Lecture \# I

The direct method: a few examples

(a) Basic examples

In what follows, $\Omega \subset \mathbb{R}^{N}$ is a "smooth" bounded open set.
In items $\mathrm{A}, \mathrm{B}, \mathrm{C}, a \in C(\bar{\Omega}), a \geq 0$, and $f \in C(\bar{\Omega})$.
A The problem

$$
\begin{cases}-\Delta u+a(x) u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique weak solution $u \in H_{0}^{1}(\Omega)$.
Useful reference: [4, Corollary 3.23].
B Same for the problem

$$
\begin{cases}-\Delta u+a(x)|u|^{q-1} \operatorname{sgn} u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $1<q<\infty$.
Useful results:
Exercise. Let $1<q<\infty$. Then

$$
L^{q}(X, \mathscr{T}, \mu) \ni u \mapsto G(u):=|u|^{q-1} \operatorname{sgn} u \in L^{q /(q-1)}(X, \mathscr{T}, \mu)
$$

is continuous.
Lemma. Let $1<q<\infty$. Then

$$
L^{q}(X, \mathscr{T}, \mu) \ni u \mapsto F(u):=\int_{X}|u|^{q} d \mu
$$

is C^{1}, and

$$
F^{\prime}(u)(\varphi)=q \int_{\Omega}|u|^{q-1}(\operatorname{sgn} u) \varphi, \forall u, \varphi \in L^{q}(X, \mathscr{T}, \mu) .
$$

C The problem

$$
\begin{cases}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+a(x)|u|^{q-1} \operatorname{sgn} u=f & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

with $1<p, q<\infty$, has a unique weak solution $u \in W_{0}^{1, p}(\Omega)$.
Useful result:
Exercise. Let $1<p<\infty$. Then

$$
L^{p}\left(X, \mathscr{T}, \mu ; \mathbb{R}^{d}\right) \ni f \mapsto F(f):=\int_{X}|f|^{p} d \mu
$$

is C^{1}, and

$$
F^{\prime}(f)(g)=p \int_{\Omega}|f|^{p-2} f \cdot g, \forall f, g \in L^{p}\left(X, \mathscr{T}, \mu ; \mathbb{R}^{d}\right)
$$

D Definition. A Carathéodory function is a function $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{d}$ such that
(i) $x \mapsto f(x, u, \xi)$ is (Lebesgue) measurable, $\forall(u, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{d}$.
(ii) $(u, \xi) \mapsto f(x, u, \xi)$ is continuous, for a.e. $x \in \Omega$.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let $1 \leq p, q \leq \infty$. Let f be a Carathéodory function such that:
a) $f(x, u, \xi) \geq a(x) \cdot u+b(x) \cdot \xi, \forall u$, ξ, for a.e. x, for some $a \in L^{q^{\prime}}\left(\Omega ; \mathbb{R}^{m}\right), b \in$ $L^{p^{\prime}}\left(\Omega ; \mathbb{R}^{d}\right)$.
b) $\xi \mapsto f(x, u, \xi)$ is convex for a.e. $x \in \Omega$.

Set

$$
L^{q}\left(\Omega ; \mathbb{R}^{m}\right) \times L^{p}\left(\Omega ; \mathbb{R}^{d}\right) \ni(u, \xi) \mapsto L(u, \xi):=\int_{\Omega} f(x, u(x), \xi(x)) d x \in \mathbb{R} \cup\{\infty\}
$$

Then

$$
\left[u_{j} \rightarrow u \text { in } L^{q}\left(\Omega ; \mathbb{R}^{m}\right), \xi_{j} \rightharpoonup \xi \text { in } L^{p}\left(\Omega ; \mathbb{R}^{d}\right)\right] \Longrightarrow \underline{\lim } L\left(u_{j}, \xi_{j}\right) \geq L(u, \xi)
$$

(When $p=\infty$, we may replace \rightharpoonup by $\stackrel{*}{ }$.)
Useful results:
Exercise. If f is a Carathéodory function and $(u, \xi): \Omega \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{d}$ is measurable, prove that $\Omega \ni x \mapsto f(x, u(x), \xi(x))$ is measurable.

Exercise.

1. Let f be a Carathéodory function. Prove that, for each $\varepsilon, M>0$, there exist: some $\delta=\delta(\varepsilon, M)>0$ and some compact set $K=K(\varepsilon, M) \subset \Omega$ such that:
i. $|\Omega \backslash K|<\varepsilon$.
ii. $\left[x \in K, u, v \in \mathbb{R}^{m}, \xi, \eta \in \mathbb{R}^{d},|u| \leq M,|\xi| \leq M,|u-v| \leq \delta,|\xi-\eta| \leq \delta\right] \Rightarrow$ $|f(x, u, \xi)-f(x, v, \eta)| \leq \varepsilon$.
(Hint: consider only u, v, ξ, η with rational coordinates.)
2. Prove the Scorza-Dragoni theorem: f is a Carathéodory function iff for each $\varepsilon>0$ there exists some compact set $L_{\varepsilon} \subset \Omega$ such that:
i. $\left|\Omega \backslash L_{\varepsilon}\right|<\varepsilon$.
ii. f is continuous on $L_{\varepsilon} \times \mathbb{R}^{m} \times \mathbb{R}^{d}$.
(Hint: use Lusin's theorem to find a large set $L \subset \Omega$ such that $L \ni x \mapsto f(x, u, \xi)$ is continuous when u, ξ have rational coordinates.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].

