Université Lyon 1 Année 2013-2014

Master Mathématiques Générales 1^{ère} année Analyse appliquée aux équations aux dérivées partielles

Feuille 9 - Théorie de Lax-Milgram, formulation variationnelle de problèmes elliptiques, séparation de variables

Trace de fonctions intégrables

Exercice 1.

Montrer qu'il n'y a pas de notion de trace pour des fonctions $L^2(\Omega)$, *i.e.* qu'il n'existe pas de constante C > 0 telle que pour tout $v \in L^2(\Omega)$,

$$||v_{|\partial\Omega}||_{L^2(\partial\Omega)} \le C||v||_{L^2(\Omega)}.$$

Considérer le cas $\Omega = B(0,1)$ et construire une suite $(v_n)_n$ de fonctions régulières, telle que $\forall n, v_n = 1$ sur la sphère unité et $||v_n||_{L^2(\Omega)} \to 0$.

Théorie de Lax-Milgram

Exercice 2.

Soit V un espace de Hilbert réel, de produit scalaire $\langle \cdot, \cdot \rangle$, de norme $\| \cdot \|$. On considère le problème suivant

trouver
$$u \in V$$
 tel que $a(u, v) = L(v) \quad \forall v \in V$. (1)

Les hypothèses faites sur a et L sont

(i) L est une forme linéaire continue sur V, i.e. $L:V\to\mathbb{R}$ est linéaire et il existe $C\geq 0$ tel que

$$|L(v)| \le C \|v\| \quad \forall \, v \in V$$

(ii) a est une forme bilinéaire continue sur $V, i.e. \ a: V \times V \to \mathbb{R}$ est bilinéaire et il existe $M \geq 0$ tel que

$$|a(w,v)| < M||w||||v|| \quad \forall w,v \in V$$

(iii) a est coercive, i.e. il existe $\nu > 0$ tel que

$$a(v, v) \ge \nu ||v||^2 \quad \forall v \in V.$$

Le but de cet exercice est de démontrer le théorème de Lax-Milgram :

Théorème. Soit V un espace de Hilbert réel, L une forme linéaire continue sur V et a une forme bilinéaire continue coercive sur V. Alors le problème (1) admet une unique solution. De plus, cette solution dépend continûment de la forme linéaire L.

- 1. Montrer qu'il existe $f \in V$ tel que $L(v) = \langle f, v \rangle$ pour tout $v \in V$ et $||L||_{V'} = ||f||_{V}$.
- 2. Montrer que pour tout $w \in V$, il existe $A(w) \in V$ tel que $a(w, v) = \langle A(w), v \rangle$ pour tout $v \in V$.

- 3. Montrer que $A: V \to V$ est un opérateur linéaire et continu.
- 4. Montrer que A est bijectif et d'inverse continu.
- 5. Conclure.

Exercice 3.

On reprend le cadre de l'énoncé précédent. On suppose de plus que a est symétrique. On définit l'énergie

$$J(v) = \frac{1}{2}a(v,v) - L(v) \quad \forall v \in V.$$

Montrer que u est solution au problème (1) si et seulement si u est un point de minimum de l'énergie J, i.e.

$$J(u) = \min_{v \in V} J(v).$$

Formulation variationnelle de problèmes elliptiques

Exercice 4. (Laplacien + Dirichlet)

Soit Ω un ouvert de \mathbb{R}^n borné et régulier (de classe \mathcal{C}^1). Soit $f \in L^2(\Omega)$. On considère le problème suivant,

$$\begin{cases}
-\Delta u = f & \Omega \\
u = 0 & \partial\Omega
\end{cases}$$
(2)

- 1. Ecrire la formulation variationnelle du problème (2).
- 2. Montrer que le problème (2) admet une unique solution faible u dans $H_0^1(\Omega)$ et qu'il existe une constante C > 0 indépendante de f telle que $||u||_{H^1} \le C||f||_{L^2}$.
- 3. Montrer que si $u \in H^2(\Omega)$, alors u est solution du problème initial au sens où

$$\begin{cases}
-\Delta u = f & \text{presque partout dans } \Omega \\
u = 0 & \text{presque partout sur } \partial\Omega
\end{cases}$$
(3)

4. Montrer que (3) est encore vrai sans l'hypothèse suppplémentaire $u \in H^2(\Omega)$.

Exercice 5. (Une variante du Laplacien + Dirichlet)

Soit Ω un ouvert de \mathbb{R}^n régulier (non nécessairement borné). Soit $f \in L^2(\Omega)$. On considère le problème suivant,

$$\begin{cases}
-\Delta u + u = f & \Omega \\
u = 0 & \partial\Omega
\end{cases}$$
(4)

Reprendre les questions de l'exercice 4 dans ce cadre.

