Lecture # 1 The direct method: a few examples

(a) Basic examples

In what follows, $\Omega \subset \mathbb{R}^N$ is a "smooth" bounded open set. In items A, B, C, $a \in C(\overline{\Omega})$, $a \ge 0$, and $f \in C(\overline{\Omega})$.

A The problem

$$\begin{cases} -\Delta u + a(x)u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has a unique weak solution $u \in H_0^1(\Omega)$. Useful reference: [4, Corollary 3.23].

B Same for the problem

$$\begin{cases} -\Delta u + a(x)|u|^{q-1} \operatorname{sgn} u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases},$$

with $1 < q < \infty$.

Useful results:

Exercise. Let $1 < q < \infty$. Then

$$L^q(X,\mathscr{T},\mu)\ni u\mapsto G(u):=|u|^{q-1}\,\operatorname{sgn} u\in L^{q/(q-1)}(X,\mathscr{T},\mu)$$

is continuous.

Lemma. Let $1 < q < \infty$. Then

$$L^q(X,\mathscr{T},\mu)\ni u\mapsto F(u):=\int_X |u|^q\,d\mu$$

is C^1 , and

$$F'(u)(\varphi) = q \int_{\Omega} |u|^{q-1} \left(\operatorname{sgn} u \right) \varphi, \, \forall \, u, \varphi \in L^q(X, \mathscr{T}, \mu)$$

C The problem

$$\begin{cases} -\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) + a(x)|u|^{q-1}\,\operatorname{sgn} u = f & \operatorname{in} \Omega\\ u = 0 & \operatorname{on} \partial\Omega \end{cases},$$

with $1 < p, q < \infty$, has a unique weak solution $u \in W_0^{1,p}(\Omega)$. Useful result:

Exercise. Let 1 . Then

$$L^p(X,\mathscr{T},\mu;\mathbb{R}^d) \ni f \mapsto F(f) := \int_X |f|^p \, d\mu$$

is C^1 , and

$$F'(f)(g) = p \int_{\Omega} |f|^{p-2} f \cdot g, \,\forall f, g \in L^{p}(X, \mathscr{T}, \mu; \mathbb{R}^{d}).$$

D Definition. A Carathéodory function is a function $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^d$ such that

- (i) $x \mapsto f(x, u, \xi)$ is (Lebesgue) measurable, $\forall (u, \xi) \in \mathbb{R}^m \times \mathbb{R}^d$.
- (ii) $(u,\xi) \mapsto f(x,u,\xi)$ is continuous, for a.e. $x \in \Omega$.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let $1 \le p, q \le \infty$. Let f be a Carathéodory function such that:

- a) $f(x, u, \xi) \ge a(x) \cdot u + b(x) \cdot \xi$, $\forall u, \xi$, for a.e. x, for some $a \in L^{q'}(\Omega; \mathbb{R}^m)$, $b \in L^{p'}(\Omega; \mathbb{R}^d)$.
- b) $\xi \mapsto f(x, u, \xi)$ is convex for a.e. $x \in \Omega$.

Set

$$L^{q}(\Omega; \mathbb{R}^{m}) \times L^{p}(\Omega; \mathbb{R}^{d}) \ni (u, \xi) \mapsto L(u, \xi) := \int_{\Omega} f(x, u(x), \xi(x)) \, dx \in \mathbb{R} \cup \{\infty\}.$$

Then

$$[u_j \to u \text{ in } L^q(\Omega; \mathbb{R}^m), \, \xi_j \rightharpoonup \xi \text{ in } L^p(\Omega; \mathbb{R}^d)] \implies \underline{\lim} L(u_j, \xi_j) \ge L(u, \xi).$$

(When $p = \infty$, we may replace \rightarrow by $\stackrel{*}{\rightarrow}$.)

Useful results:

Exercise. If f is a Carathéodory function and $(u, \xi) : \Omega \to \mathbb{R}^m \times \mathbb{R}^d$ is measurable, prove that $\Omega \ni x \mapsto f(x, u(x), \xi(x))$ is measurable.

Exercise.

1. Let f be a Carathéodory function. Prove that, for each $\varepsilon, M > 0$, there exist: some $\delta = \delta(\varepsilon, M) > 0$ and some compact set $K = K(\varepsilon, M) \subset \Omega$ such that:

- i. $|\Omega \setminus K| < \varepsilon$.
- ii. $[x \in K, u, v \in \mathbb{R}^m, \xi, \eta \in \mathbb{R}^d, |u| \le M, |\xi| \le M, |u-v| \le \delta, |\xi-\eta| \le \delta] \Rightarrow |f(x, u, \xi) f(x, v, \eta)| \le \varepsilon.$

(Hint: consider only u,v,ξ,η with rational coordinates.)

