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Part I. Solving the Laplace equationwith divergence formdatum. The purpose of this
part is to partially prove the following
Theorem. Let Ω be a bounded domain in RN , of class C2, and let 1 < p < ∞. For F ∈
Lp(Ω;RN), the equation

−∆u = divF in D ′(Ω) (1)

has a unique solution u ∈ W 1,p
0 (Ω;R). In addition, with some finite constant C independent

of F (but possibly depending on p and Ω), we have the estimate ||u||W 1,p ≤ C||F ||p.

Preliminaries. a) The following identity may be useful. If ω,Ω ⊂ RN are open sets and Φ ∈
C1(ω; Ω), then

∇(u ◦ Φ) = tJΦ[(∇u) ◦ Φ], ∀u ∈ C1(Ω;R).

b) We set RN
+ = RN−1 × (0,∞), B+ = {x ∈ RN

+ ; |x| < 1}, and B0 = {(x′, 0); x′ ∈
RN−1, |x′| ≤ 1}.
c) In what follows,C denotes a constant depending possibly on p and Ω, but not onF , u, or the
other scalar functions, matrix-valued functions, or vector fields appearing in the equations.
This constant may change from a line to another.
d) We always suppose that 1 < p < ∞. We take for granted the Lp-regularity theory for
the equation −∆u = f ∈ W k,p(Ω;R) and the following variant of the crucial lemma of the
Lp-regularity theory.

Crucial lemma. There exist some ε0 > 0 and C < ∞, possibly depending on 1 < p < ∞ and
onN , but not onB, H , h, orw below, such that, for: (a)w ∈ W 2,p(B+;R) satisfying: (i) there
exists some 0 < R < 1 such that w(x) = 0 if |x| > R; (ii) tr|B0 w = 0; (b) H ∈ Lp(B+;RN);
(c) h ∈ Lp(B+;R); (d)B ∈ L∞(B+;MN(R)), satisfying the equation

−∆w = div(B∇w) + divH + h in D ′(B+)

and the smallness condition ||B||∞ ≤ ε0, we have

||w||W 1,p ≤ C||H||p + C||h||p.

Exercise A. If p, q are conjugated exponents, prove that

[u ∈ W 1,p
0 (Ω;R),−∆u = 0, v ∈ W 2,q(Ω;R) ∩ W 1,q

0 (Ω;R)] =⇒
ˆ

Ω

u(−∆v) = 0,

and derive the uniqueness, inW 1,p
0 (Ω;R), of a solution of (1).
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Hints. Since−∆u = 0 and thus u ∈ C∞(Ω) (Weyl’s lemma), we have
ˆ

Ω

∇u · ∇ϕ = 0, ∀ϕ ∈ C∞c (Ω). (2)

By passing to the limits and using the fact that∇u ∈ Lp(Ω), (2) still holds forϕ ∈ W 1,q
0 (Ω).

On the other hand, since−∆v ∈ Lq(Ω) and∇v ∈ Lq(Ω), we have
ˆ

Ω

ψ(−∆v) =

ˆ
Ω

∇ψ · ∇v, ∀ψ ∈ C∞c (Ω). (3)

By passing to the limits and using theLq integrability of−∆v and∇v, we find that (3) still
holds for ψ ∈ W 1,p

0 (Ω).

By combining (2) (with ϕ = v) with (3) (with ψ = u), we find that
ˆ

Ω

u(−∆v) = 0.

For any g ∈ C∞c (Ω), we have g ∈ Lq(Ω), and thus there exists v ∈ W 2,q(Ω)∩W 1,q
0 (Ω) such

that−∆v = g. We find that
ˆ

Ω

ug = 0, ∀ g ∈ C∞c (Ω), and thus (by the localization principle)

u = 0 a.e. By linearity, this implies the uniqueness, inW 1,p
0 (Ω;R), of a solution of (1).

Exercise B. Assume that the following a priori estimate holds.