Exercice 6. (Une variante du Laplacien + Neumann)

Soit Ω un ouvert de \mathbb{R}^n régulier (non nécessairement borné). Soit $f \in L^2(\Omega)$, $g \in L^2(\partial\Omega)$. On considère le problème suivant,

$$\begin{cases}
-\Delta u + u = f & \Omega \\
\frac{\partial u}{\partial n} = g & \partial \Omega
\end{cases}$$
(5)

Reprendre les questions de l'exercice 4 dans ce cadre.

Exercice 7. (Laplacien + Neumann : un problème de compatibilité)

Soit Ω un ouvert de \mathbb{R}^n borné, régulier et connexe. Soit $f \in L^2(\Omega)$, $g \in L^2(\partial\Omega)$. On considère le problème suivant,

$$\begin{cases}
-\Delta u = f & \Omega \\
\frac{\partial u}{\partial n} = g & \partial \Omega
\end{cases}$$
(6)

- 1. Y-a-t-il unicité d'une solution au problème (6)?
- 2. Montrer que s'il existe une solution $u \in H^2(\Omega)$ au problème (6) alors

$$\int_{\Omega} f(x)dx + \int_{\partial\Omega} g(x)d\sigma(x) = 0.$$
 (7)

3. Ecrire la formulation variationnelle du problème (6). Pour cela on introduira l'espace

$$V = \{ v \in H^1(\Omega) \mid \int_{\Omega} v(x) dx = 0 \}.$$

4. Montrer que le problème (6) admet une solution faible u dans $H^1(\Omega)$, unique à l'addition d'une constante près.

On pourra utiliser l'inégalité de Poincaré-Wirtinger : si Ω est borné et connexe, il existe C>0 tel que pour tout $v\in H^1(\Omega)$.

$$\left\| v - f_{\Omega} v \right\|_{L^2} \le C \|\nabla v\|_{L^2}. \tag{8}$$

- 5. Montrer que u est bien solution du problème aux limites initial.
- 6. Démontrer l'inégalité de Poincaré-Wirtinger. On raisonnera par l'absurde.

Exercice 8. (Un cas non symétrique : équation de convection-diffusion)

Soit Ω un ouvert de \mathbb{R}^n borné et régulier. Soit $f \in L^2(\Omega)$. On considère le problème suivant

$$\begin{cases}
-\Delta u + b \cdot \nabla u = f & \Omega \\
u = 0 & \partial \Omega
\end{cases}$$
(9)

où le champ de vecteurs $b: \Omega \to \mathbb{R}^n$ est de classe \mathcal{C}^1 , borné sur Ω et à divergence nulle : div $b(x) = 0 \ \forall x \in \Omega$.

Reprendre les questions de l'exercice 4 dans ce cadre.

Exercice 9. (Coefficients variables)

Soit Ω un ouvert de \mathbb{R}^n borné et régulier. Soit $f \in L^2(\Omega)$. On considère le problème suivant

$$\begin{cases}
-\operatorname{div}(A(x)\nabla u) = f & \Omega \\
u = 0 & \partial\Omega
\end{cases}$$
(10)

où $A: \Omega \to \mathcal{M}_n(\mathbb{R})$ est mesurable et

— uniformément coercive : il existe $\alpha > 0$ tel que pour presque tout $x \in \Omega$,

$$\forall \xi \in \mathbb{R}^n, \ A(x)\xi \cdot \xi \ge \alpha |\xi|^2,$$

— uniformément bornée : il existe $\beta > 0$ tel que pour presque tout $x \in \Omega$,

$$\forall \xi \in \mathbb{R}^n, |A(x)\xi| \le \beta |\xi|.$$

Reprendre les questions de l'exercice 4 dans ce cadre.

Exercice 10. (Un problème perturbé)

Soit Ω un ouvert de \mathbb{R}^n borné et régulier. Soit $f \in L^2(\Omega)$. On considère le problème suivant pour tout $\varepsilon \in]0,1[$,

$$\begin{cases}
-\varepsilon \Delta u^{\varepsilon} + u^{\varepsilon} = f & \Omega \\
u^{\varepsilon} = 0 & \partial \Omega
\end{cases}$$
(11)

- 1. Montrer que le problème (11) admet une unique solution faible u^{ε} dans $H_0^1(\Omega)$ et que pour tout ε , $||u^{\varepsilon}||_{L^2} \leq ||f||_{L^2}$.
- 2. Montrer que la suite (u^{ε}) converge faiblement dans $L^{2}(\Omega)$ vers f.
- 3. Montrer que la suite (u^{ε}) converge fortement dans $L^2(\Omega)$ vers f.
- 4. On suppose de plus que $f \in H_0^1(\Omega)$. En utilisant le fait que u^{ε} est le minimiseur d'une fonctionnelle que l'on précisera, montrer que pour tout ε , $\|\nabla u^{\varepsilon}\|_{L^2} \leq \|\nabla f\|_{L^2}$.
- 5. Montrer que (u^{ε}) converge fortement dans $H_0^1(\Omega)$ vers f.

