. }
$$

This proves that C is convex. To prove that C is closed in $L^{p}(X)$, let $\left(f_{n}\right)$ be a sequence of C that converges to f in $L^{p}(X)$. Then, $\left|f_{n}\right| \leq h$ a.e. and there is a subsequence $f_{n_{k}}$ that converges a.e. to f. It follows that $|f| \leq h$ a.e. and so $f \in C$. Now, let

$$
g= \begin{cases}f & \text { if }|f| \leq h \\ h & \text { if } f>h \\ -h & \text { if } f<-h .\end{cases}
$$

Then $g \in C$ and $\|f-g\|_{p}=d(f, C)$ for every $p \in[1, \infty]$. Indeed, we claim first that for every $v \in C$,

$$
\begin{equation*}
|f-g| \leq|f-v| \quad \text { a.e. } \tag{2}
\end{equation*}
$$

If $|f| \leq h$, then $g=f$ and the inequality holds. If $f>h$, then $|f-g|=f-h$ and $|f-v|=f-v$. In this case the inequality is equivalent to $f-h \leq f-v$ or which is equivalent to $-h \leq-v$ which
is equivalent to $v \leq h$, which is true because $v \in C$. Finally, if $f<-h$, then $g=-h$ and so $|f-g|=f+h$. On the other hand, $|f-v|=v-f$. The inequality becomes $=-h-f \leq v-f$ or $-h \leq v$, which is true because $v \in C$. It follows from this inequality that for every $p \in[1, \infty]$ and every $v \in C$.

$$
\|f-g\|_{p} \leq\|f-v\|_{p},
$$

and so $\|f-g\|_{p}=d(f, C)$. We prove uniqueness for $p<\infty$. Suppose that there is an element $v_{0} \in C$ such that $\|f-g\|_{p}=\left\|f-v_{0}\right\|_{p}$. This means that

$$
\int_{X}\left(\left|f-v_{0}\right|^{p}-|f-g|^{p}\right)=0 .
$$

But, the integrand is nonnegative. Therefore, it must vanish a.e. and this gives

$$
|f-g|=\left|f-v_{0}\right| \quad \text { a.e. }
$$

If $|f| \leq h$, then $g=f$ and so $\left|f-v_{0}\right|=0$, i.e., $v_{0}=f$. If $f>h$, then $g=h$ and we get $f-h=f-v_{0}$. Therefore $v_{0}=h$. If $f<-h$, then $g=-h$ and the equality becomes $-h-f=v_{0}-f$ and so $v_{0}=-h$. This means that $v_{0}=g$. Hence uniqueness.

