Université Lyon 1 Année 2013-2014

Master Mathématiques Générales 1^{ère} année Analyse appliquée aux équations aux dérivées partielles

Feuille 8 - Espaces de Sobolev

Notations.

- I désigne l'intervalle]-1,1[,
- $-1 \le p < \infty$,
- f' désigne la dérivée généralisée de f,
- $-\stackrel{\circ}{W}^{1,p}(I) := \{ f \in L^p(I) \; ; \; f' \in L^p(I) \}, \text{ muni de } \|f\|_{W^{1,p}} = (\|f\|_{L^p}^p + \|f'\|_{L^p}^p)^{1/p},$
- $W_0^{1,p}(I)$ est l'adhérence de $\mathcal{C}_c^{\infty}(I)$ dans $W^{1,p}(I)$, muni de la norme induite de $W^{1,p}(I)$, pour p=2, on note $H^1(I)=W^{1,2}(I)$ et $H^1_0(I)=W^{1,2}_0(I)$.

Exercice 1.

1. Soit $u \in W^{1,p}(I)$. Montrer que pour tout $x, y \in I$,

$$u(y) = u(x) + \int_{x}^{y} u'(t)dt.$$

2. Montrer que $W^{1,p}(I) \hookrightarrow \mathcal{C}([-1,1])$, i.e. toute fonction $u \in W^{1,p}(I)$ est continue sur [-1,1] et qu'il existe une constante C>0 telle que pour tout $u\in W^{1,p}(I)$,

$$||u||_{\infty} = \sup_{x \in [-1,1]} |u(x)| \le C||u||_{W^{1,p}}.$$

3. On suppose ici $1 . Montrer que <math>W^{1,p}(I) \hookrightarrow \mathcal{C}^{0,1-1/p}([-1,1])$, i.e. toute fonction $u \in W^{1,p}(I)$ est (1-1/p)-höldérienne sur [-1,1] et qu'il existe une constante C > 0 telle que pour tout $u \in W^{1,p}(I)$,

$$\sup_{\substack{x,y \in [-1,1], \\ x \neq y}} \frac{|u(x) - u(y)|}{|x - y|^{1 - 1/p}} \le C ||u||_{W^{1,p}}.$$

Exercice 2. (Exemples)

Pour quelles valeurs de $p \in [1, \infty]$ les fonctions suivantes appartiennent-elles à $W^{1,p}(]0, 1[)$? $W^{1,p}(]1,+\infty[)?$

- $-x \mapsto x^{\alpha}, \ \alpha \in \mathbb{R},$
- $-x \mapsto |\ln x|^{\beta}, \ \beta \in \mathbb{R}.$

Exercice 3.

Soit $u \in W^{1,p}(I)$. Montrer que les propriétés suivantes sont équivalentes :

- 1. u(-1) = u(1) = 0,
- 2. $u \in W_0^{1,p}(I)$,
- 3. le prolongement de u à \mathbb{R} défini par $\tilde{u}(x) = \begin{cases} u(x) & \text{si } x \in I \\ 0 & \text{sinon} \end{cases}$ appartient à $W^{1,p}(\mathbb{R})$.

Exercice 4. (Intégration par parties)

Soit $1 \le p < \infty$.

- 1. Montrer que $C^{\infty}(I)$ est dense dans $W^{1,p}(I)$. Indication. Pour $u \in W^{1,p}(I)$, on utilisera qu'il existe une suite $(w_n)_n$ de $C_c^{\infty}(I)$ qui converge vers u' dans $L^p(I)$.
- 2. Soit $u, v \in W^{1,p}(I)$. Soit $(u_n)_n$ et $(v_n)_n$ deux suites de $\mathcal{C}_c^{\infty}(I)$ qui convergent vers u et v respectivement dans $W^{1,p}(I)$. Montrer que

$$u_n v_n \longrightarrow uv \text{ dans } L^p(I), \text{ et } (u_n v_n)' \longrightarrow u'v + uv' \text{ dans } L^p(I).$$

- 3. En déduire que $uv \in W^{1,p}(I)$.
- 4. Montrer que pour tout $u, v \in W^{1,p}(I)$, tout $x, y \in [-1, 1]$,

$$\int_I u(x)v'(x)dx = \left[u(x)v(x)\right]_{-1}^1 - \int_I u'(x)v(x)dx.$$

Exercice 5. (Inégalité de Poincaré)

Montrer qu'il existe une constante C > 0 telle que pour tout $u \in W_0^{1,p}(I)$,

$$||u||_{L^p} \le C||u'||_{L^p}.$$

Remarque. $||u'||_{L^p}$ est donc une norme sur $W_0^{1,p}(I)$, équivalente à la norme initiale.