- 2. Prove the *Scorza-Dragoni theorem*: f is a Carathéodory function iff for each $\varepsilon > 0$ there exists some compact set $L_{\varepsilon} \subset \Omega$ such that:
 - i. $|\Omega \setminus L_{\varepsilon}| < \varepsilon$.
 - ii. f is continuous on $L_{\varepsilon}\times \mathbb{R}^m\times \mathbb{R}^d.$

(Hint: use Lusin's theorem to find a large set $L \subset \Omega$ such that $L \ni x \mapsto f(x, u, \xi)$ is continuous when u, ξ have rational coordinates.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].

(b) Notions of convexity

A **Definition.** A continuous function $f : \mathbb{R}^{Nm} \to \mathbb{R}$ is quasi-convex if

$$|U| f(\xi) \leq \int_{U} f(\xi + D\varphi(x)) \, dx, \forall U \subset \mathbb{R}^{N} \text{ bounded open set}, \forall \xi \in \mathbb{R}^{Nm}, \forall \varphi \in C_{c}^{\infty}(U; \mathbb{R}^{m}).$$
(1)

Exercise. Prove that the f is quasi-convex iff (1) is satisfied for *one* non empty U.

Exercise. Assume that *U* is bounded and convex.

- 1. Prove that $W^{1,\infty}(U) = \operatorname{Lip}(U)$.
- 2. Prove that (1) still holds when $\varphi \in W^{1,\infty}_c(U,\mathbb{R}^m)$.
- 3. Prove that, with $(\varphi_j) \subset W^{1,\infty}(U; \mathbb{R}^m)$, $\varphi_j \stackrel{*}{\rightharpoonup} 0$ iff (φ_j) has uniformly bounded Lipschitz constants and $\varphi_j \to 0$ uniformly on U.

Lemma. (Morrey) If f is quasi-convex and $Q \subset \mathbb{R}^N$ is a cube, then

$$[(\varphi_j) \subset W^{1,\infty}(Q; \mathbb{R}^m), \, \varphi_j \stackrel{*}{\rightharpoonup} 0] \implies \underline{\lim} \int_Q f(\xi + D\varphi_j(x)) \, dx \ge |Q| \, f(\xi),$$
$$\forall \xi \in \mathbb{R}^{Nm}.$$

Useful reference: [8, Lemma 2.2].

Exercise. Prove a version of Morrey's lemma with Q replaced by a finite volume open set.

- B **Theorem.** (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on $\Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ such that:
 - a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
 - b) $0 \le f(x, u, \xi) \le a(x) + b(u, \xi)$, with $a \in L^1(\Omega)$, $b \in L^\infty_{loc}(\mathbb{R}^m \times \mathbb{R}^{Nm})$.

If
$$(u_j) \subset W^{1,\infty}(\Omega;\mathbb{R}^m)$$
 and $u_j \stackrel{*}{\rightharpoonup} u_j$, then

$$\underline{\lim} \int_{\Omega} f(x, u_j(x), Du_j(x)) \, dx \ge \int_{\Omega} f(x, u(x), Du(x)) \, dx.$$

Useful result:

Exercise. (Easy version of Lebesgue's differentiation theorem) Let $Q := (0, 1)^N$ and let $g \in L^1(Q)$. Let $\ell \ge 1$ be an integer and

$$g_{\ell}(x) := \oint_C g(y) \, dy$$
 if x belongs to the dyadic cube C of size $2^{-\ell}$.

Then, up to a subsequence $\ell_n \to \infty$, $g_\ell \to g$ a.e.

Useful references: [1, Theorem II.1], [10, Corollary, p. 13].

For the record [1, Theorem II.4]:

Theorem. (Acerbi-Fusco) Let $1 \le p < \infty$. Let f be a Carathéodory function on $\Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ such that:

- a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
- b) $0 \le f(x, u, \xi) \le a(x) + C(|u|^p + |\xi|^p)$, with $a \in L^1(\Omega)$ and C finite.

If $(u_j) \subset W^{1,p}(\Omega; \mathbb{R}^m)$ and $u_j \rightharpoonup u$, then

$$\underline{\lim} \int_{\Omega} f(x, u_j, Du_j(x)) \, dx \ge \int_{\Omega} f(x, u, Du(x)) \, dx.$$

C Theorem. (Morrey) Let $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ be continuous. If, for every open set $U \subset \Omega$,

$$\begin{split} & [u_j \stackrel{*}{\rightharpoonup} u \text{ in } W^{1,\infty}(U)] \implies \\ & \underline{\lim} \int_U f(x, u_j(x), Du_j(x)) \, dx \ge \int_U f(x, u(x), Du(x)) \, dx, \end{split}$$

then, for each $x \in \Omega$ and $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.