[F ∈ C∞c (Ω;RN), u ∈ W 1,p
0 (Ω;R) solves (1)] =⇒ ||u||W 1,p ≤ C||F ||p + C||u||p. (4)

1. Prove that the estimate (4) implies the validity of the following a priori estimate.

[F ∈ C∞c (Ω;RN), u ∈ W 1,p
0 (Ω;R) solves (1)] =⇒ ||u||W 1,p ≤ C||F ||p. (5)

2. Prove that the estimate (4) (and possibly other ingredients, to be specified) implies the
theorem.

Hints. 1. Argue by contradiction. Then there exist sequences (Fj) ⊂ C∞c (Ω;RN), (uj) ⊂
W 1,p

0 (Ω) such that, for each j,−∆uj = divFj , ||uj||W 1,p = 1, while ||Fj||p → 0. Moreover, by
(4), there exists someC > 0 such that ||uj||p ≥ C . Using the Rellich-Kondrachov theorem and
passing, up to a subsequence, to weak limits, we obtain the existence of some u ∈ W 1,p

0 (Ω)
such that−∆u = 0 and ||u||p ≥ C . This contradicts the conclusion of Exercise A.
2. If F ∈ C∞c (Ω;RN), then divF ∈ Lp(Ω) and thus, by the Lp-regularity theory, (1) has
a solution u ∈ W 2,p(Ω) ∩ W 1,p

0 (Ω). By the assumption (4), u satisfies (5). By density of
C∞c (Ω;RN) in Lp(Ω;RN) and the a priori estimate (5), for every F ∈ Lp(Ω;RN) there exists
some u ∈ W 1,p

0 (Ω) satisfying (1). In addition, we have ||u||W 1,p ≤ C||F ||p. Uniqueness follows
from Exercise A.

Exercise C. Let u ∈ W 1,1
loc (Ω;R) and F ∈ L1

loc(Ω;RN) satisfy (1). Let Φ : ω → Ω be a C1-
diffeomorphism. Set v = u ◦ Φ. Find (explicitly) a matrix-valued functionA ∈ C(ω;MN(R))
and a vector fieldG ∈ L1

loc(ω;RN) such that

− div(A∇v) = divG in D ′(ω), (6)

and carefully justify and give a precise meaning to (6).
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Hints. If u ∈ C∞(Ω) and ϕ ∈ C∞c (Ω), then the chain rule∇(u ◦ Φ) = tJΦ[(∇u) ◦ Φ] and a
change of variables yield

ˆ
Ω

∇u · ∇ϕ =

ˆ
ω

[(∇u) ◦ Φ] · [(∇ϕ) ◦ Φ] |JΦ|

=

ˆ
ω

[(tJΦ)−1∇(u ◦ Φ)] · [(tJΦ)−1∇(ϕ ◦ Φ)] |JΦ|

=

ˆ
ω

[A∇(u ◦ Φ)] · [∇(ϕ ◦ Φ)], withA = |JΦ| [(JΦ)−1] [(tJΦ)−1].

(7)

The first equality (and thus the full chain of identities) in (7) still holds when u ∈ W 1,1
loc (Ω)

andϕ ∈ C1
c (Ω). To see this, consider an open smooth bounded set V such that suppϕ ⊂ V b

Ω, and set U := Φ−1(V ). Then Φ : U → V is a bi-Lipschitz C1-diffeomorphism, and thus
(known exercise) W 1,1(V ) 3 u 7→ (∇u) ◦ Φ ∈ L1(U) is continuous, and the same holds for
C1(V ) 3 ϕ 7→ (∇ϕ) ◦ Φ ∈ L∞(U). We conclude via Hölder’s inequality and approximation,
using the density ofC∞(V ) ∩W 1,1(V ) inW 1,1(V ), and ofC∞c (V ) inC1

c (V ).
On the other hand, if (1) holds, then
ˆ

Ω

∇u · ∇ϕ = −
ˆ

Ω

F · ∇ϕ, ∀ϕ ∈ C∞c (Ω). (8)

Arguing as above on the right-hand side of (8), we may rewrite (8) as
ˆ
ω

[A∇(u ◦ Φ)] · [∇(ϕ ◦ Φ)] = −
ˆ
ω

[|JΦ| (JΦ)−1(F ◦ Φ)] · [∇(ϕ ◦ Φ)],

∀ϕ ∈ C1
c (Ω).

(9)

SetG = |JΦ| (JΦ)−1(F ◦ Φ). If ζ ∈ C1
c (ω), then (7) and (9) with ϕ := ζ ◦ Φ−1 yield

ˆ
ω

(A∇v) · ∇ζ = −
ˆ
ω

G · ∇ζ,

so that v satisfies− div(A∇v) = divG in D ′(ω).

Exercise D. Let v ∈ W 1,p(B+;R), A ∈ C(B+;MN(R)), and G ∈ Lp(B+;R) satisfy (6) with
ω = B+. Assume, moreover, thatA is symmetric. (Is this requirement restrictive?)

