UE Analyse I : les réels et les fonctions

Feuille 7. Limites

Pour commencer

Exercice 1. Montrer la non-existence des limites suivantes :

1. $\lim_{x\to\infty} \sin x$. 2. $\lim_{x\to 0} \frac{1}{\sqrt[3]{x}}$. 3. $\lim_{x\to 0} E(x)$, avec E la partie entière.

Exercice 2. Pour chacune des égalités suivantes, dire si l'existence d'une limite implique celle de l'autre puis, lorsque cela a un sens, démontrer l'égalité annoncée :

1.
$$\lim_{x \to 0} f(x) = \lim_{\substack{x \to 0 \\ x > -1}} f(x)$$
. 2. $\lim_{x \to 0} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} f(x)$. 3. $\lim_{x \to \infty} f\left(\frac{1}{x}\right) = \lim_{\substack{y \to 0 \\ y > 0}} f(y)$.

4.
$$\lim_{x \to \infty} f\left(\frac{1}{x}\right) = \lim_{y \to 0} f(y).$$

Prolongement par continuité. Fonctions à accolade

Exercice 3. Trouver les valeurs de $a \in \mathbb{R}$ telles que la fonction $f:]0, \infty[\to \mathbb{R}, f(x) = \frac{\sin x}{x^a}$, se prolonge par continuité en 0.

Exercice 4. Soit $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) = \frac{1}{x}$. Montrer que f ne se prolonge pas par continuité en 0.

Exercice 5. Même question pour $f(x) = \sin\left(\frac{1}{x}\right)$, $\forall x \neq 0$.

Exercice 6. Etudier la continuité et la dérivabilité de

1.
$$f(x) = \begin{cases} x^2 + ax + b, & \text{si } x \ge 0 \\ ce^x + d, & \text{si } x < 0 \end{cases}$$
. 2. $f(x) = \begin{cases} (1 - \cos x)/x^2, & \text{si } x \ne 0 \\ a, & \text{si } x = 0 \end{cases}$.

3.
$$f(x) = \begin{cases} x \sin(1/x), & \text{si } x \neq 0 \\ a, & \text{si } x = 0 \end{cases}$$

Ici, a, b, c, d sont des constantes.

Exercice 7. Soit
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} x^2 \sin(1/x), & \text{si } x \neq 0 \\ a, & \text{si } x = 0 \end{cases}$

- 1. Trouver a tel que f soit continue.
- 2. Pour cet a:
 - a) Montrer que f est dérivable.
 - b) Examiner l'existence de la limite $\lim_{x\to 0} f'(x)$.
 - c) Y a-t-il une contradiction?

Autour du théorème des bornes atteintes

Exercice 8. Soit $f:]a, \infty[\to \mathbb{R}$ une fonction continue. On suppose que les limites $\lim_{x \to \infty} f(x)$ et $\lim_{x \to a+} f(x)$ existent et sont finies.

- 1. Montrer que f est bornée.
- 2. Application. Montrer qu'il existe une constante C telle que $x \leq C(e^x 1), \forall x > 0$.

Lemme de Hadamard

Exercice 9. Nous nous proposons de montrer le

Lemme de Hadamard. Soit $f: \mathbb{R} \to \mathbb{R}$ indéfiniment dérivable. Si f(0) = 0, alors la fonction

$$f_1: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f_1(x) = \frac{f(x)}{x}, \ \forall x \in \mathbb{R} \setminus \{0\},$$

se prolonge par continuité en 0, et le prolongement (noté f_2) est une fonction indéfiniment dérivable.

De plus, nous avons
$$(f_2)^{(n)}(0) = \frac{f^{(n+1)}(0)}{n+1}, \forall n \in \mathbb{N}.$$

- 1. Montrer que f_1 se prolonge par continuité en 0. Avec quelle valeur?
- 2. Calculer la dérivée n^e de $x \mapsto \frac{1}{x}$, avec $x \neq 0$.
- 3. Utiliser le point précédent et la formule de Leibniz pour montrer que

$$(f_1)^{(n)}(x) = \sum_{j=0}^{n} (-1)^{n+j} \frac{n!}{j!} f^{(j)}(x) \frac{1}{x^{n-j+1}}, \ \forall x \neq 0,$$

puis que

$$(f_1)^{(n)}(x) = (-1)^n \, n! \, \frac{\sum_{j=0}^n (-1)^j \, \frac{1}{j!} \, f^{(j)}(x) \, x^j}{x^{n+1}}, \ \forall \, x \neq 0.$$

- 4. Calculer $\lim_{x\to 0} (f_1)^{(n)}(x)$. On pourra utiliser la règle de L'Hospital.
- 5. Conclure.
- 6. Utiliser le lemme de Hadamard pour montrer que la fonction

$$g: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ g(x) = \frac{\sin x}{e^x - 1},$$

admet un prolongement par continuité en 0, et que ce prolongement est indéfiniment dérivable.