Useful result:

Lemma. Let $Q := (0,1)^N$ and let $\zeta \in C_c^{\infty}(Q; \mathbb{R}^m)$, extended as a smooth 1-periodic function to \mathbb{R}^m . Let $U \subset \Omega$ be relatively compact. Let $u_0 \in C(\Omega; \mathbb{R}^m)$, $\xi_0 \in C(\Omega; \mathbb{R}^{Nm})$. Set $\zeta_j(x) := 2^{-j} \zeta(2^j x)$, $\forall j \ge 1$, $\forall x \in \mathbb{R}^N$. Then

$$\lim \int_{U} f(x, u_0(x), \xi_0(x) + D\zeta_j(x)) \, dx$$

= $\int_{U} \int_{Q} f(x, u_0(x), \xi_0(x) + D\zeta(y)) \, dy \, dx$

and

$$\lim \int_{U} f(x, u_0(x) + \zeta_j(x), \xi_0(x) + D\zeta_j(x)) \, dx$$

=
$$\int_{U} \int_{Q} f(x, u_0(x), \xi_0(x) + D\zeta(y)) \, dy \, dx.$$

For the record [1, Theorem II.2]:

Theorem. (Acerbi-Fusco) Let $f : \Omega \times \mathbb{R}^m \times \mathbb{R}^{Nm}$ be a Carathéodory function such that $0 \leq f(x, u, \xi) \leq a(x) + b(u, \xi)$, $\forall x \in \Omega$, $\forall (u, \xi) \in \mathbb{R}^m \times \mathbb{R}^{Nm}$, where $a \in L^1(\Omega)$ and $b \in L^{\infty}_{loc}(\mathbb{R}^m \times \mathbb{R}^{Nm})$. If, for every open set $U \subset \Omega$,

$$\begin{split} & [u_j \stackrel{*}{\rightharpoonup} u \text{ in } W^{1,\infty}(U)] \implies \\ & \underline{\lim} \int_U f(x, u_j(x), Du_j(x)) \, dx \ge \int_U f(x, u(x), Du(x)) \, dx, \end{split}$$

then, for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^m$, $\mathbb{R}^{Nm} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.

D **Proposition.** Assume that N = 1 and let $f : \mathbb{R}^m \to \mathbb{R}$ be continuous. Then f is quasiconvex iff f is convex.

For the record:

Theorem. Assume that m = 1 (i.e., we work with scalar functions u) and let $f : \mathbb{R}^N \to \mathbb{R}$. Then f is quasi-convex iff f is convex.

Useful reference: [6, Theorem 3.1, Section 3.3.1].

E We identify \mathbb{R}^{Nm} with $M_{m,N}(\mathbb{R})$. Let $A \in M_{m,N}(\mathbb{R})$. Given $1 \le \ell \le K := \min(m, N)$, and $I = \{i_1 < i_2 < \ldots < i_\ell\} \subset \{1, \ldots, m\}$, $J = \{j_1 < j_2 < \ldots < j_\ell\} \subset \{1, \ldots, N\}$, let $A_{I,J}$ denote the minor of order ℓ of A formed with the rows i_1, \ldots, i_ℓ , respectively the columns j_1, \ldots, j_ℓ . Let M be the number of all possible minors. We order the minors as A^1, \ldots, A^M .

Definition. (Morrey, Ball) A function $f : \mathbb{R}^{Nm} \to \mathbb{R}$ is *polyconvex* if there exists some convex function $g : \mathbb{R}^M \to \mathbb{R}$ such that $f(A) = g(A^1, \ldots, A^M)$.

Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.

A useful result:

Lemma.

1. If $\Omega \subset \mathbb{R}^k$ is smooth bounded and $u, v \in C^{\infty}(\overline{\Omega}; \mathbb{R}^k)$ are such that u = v near $\partial \Omega$, then

$$\int_{\Omega} \det \left(\nabla u\right)(x) \, dx = \int_{\Omega} \det \left(\nabla v\right)(x) \, dx.$$

2. Let $U \subset \mathbb{R}^N$ be open bounded. If I, J are as above, $A \in M_{m,N}(\mathbb{R})$ and $\zeta \in C_c^{\infty}(U; \mathbb{R}^m)$, then

$$\int_U (A + D\varphi(x))_{I,J} \, dx = |U| \, A_{I,J}.$$

Useful references: [2, Section 4], [6, Section 4.1]

(c) Passing to the weak limits in nonlinear quantities

A **Theorem** (Reshetnyak) If $u^j, u \in W^{1,N}(\Omega, \mathbb{R}^N)$ and $u^j \rightharpoonup u$ in $W^{1,N}$, then

 $\det (\nabla u^j) \to \det (\nabla u) \text{ in } \mathscr{D}'(\Omega).$

Useful reference: [9]

B Definition. (Ball) Let $u = (u_1, \ldots, u_N) \in W^{1,N^2/(N+1)}(\Omega, \mathbb{R}^N)$. Then

Det $(\nabla u) := *d(u_1 du_2 \wedge \cdots \wedge du_N) \in \mathscr{D}'(\Omega).$

Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.