1. Let ζ ∈ C1(B+;R) and setw = ζv. Carefully justify the equality

− div(A∇w) = div(ζG)−G · ∇ζ − 2 div(vA∇ζ) + v div(A∇ζ) in D ′(B+). (10)

2. Assume furthermore that: (i) for some 0 < R < 1, we have ζ(x) = 0 if |x| ≥ R;
(ii) ζ ∈ C2(B+); (iii) v ∈ W 2,p(B+); (iv) tr|B0 v = 0. Write A = IN + B. Under an
appropriate smallness condition onB, prove the a priori estimate

||w||W 1,p ≤ C||G||p + C||v||p. (11)

3. Sketch the strategy for deriving (4) from (11) (and possibly other ingredients).
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Hints. The assumption on A is not restrictive, since the A found in the previous exercise is
indeed symmetric. (On the other hand, even without the symmetry assumption, a formula in
the spirit of (10) holds, and can be obtained following the same lines as below.)
1. We rely on the following identities, valid (by approximation, possibly based on the use of
Hölder’s inequality) under the assumptionsA ∈ L∞loc(B+;MN(R)),A symmetric, ζ ∈ C1(B+;R),
v ∈ W 1,1

loc (B+;R):

div(A∇w) = div(vA∇ζ + ζA∇v), (12)
div(vA∇ζ) = v div(A∇ζ) + (A∇ζ) · ∇v, (13)
div(ζA∇v) =ζ div(A∇v) + (A∇v) · ∇ζ = ζ div(A∇v) + (A∇ζ) · ∇v

=ζ div(A∇v)− v div(A∇ζ) + div(vA∇ζ),
(14)

− div(A∇w) =ζ divG− 2 div(vA∇ζ) + v div(A∇ζ)

= div(ζG)−G · ∇ζ − 2 div(vA∇ζ) + v div(A∇ζ),
(15)

where the first term on the right-hand side of (14) and the first term on the right-hand side of
(15) are respectively defined by

[ζ div(A∇v)](ψ) = −
ˆ
B+

(A∇v) · [∇(ζψ)], ∀ψ ∈ C∞c (B+;R),

(ζ divG)(ψ) = −
ˆ
B+

G · [∇(ζψ)], ∀ψ ∈ C∞c (B+;R).

The second identity in (15) is the desired one.
2. By known properties of traces and products, for ζ andw as in the statement,w satisfies the
assumptions of the crucial lemma. With ε0 as in the crucial lemma and taking (15) into account,
we have

||w||W 1,p ≤C||ζG− 2vA∇ζ||p + C||−G · ∇ζ + v div(A∇ζ)||p
≤C||G||p + C||v||p.

3. We want to prove the validity of (4). Let F ∈ C∞c (Ω;RN) and let u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω)

solve (1). Considering an adapted covering of Ω and an adapted partition of unity, we may write
u =

∑
ζju =

∑
uj , with ζ0 ∈ C∞c (Ω) and, for j ≥ 1, ζj supported in a small ball centered at

some point of ∂Ω. By item 2 and known properties on norm equivalences after composition
with a diffeomorphism, for j ≥ 1 we have

||uj||W 1,p ≤ C||F ||p + ||u||p. (16)

For j = 0, we start from

−∆(ζ0u) = div(ζ0F )− F · ∇ζ0 − 2 div(u∇ζ0) + u div(A∇ζ0) = K (17)

(which is a special case of (15)) and use the identity ζ0u = −E ∗K (valid since ζ0u is compactly
supported) to derive the estimate

||ζ0u||W 1,p ≤ C||F ||p + C||u||p. (18)

Combining (16) and (18), we obtain (4).
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Part II. A uniqueness result. In what follows, B denotes the unit ball in RN . The purpose

of this part is to establish the implication

[u ∈ W 1,1
0 (B;R),−∆u = 0] =⇒ u = 0. (19)

Preliminaries. a) The following result (see, e.g., [1, Proposition 9.18]) may be useful. Let Ω ⊂
RN be an open set and let u ∈ W 1,1

0 (Ω;R). Let ũ be the extension of uwith the value 0 outside
Ω. Then ũ ∈ W 1,1(RN ;R) and, in addition,∇ũ is the extension of∇uwith the value 0 outside
Ω.
b) We set, for r > 0,Br := {x ∈ RN ; |x| < r}, Sr := {x ∈ RN ; |x| = r}.

