Université Claude Bernard Lyon 1 Mesure et intégration Licence de mathématiques 3^e année Année 2019–2020

Devoir surveillé #3

-le 25 novembre 2019--durée 45 minutes-

Consignes. Pour chaque intégrale de la forme $\int_a^b f(x)dx$, préciser s'il s'agit d'une intégrale de Riemann, généralisée et/ou par rapport à la mesure de Lebesgue; justifier son existence et préciser si les résultats utilisés concernent les intégrales de Riemann, généralisées ou par rapport à la mesure de Lebesgue.

Question de cours (4 p.). Soit (X, \mathcal{T}, μ) un espace mesuré. Soit $1 . Soient <math>f, g : X \to \mathbb{R}$ deux fonctions mesurables.

Montrer que $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$.

Exercice #1 (10 p.) Soient $0 \le a < b$. Soit

$$D = \{(x, y) \in \mathbb{R}^2; 0 < x < y < \sqrt{x^2 + 1} \text{ et } a < xy < b\}.$$

- a) Montrer que D est un borélien.
- b) À l'aide du changement de variables $u=y^2-x^2$, v=xy, que l'on justifiera, calculer l'intégrale $I=\int_D (y^2-x^2)^{xy}(x^2+y^2)dxdy$ en fonction de a et b.

Exercice #2 (5 **p.**) Nous travaillons dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, v_1)$. Soit $f:]1, \infty[\to \mathbb{R}, f(x) = \frac{1}{\sqrt{x}}$. Pour quelles valeurs de $p \in [1, \infty]$ a-t-on $f \in \mathcal{L}^p(]1, \infty[)$?

Exercice #3 (3 p.) Soit $f : \mathbb{R} \to \mathbb{R}$, $f(x) = e^{-x^2}$. Calculer f * f(0).