Université Claude Bernard Lyon 1 Licence de mathématiques 3^e année Mathématiques pour l'enseignement **UE Approfondissement en analyse**

Complément #2 – 10 février 2020 –

Deuxième partie. Calcul différentiel

Chapitre #1. Différentielle

Le cadre est le suivant :

- 1. (E, || ||) est un espace normé de dimension finie sur \mathbb{R} . Cas particulier important : $E = \mathbb{R}^n$.
- 2. U est un ouvert de E.
- 3. (G, ||| |||) est un espace normé sur \mathbb{R} . Cas particulier important : $(G, ||| |||) = (\mathbb{R}, |||)$.
- 4. $f: U \to G$. Cas particulier important : $U \subset \mathbb{R}^n$ et $f: U \to \mathbb{R}$.

Proposition 1. Soit $f:U\to G$ différentiable (en $a\in U$). Alors f est continue (en a).

Démonstration. Soit R > 0 tel que $B(a, R) \subset U$. Nous avons

$$f(a+h) = f(a) + d_a f(h) + \varepsilon_1(h), ||h|| < R,$$

avec $d_a f: E \to G$ linéaire et $\varepsilon_1(h) = o(\|h\|)$ quand $h \to 0$.

Il s'ensuit que, si $\|x - a\| < R$, alors

$$f(x) - f(a) = f(a + (x - a)) - f(a) = d_a f(x - a) + \varepsilon_1 (x - a)$$
$$= O(||x - a||) + o(||x - a||) = o(1) + o(1) = o(1)$$

quand $x \to a$. f est donc continue en a.

Proposition 2. Soient $f, g: U \to G$ différentiables (en $a \in U$), et $\lambda \in \mathbb{R}$. Alors $f + \lambda g$ est différentiable (en a) et $d_a(f + \lambda g) = d_a f + \lambda d_a g$.

Démonstration. Avec R comme ci-dessus, nous avons

$$f(a+h) = f(a) + d_a f(h) + \varepsilon_1(h), ||h|| < R,$$

 $g(a+h) = g(a) + d_a g(h) + \varepsilon_2(h), ||h|| < R,$

avec $d_a f, d_a g: E \to G$ linéaires et $\varepsilon_i(h) = o(\|h\|)$ quand $h \to 0$. Il s'ensuit que

$$(f + \lambda g)(a + h) = (f + \lambda g)(a) + (d_a f + \lambda d_a g)(h) + \varepsilon(h), ||h|| < R,$$
 (1)

où

$$\varepsilon(h) := \varepsilon_1(h) + \lambda \varepsilon_1(h) = o(\|h\|) + O(1) o(\|h\|)
= o(\|h\|) + o(\|h\|) = o(\|h\|) \text{ quand } h \to 0.$$
(2)

En utilisant (1), (2) et le fait que $d_a f + \lambda d_a g$ est linéaire, nous obtenons $d_a (f + \lambda g) = d_a f + \lambda d_a g$.

Proposition 3. Soient $f:U\to\mathbb{R}$ et $g:U\to G$ différentiables (en $a\in U$). Alors $fg:U\to G$ est différentiable (en $a\in U$) et

$$d_a(fg)(h) = f(a) d_a g(h) + d_a f(h) g(a), \forall h \in \mathbb{R}^n.$$
(3)

Démonstration. Soit R comme ci-dessus. Nous avons

$$f(a+h) = f(a) + d_a f(h) + \varepsilon_1(h), ||h|| < R,$$

$$g(a+h) = g(a) + d_a g(h) + \varepsilon_2(h), ||h|| < R,$$

avec $d_a f: E \to \mathbb{R}$, $d_a g: E \to G$ linéaires et $\varepsilon_j(h) = o(\|h\|)$ quand $h \to 0$. Il

s'ensuit que

$$f(a+h)g(a+h) = [f(a) + d_a f(h) + \varepsilon_1(h)] [g(a) + d_a g(h) + \varepsilon_2(h)]$$