Exercise A. Let u ∈ C(B;R) ∩W 1,1
0 (B;R). For 0 < r < 1, prove that

ˆ
Sr

|u| ≤
ˆ
B\Br

|∇u|. (20)

A possible approach consists of arguing by regularization, by carefully justifying the limit-
ing argument.

Hints. Let 0 < r < R and v ∈ C1(RN) be such that v(x) = 0 if |x| ≥ R. Then
ˆ
Sr

|v| =rN−1

ˆ
S1

|v(ry)| dH N−1(y) = rN−1

ˆ
S1

∣∣∣[v(ty)
]t=R

t=r

∣∣∣ dH N−1(y)

=rN−1

ˆ
S1

∣∣∣∣ˆ R

r

[∇v(ty)] · y dt
∣∣∣∣ dH N−1(y)

≤rN−1

ˆ
S1

ˆ R

r

|(∇v)(ty)| dt dH N−1(y)

≤
ˆ
S1

ˆ R

r

tN−1|(∇v)(ty)| dt dH N−1(y) =

ˆ
BR\Br

|∇v| =
ˆ
RN\Br

|∇v|.

(21)

Let now u ∈ W 1,1
0 (B). If ρ is a standard mollifier, then supp(ũ ∗ ρε) ⊂ B1+ε. Applying (21)

(with v = ũ ∗ ρε andR = 1 + ε), we find that
ˆ
Sr

|ũ ∗ ρε| ≤
ˆ
RN\Br

|(∇ũ) ∗ ρε|. (22)

Passing to the limits in (22) (using the fact that ũ ∗ ρε → u uniformly on Sr as ε→ 0, since
u is continuous inB, and that (∇ũ) ∗ ρε → ∇ũ in L1(RN)), we find that

ˆ
Sr

|u| ≤
ˆ
RN\Br

|∇ũ| =
ˆ
B\Br

|∇u|.

Exercise B. We now prove (19).
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1. Let g ∈ C∞c (B;R) and let v ∈ H1
0 (B;R) solve−∆v = g. For 0 < r < 1, prove that∣∣∣∣ˆ

Br

ug

∣∣∣∣ ≤ ||∇v||L∞(B)

ˆ
Sr

|u|+ ||v||L∞(Sr)

ˆ
Sr

|∇u|

≤ ||∇v||L∞(B)

ˆ
B\Br

|∇u|+ (1− r)||∇v||L∞(B)

ˆ
Sr

|∇u|.
(23)

2. Conclude, using an appropriate sequence rj → 1.

Proof. 1. By Weyl’s lemma,u ∈ C∞(B). By theLp-regularity theory, we also have v ∈ C∞(B)∩
C1(B). Green’s second formula and the previous exercise yield∣∣∣∣ˆ

Br

ug

∣∣∣∣ =

∣∣∣∣−ˆ
Sr

u
∂v

∂ν
+

ˆ
Sr

v
∂u

∂ν

∣∣∣∣ ≤ ||∇v||L∞(B)

ˆ
Sr

|u|+ ||v||L∞(Sr)

ˆ
Sr

|∇u|

≤||∇v||L∞(B)

ˆ
B\Br

|∇u|+ ||v||L∞(Sr)

ˆ
Sr

|∇u|

≤||∇v||L∞(B)

ˆ
B\Br

|∇u|+ (1− r)||∇v||L∞(B)

ˆ
Sr

|∇u|,

where the last inequality follows from the fact that v = 0 on ∂B, so that, for x ∈ Sr, we have

|v(x)| = |v(x)− v(x/|x|)| ≤ |x− x/|x|| ||∇v||L∞(B) = (1− r) ||∇v||L∞(B).

2. Recall that, if f : [0, 1] → R+ is (Lebesgue) integrable, then there exists a sequence tj → 0

such that tjf(tj)→ 0. Applying this to f(t) =

ˆ
S1−t

|∇u|, we find that there exists a sequence

rj → 1 such that

(1− rj)
ˆ
Srj

|∇u| → 0. (24)

Applying (23) with r = rj and using (24) and dominated convergence, we find that
ˆ
B

ug = lim
j→∞

ˆ
Brj

ug = 0, ∀ g ∈ C∞c (B). (25)

By the localisation principle, u = 0 a.e., and thus u = 0 (since u is continuous).

References
[1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext.

Springer, New York, 2011.

6