Exercise. If $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, prove that $Det(\nabla u) = det(\nabla u)$.

Equivalently, prove that, if $u \in W^{1,N}(\Omega, \mathbb{R}^N)$, then

$$\int_{\Omega} \det \left(\nabla u \right) \varphi = - \int_{\Omega} \det \left(\varphi, u_2, \dots, u_N \right) u_1, \forall \varphi \in C_c^{\infty}(\Omega, \mathbb{R}).$$

C **Theorem.** (Reshetnyak, Ball, Brezis-Nguyen) Let $N^2/(N+1) . Let <math>u^j, u \in W^{1,p}(\Omega, \mathbb{R}^N)$ be such that $u^j \rightharpoonup u$ in $W^{1,p}$. Then

Det $(\nabla u^j) \to \text{Det} (\nabla u)$ in $\mathscr{D}'(\Omega)$.

Useful result:

Lemma. Let $p \ge N-1$ and let $q \ge 1$ satisfy (N-1)/p + 1/q = 1. If $u, v \in C^{\infty}(\overline{\Omega}, \mathbb{R}^N)$, then

$$\left| \int_{\Omega} \left[\det \left(\nabla v \right) - \det \left(\nabla u \right) \right] \varphi \right| \le C_{N,\Omega} \| v - u \|_q \left(\| \nabla u \|_p + \| \nabla v \|_p \right)^{N-1} \| \nabla \varphi \|_{\infty},$$
$$\forall \varphi \in C_c^{\infty}(\Omega, \mathbb{R}).$$

Useful reference: [5, Theorem 1]

Exercise. When N = 2, establish the above theorem by proving the following stronger statement: if p > 4/3 and $u^j = (u_1^j, u_2^j) \rightharpoonup u = (u_1, u_2)$ in $W^{1,p}(\Omega, \mathbb{R}^2)$, then $u_1^j \nabla u_2^j \rightarrow u_1 \nabla u_2$ in $\mathscr{D}'(\Omega)$.

D For the record:

Theorem. (Edelsen, Ericksen, Ball) Let $f : \mathbb{R}^{Nm} \to \mathbb{R}$ be a continuous function such that, for some $1 \le p < \infty$,

 $[u^j \rightharpoonup u \text{ in } W^{1,p}(\Omega, \mathbb{R}^m)] \implies [f(Du^j) \rightarrow f(Du) \text{ in } \mathscr{D}'(\Omega)].$

Then f is an affine function of the minors of Du.

Similarly when $p = \infty$, for the $\stackrel{*}{\rightharpoonup}$ convergence.

Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomen

Theorem. (Maniá) Let

$$F(x) := \int_0^1 (x^3(t) - t)^2 \, x'^6(t) \, dt, \, \forall \, x \in W^{1,1}((0,1)) \text{ with } x(0) = 0 \text{ and } x(1) = 1.$$

Then we have the following Lavrentiev phenomenon

 $\inf\{F(x); x \in C^1([0,1])\} > \inf\{F(x); x \in W^{1,1}((0,1))\}.$

Useful reference: [7]

References

- [1] Emilio Acerbi and Nicola Fusco. Semicontinuity problems in the calculus of variations. *Arch. Rational Mech. Anal.*, 86(2):125–145, 1984.
- [2] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. *Arch. Rational Mech. Anal.*, 63(4):337–403, 1976/1977.
- [3] Vladimir I. Bogachev. Measure theory. Vol. I. Springer-Verlag, Berlin, 2007.
- [4] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
- [5] Haim Brezis and Hoai-Minh Nguyen. The Jacobian determinant revisited. *Invent. Math.*, 185(1):17–54, 2011.
- [6] Bernard Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer-Verlag, Berlin, 1989.
- [7] Philip D. Loewen. On the Lavrentiev phenomenon. Canad. Math. Bull., 30(1):102–108, 1987.
- [8] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. *Pacific J. Math.*, 2:25–53, 1952.

- [9] Yuriĭ G. Reshetnyak. Mappings with bounded distortion as extremals of integrals of Dirichlet type. *Sibirsk. Mat. Ž.*, 9:652–666, 1968.
- [10] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.