Solutions to selected problems in TD 4 of the functional analysis course at Lyon 1

By Clement BARDET, Ramon POO RAMOS and Julie SEMAAN

October 29, 2022

Exercise 8.

5. We claim first that for every $v \in C$, we have

$$|f - g| \le |f - v| \quad \text{a.e.} \tag{1}$$

Indeed, let $x \in X$. If $f(x) \ge 0$, then g(x) = f(x) and so the inequality is satisfied. If f(x) < 0, then g(x) = 0 and so |f(x) - g(x)| = |f(x)| = -f(x). The right hand side is |v(x) - f(x)| = v(x) - f(x) (for almost every x < 0) since $v(x) \ge 0$ and -f(x) > 0. The inequality becomes $-f(x) \le v(x) - f(x)$ which is true because $v(x) \ge 0$. It follows that

$$||f - g||_{\infty} \le ||f - v||_{\infty}$$

and this means that $||f - g||_{\infty} = d(f, C)$ (distance in L^{∞}). On the other hand, C is convex and closed in L^{∞} . Indeed, let $f, g \in C$ and $t \in [0, 1]$, then $f + g \in L^{\infty}$ and $(1 - t)f + tg \ge 0$ a.e. This proves that C is convex. To prove that C is closed in $L^{\infty}(X)$, let (f_n) be a sequence of C that converges to f in $L^{\infty}(X)$. Then, $f_n \ge 0$ a.e. and f_n converges a.e. to f. It follows that $f \ge 0$ a.e. and so $f \in C$.

The argument we used to prove uniqueness breaks down because $||f - g||_{\infty} = ||f - v||_{\infty}$ does not imply that |f - g| = |f - v|. Here's a counterexample. Equip \mathbb{R}^2 with the infinity norm. This is $L^{\infty}(\{1,2\})$ where $\{1,2\}$ is equipped with the counting measure. Let f = (-1,0) and let $v_0 = (0,1)$. Then $f^+ = (0,0)$. However $||f - f^+||_{\infty} = ||f - v_0||_{\infty} = 1$.

6. Let us check that $C := \{f \in L^p; |f| \le h\}$ is convex and closed in $L^p(X)$ for all $p \in [1, \infty]$. Indeed, let $f, g \in C$ and $t \in [0, 1]$, then $f + g \in L^p$ and

$$|(1-t)f + tg| \le (1-t)|f| + t|g| \le (1-t)h + th = h$$
 a.e

This proves that C is convex. To prove that C is closed in $L^p(X)$, let (f_n) be a sequence of C that converges to f in $L^p(X)$. Then, $|f_n| \leq h$ a.e. and there is a subsequence f_{n_k} that converges a.e. to f. It follows that $|f| \leq h$ a.e. and so $f \in C$. Now, let

$$g = \begin{cases} f & \text{if } |f| \le h \\ h & \text{if } f > h \\ -h & \text{if } f < -h. \end{cases}$$

Then $g \in C$ and $||f - g||_p = d(f, C)$ for every $p \in [1, \infty]$. Indeed, we claim first that for every $v \in C$,

$$|f - g| \le |f - v| \quad \text{a.e.} \tag{2}$$

If $|f| \le h$, then g = f and the inequality holds. If f > h, then |f - g| = f - h and |f - v| = f - v. In this case the inequality is equivalent to $f - h \le f - v$ or which is equivalent to $-h \le -v$ which is equivalent to $v \leq h$, which is true because $v \in C$. Finally, if f < -h, then g = -h and so |f - g| = f + h. On the other hand, |f - v| = v - f. The inequality becomes $= -h - f \leq v - f$ or $-h \leq v$, which is true because $v \in C$. It follows from this inequality that for every $p \in [1, \infty]$ and every $v \in C$.

$$||f - g||_p \le ||f - v||_p$$

and so $||f - g||_p = d(f, C)$. We prove uniqueness for $p < \infty$. Suppose that there is an element $v_0 \in C$ such that $||f - g||_p = ||f - v_0||_p$. This means that

$$\int_X \left(|f - v_0|^p - |f - g|^p \right) = 0.$$

But, the integrand is nonnegative. Therefore, it must vanish a.e. and this gives

$$|f - g| = |f - v_0|$$
 a.e.

If $|f| \le h$, then g = f and so $|f - v_0| = 0$, i.e., $v_0 = f$. If f > h, then g = h and we get $f - h = f - v_0$. Therefore $v_0 = h$. If f < -h, then g = -h and the equality becomes $-h - f = v_0 - f$ and so $v_0 = -h$. This means that $v_0 = g$. Hence uniqueness.