$$= f(a)g(a) + [f(a) d_a g(h) + d_a f(h) g(a)]$$

$$+ \varepsilon_1(h) [g(a) + d_a g(h) + \varepsilon_2(h)]$$

$$+ \varepsilon_2(h) [f(a) + d_a f(h)] + d_a f(h) d_a g(h)$$

$$= f(a)g(a) + [f(a) d_a g(h) + d_a f(h) g(a)]$$

$$+ o(\|h\|) [O(1) + O(\|h\|) + o(\|h\|) O(\|h\|)$$

$$+ o(\|h\|) [O(1) + O(\|h\|)] + O(\|h\|) O(\|h\|)$$

$$= f(a)g(a) + [f(a) d_a g(h) + d_a f(h) g(a)]$$

$$+ o(\|h\|) + o(\|h\|^2) + o(\|h\|^2) + o(\|h\|)$$

$$+ o(\|h\|^2) + O(\|h\|^2)$$

$$= f(a)g(a) + [f(a) d_a g(h) + d_a f(h) g(a)] + o(\|h\|),$$

les o s'entendant quand $h \to 0$.

Par ailleurs,

$$E \ni h \mapsto f(a) d_a g(h) + d_a f(h) g(a)$$

est linéaire (vérifier). En utilisant ce fait et (4), nous obtenons (3).

Proposition 4. Nous supposons G de dimension finie. Soit V un ouvert de G. Soit (H, \rangle, \langle) un espace normé sur \mathbb{R} . Soient $f: U \to G$ telle que $f(U) \subset V$ et $g: V \to H$. Si f est différentiable (en $a \in U$) et g est différentiable (en g: f(a)), alors $g \circ f$ est différentiable (en g: f(a)) et

$$d_a(g \circ f)(h) = d_{f(a)}g[d_af(h)], \forall h \in E,$$
(5)

ou encore

$$d_a(g \circ f) = [d_{f(a)}g] \circ [d_af]. \tag{6}$$

Démonstration. Soit r>0 tel que $B(f(a),r)\subset V.$ f étant continue en a, il existe un $\delta>0$ tel que

$$[x \in U, ||x - a|| < \delta] \implies |||f(x) - f(a)||| < r.$$

Par ailleurs, il existe R>0 tel que $B(a,R)\subset U.$ Soit $\rho:=\min\{\delta,R\}.$ Nous avons alors

$$||h|| < \rho \implies a + h \in B(a, \rho) \implies [a + h \in U, f(a + h) \in B(f(a), r)].$$

Nous avons

$$f(a+h) = f(a) + d_a f(h) + \varepsilon_1(h), ||h|| < \rho,$$

$$g(f(a) + k) = g(f(a)) + d_{f(a)}g(k) + \varepsilon_2(k), ||k|| < r$$

avec $\varepsilon_1(h) = o(\|h\|)$ quand $h \to 0$ et $\varepsilon_2(k) = o(\|k\|)$ quand $k \to 0$.

Si $\|h\|<\rho$, alors (les o étant entendus quand leurs arguments tendent vers 0)

$$g(f(a+h)) = g(f(a) + d_a f(h) + \varepsilon_1(h))$$

$$= g(f(a)) + d_{f(a)} g(d_a f(h) + \varepsilon_1(h)) + \varepsilon_2(d_a f(h) + \varepsilon_1(h))$$

$$= g(f(a)) + d_{f(a)} g(d_a f(h)) + d_{f(a)} g(\varepsilon_1(h))$$

$$+ o(d_a f(h) + \varepsilon_1(h))$$

$$= g(f(a)) + d_{f(a)} g(d_a f(h)) + O(\varepsilon_1(h))$$

$$+ o(O(||h||) + o(||h||))$$

$$= g(f(a)) + d_{f(a)} g(d_a f(h)) + O(o(||h||)) + o(O(||h||))$$

$$= g(f(a)) + d_{f(a)} g(d_a f(h)) + o(||h||) + o(||h||)$$

$$= g(f(a)) + [d_{f(a)} g(d_a f(h)) + o(||h||)$$

$$= g(f(a)) + [d_{f(a)} g] \circ [d_a f](h) + o(||h||).$$

L'application $[d_{f(a)}g] \circ [d_af]$ étant linéaire, nous obtenons (5).