Séparation de variables

Dans les exercices 11 et 13, on s'intéresse à l'équation de la chaleur sur un ouvert Ω de \mathbb{R}^n borné :

$$\begin{cases}
\partial_t u(t,x) - \Delta_x u(t,x) &= f(t,x) & t > 0, x \in \Omega \\
u(t,x) &= 0 & t \ge 0, x \in \partial\Omega, \\
u(0,x) &= U_0(x) & x \in \Omega
\end{cases}$$
(12)

Exercice 11. (Un cas particulier)

On suppose ici n = 1 et $\Omega =]0, 1[$.

1. Solutions à variables séparées. On s'intéresse d'abord au problème

$$\begin{cases}
\partial_t u(t,x) - \Delta_x u(t,x) = 0 & t > 0, x \in \Omega \\
u(t,x) = 0 & t \ge 0, x \in \partial\Omega
\end{cases}$$
(13)

On cherche une solution sous la forme $u(t,x) = v(t)\varphi(x)$.

- (a) Ecrire les équations satisfaites par v et φ .
- (b) Déterminer les solutions possibles.
- 2. Principe de superposition.
 - (a) Résoudre formellement le problème de Cauchy (12) avec f = 0. On écrira la solution sous la forme d'une série.

(b) Etudier le cas f quelconque.

Exercice 12. (Convergences de séries)

On note $(\lambda_j)_{j\geq 1}$ et $(e_j)_{j\geq 1}$ les valeurs propres et fonctions propres de l'opérateur $(-\Delta)$ avec condition de Dirichlet sur Ω telles que définies en cours.

Soit I un intervalle de \mathbb{R} , $(c_j)_{j\geq 1}$ une suite de réels. Soit $(u_j)_{j\geq 1}$ une suite de fontions dans $\mathcal{C}(I,\mathbb{C})$ telle que pour tout $j\geq 1$, tout $t\in I$, $|u_j(t)|\leq c_j$. On pose, pour tout $t\in I$, tout $x\in\Omega$,

$$u(t,x) = \sum_{j=1}^{\infty} u_j(t)e_j(x).$$

- 1. Montrer que si $\sum_{j} c_{j}^{2} < \infty$, alors $u \in \mathcal{C}(I, L^{2}(\Omega))$.
- 2. Montrer que si $\sum_{j} \lambda_{j} c_{j}^{2} < \infty$, alors $u \in \mathcal{C}(I, H_{0}^{1}(\Omega))$.
- 3. Montrer que si $\sum_{j} \frac{c_j^2}{\lambda_j} < \infty$, alors $u \in \mathcal{C}(I, H^{-1}(\Omega))$.

Exercice 13. (Cas général)

Soit T > 0. Notons $\Omega_T =]0, T] \times \Omega$, et $\Gamma_T = [0, T] \times \partial \Omega$. On note $(\lambda_j)_{j \geq 1}$ et $(e_j)_{j \geq 1}$ les valeurs propres et fonctions propres de l'opérateur $(-\Delta)$ avec condition de Dirichlet telles que définies en cours.

On suppose $U_0 \in H^{-1}(\Omega)$ et $f \in L^2(\Omega_T)$. On pose

$$u(t,x) = \sum_{j=1}^{+\infty} \left(a_j e^{-\lambda_j t} + \int_0^t e^{-\lambda_j (t-s)} f_j(s) ds \right) e_j(x)$$

où $a_j = U_0(e_j)$ et $f_j(t) = \langle f(t, \cdot), e_j \rangle_{L^2(\Omega)}$.

- 1. Montrer que $u \in \mathcal{C}(]0,T],H_0^1(\Omega))$.
- 2. Montrer que $u \in \mathcal{C}([0,T],H^{-1}(\Omega))$ et $u(0,\cdot)=U_0$.
- 3. Pour tout $j \geq 1$, on note $u_j(t,x) = \left(a_j e^{-\lambda_j t} + \int_0^t e^{-\lambda_j (t-s)} f_j(s) ds\right) e_j(x)$. Montrer que $Lu_j(t,x) = f_j(t)e_j(x)$ dans $\mathcal{D}'(\Omega_T)$.
- 4. Montrer que Lu = f dans $\mathcal{D}'(\Omega_T)$.
- 5. Montrer qu'il existe une unique solution u à (12) telle que Lu = f dans $\mathcal{D}'(\Omega_T)$, $u \in \mathcal{C}(]0,T], H_0^1(\Omega))$ et $\lim_{t\to 0^+} u(t,\cdot) = U_0$ dans $H^{-1}(\Omega)$.

Exercice 14. (Equation des ondes)

On considère l'équation des ondes suivante

$$\begin{cases}
\partial_{tt}^{2} u(t,x) - \Delta_{x} u(t,x) &= 0 & t > 0, x \in \Omega \\
u(t,x) &= 0 & t \geq 0, x \in \partial\Omega, \\
u(0,x) &= U_{0}(x) & x \in \Omega \\
\partial_{t} u(0,x) &= U_{1}(x) & x \in \Omega
\end{cases}$$
(14)

Reprendre le cadre et la méthode de l'exercice 11 pour obtenir la forme de la solution.