Corrigé du contrôle du 26 septembre 2013

Question 1 — [2 pt] Comme $\sin(x) = 0$ si et seulement si x est un multiple entier de π , le domaine de définition de f est l'ensemble des nombres réels différents de $n\pi$ avec $n \in \mathbf{Z}$. C'est donc la réunion de tous les intervalles de la forme $[n\pi, (n+1)\pi[$ avec $n \in \mathbf{Z}$.

[2 pt] Soit n un entier pair. La fonction sin est strictement positive sur $]n\pi, (n+1)\pi[$. Par application de la proposition sur la dérivation des fonctions composées aux deux fonctions dérivables

$$]n\pi, (n+1)\pi[\xrightarrow{\sin} \mathbf{R}_{+}^{*} \xrightarrow{y\mapsto 1/y} \mathbf{R},$$

la fonction f est dérivable sur $]n\pi, (n+1)\pi[$ et $f'(x) = -\frac{\sin'(x)}{(\sin(x))^2} = -\frac{\cos(x)}{(\sin(x))^2}$. Si n est un entier impair, alors $\sin < 0$ sur $[n\pi, (n+1)\pi[$ et on applique la proposition aux deux fonctions dérivables :

$$]n\pi, (n+1)\pi[\xrightarrow{\sin} \mathbf{R}_{-}^{*} \xrightarrow{y\mapsto 1/y} \mathbf{R}]$$

Là encore, on trouve $f'(x) = -\frac{\cos(x)}{(\sin(x))^2}$. Au final, on a obtenu

$$D_{f'} = D_f$$
 et $f'(x) = -\frac{\cos(x)}{(\sin(x))^2}$.

[1 pt] Comme $(\sin x)^2 > 0$ sur $]\pi, 2\pi[$, le signe de f' sur cet intervalle est celui de $-\cos$. La fonction f' est donc strictement positive sur $]\pi, \frac{3\pi}{2}[$, strictement négative sur $]\frac{3\pi}{2}, 2\pi[$ et elle s'annule au point $\frac{3\pi}{2}$. [2 pt] On en déduit le tableau de variation de f:

$$\begin{array}{c|ccccc}
x & \pi & \frac{3\pi}{2} & 2\pi \\
\hline
f'(x) & + & 0 & - \\
& & -1 \\
f(x) & \nearrow & \searrow \\
-\infty & & -\infty
\end{array}$$

Le calcul des limites de f en π^+ et $2\pi^-$ ne pose pas de problème puisque sin tend vers 0 par valeurs négatives lorsque x tend vers π ou 2π dans $]\pi, 2\pi[$.

Question 2 — [2 pt] Par définition,

$$f(x) = \begin{cases} -x^2 & \text{si } x < 0 \\ 0 & \text{si } x = 0 \\ x^2 & \text{si } x > 0 \end{cases}.$$

[1 pt] La fonction f est continue sur chacun des intervalles $]-\infty,0[$ et $]0,\infty[$. Comme

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = 0 = f(0),$$

cette fonction est également continue en 0. Elle est donc continue sur R.

[1 pt] La fonction f est dérivable sur chacun des intervalles ouverts] $-\infty$, 0 et]0, $+\infty$ [, avec

$$f'(x) = \begin{cases} -2x & \text{si } x < 0\\ 2x & \text{si } x > 0 \end{cases}$$

[1pt] Comme f' a les mêmes limites à gauche et à droite en 0 :

$$\lim_{x \to 0^{-}} f'(x) = \lim_{x \to 0^{+}} f'(x) = 0,$$

la fonction f est également dérivable en 0 et f'(0) = 0.

[1 pt] Finalement, la fonction f est dérivable sur $\mathbf R$ et

$$\int_{0}^{x} -2x \quad \sin x < 0$$

Question 3 — [2 pt] Soit $f : \mathbf{R} \to \mathbf{R}$ la fonction définie par $f(x) = e^x - x - 1$. L'inégalité que l'on doit démontrer est la suivante :

$$\forall x \in \mathbf{R}, \ f(x) \geqslant 0.$$

[1 pt] La fonction f est dérivable sur \mathbf{R} et $f'(x) = e^x - 1$.

 $[\mathbf{2} \ \mathbf{pt}]$ La fonction exponentielle est strictement croissante sur \mathbf{R} et vaut 1 en 0, donc f' est strictement négative sur $]-\infty,0[$ et strictement positive sur $]0,+\infty[$.

[1 pt] On en déduit le tableau de variation de f:

$$\begin{array}{c|cccc}
x & -\infty & 0 & +\infty \\
\hline
f'(x) & - & 0 & + \\
 & +\infty & & +\infty \\
\hline
f(x) & & & \nearrow \\
f(0) & & & & \\
\end{array}$$

 $[\mathbf{1pt}]$ La fonction f admet un minimum global en 0, donc $f(x) \ge f(0) = 0$ pour tout nombre réel x; c'est ce qu'il fallait démontrer.

Remarques — 1. Dans la question 1, on a distingué les intervalles $]n\pi, (n+1)\pi[$ en fonction de la parité de n pour déterminer le signe de la fonction sinus et être en mesure d'appliquer la proposition du cours sur la dérivation des fonctions composées : $si\ I, J\ sont\ deux\ intervalles\ et\ f: I \to J,\ g: J \to \mathbf{R}\ sont\ deux\ fonctions\ dérivables,\ alors\ la\ fonction\ composée\ g\circ f\ est\ dérivable\ et\ (g\circ f)'(x)=f'(x)g'(f(x)).$

2. Dans la question 3, le calcul de $\lim_{x\to-\infty} f(x)$ ne pose pas de problème. Pour la limite en $+\infty$, on obtient a priori une forme indéterminée puisque $\lim_{x\to+\infty} e^x = \lim_{x\to+\infty} x = +\infty$. Pour surmonter cet obstacle, on utilise les croissances comparées : on met en facteur la fonction qui a la plus forte croissance, à savoir l'exponentielle :

$$f(x) = e^x - x - 1 = e^x \left(1 - \frac{x}{e^x} - \frac{1}{e^x} \right)$$

et on utilise

$$\lim_{x \to +\infty} \frac{x}{e^x} = 0$$

pour voir que l'expression entre parenthèses tend vers 1 lorsque x tend vers $+\infty$.