(b) Notions of convexity

(A Definition. A continuous function $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ is quasi-convex if

$$
\begin{align*}
|U| f(\xi) \leq \int_{U} f(\xi+D \varphi(x)) d x, & \forall U \subset \mathbb{R}^{N} \text { bounded open set, } \tag{1}\\
& \forall \xi \in \mathbb{R}^{N m}, \forall \varphi \in C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right) .
\end{align*}
$$

Exercise. Prove that the f is quasi-convex iff (1) is satisfied for one non empty U.
Exercise. Assume that U is bounded and convex.

1. Prove that $W^{1, \infty}(U)=\operatorname{Lip}(U)$.
2. Prove that (1) still holds when $\varphi \in W_{c}^{1, \infty}\left(U, \mathbb{R}^{m}\right)$.
3. Prove that, with $\left(\varphi_{j}\right) \subset W^{1, \infty}\left(U ; \mathbb{R}^{m}\right), \varphi_{j} \stackrel{*}{\rightharpoonup} 0$ iff $\left(\varphi_{j}\right)$ has uniformly bounded Lipschitz constants and $\varphi_{j} \rightarrow 0$ uniformly on U.

Lemma. (Morrey) If f is quasi-convex and $Q \subset \mathbb{R}^{N}$ is a cube, then

$$
\begin{array}{r}
{\left[\left(\varphi_{j}\right) \subset W^{1, \infty}\left(Q ; \mathbb{R}^{m}\right), \varphi_{j} \stackrel{*}{\stackrel{ }{v}} 0\right] \Longrightarrow \underline{\lim } \int_{Q} f\left(\xi+D \varphi_{j}(x)\right) d x \geq|Q| f(\xi)} \\
\forall \xi \in \mathbb{R}^{N m}
\end{array}
$$

Useful reference: [8, Lemma 2.2].
Exercise. Prove a version of Morrey's lemma with Q replaced by a finite volume open set.
B Theorem. (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on $\Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ such that:
a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
b) $0 \leq f(x, u, \xi) \leq a(x)+b(u, \xi)$, with $a \in L^{1}(\Omega), b \in L_{l o c}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}^{N m}\right)$.

If $\left(u_{j}\right) \subset W^{1, \infty}\left(\Omega ; \mathbb{R}^{m}\right)$ and $u_{j} \stackrel{*}{\rightharpoonup} u$, then

$$
\underline{\lim } \int_{\Omega} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{\Omega} f(x, u(x), D u(x)) d x .
$$

Useful result:
Exercise. (Easy version of Lebesgue's differentiation theorem) Let $Q:=(0,1)^{N}$ and let $g \in L^{1}(Q)$. Let $\ell \geq 1$ be an integer and

$$
g_{\ell}(x):=f_{C} g(y) d y \text { if } x \text { belongs to the dyadic cube } C \text { of size } 2^{-\ell} .
$$

Then, up to a subsequence $\ell_{n} \rightarrow \infty, g_{\ell} \rightarrow g$ a.e.
Useful references: [1, Theorem II.1], [10, Corollary, p. 13].
For the record [1, Theorem II.4]:
Theorem. (Acerbi-Fusco) Let $1 \leq p<\infty$. Let f be a Carathéodory function on $\Omega \times \mathbb{R}^{m} \times$ $\mathbb{R}^{N m}$ such that:
a) for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
b) $0 \leq f(x, u, \xi) \leq a(x)+C\left(|u|^{p}+|\xi|^{p}\right)$, with $a \in L^{1}(\Omega)$ and C finite.

If $\left(u_{j}\right) \subset W^{1, p}\left(\Omega ; \mathbb{R}^{m}\right)$ and $u_{j} \rightharpoonup u$, then

$$
\underline{\lim } \int_{\Omega} f\left(x, u_{j}, D u_{j}(x)\right) d x \geq \int_{\Omega} f(x, u, D u(x)) d x .
$$

C Theorem. (Morrey) Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ be continuous. If, for every open set $U \subset \Omega$,

$$
\begin{aligned}
& {\left[u_{j} \stackrel{*}{\rightharpoonup} u \text { in } W^{1, \infty}(U)\right] \Longrightarrow} \\
& \underline{\lim } \int_{U} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{U} f(x, u(x), D u(x)) d x,
\end{aligned}
$$

then, for each $x \in \Omega$ and $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
Useful result:
Lemma. Let $Q:=(0,1)^{N}$ and let $\zeta \in C_{c}^{\infty}\left(Q ; \mathbb{R}^{m}\right)$, extended as a smooth 1-periodic function to \mathbb{R}^{m}. Let $U \subset \Omega$ be relatively compact. Let $u_{0} \in C\left(\Omega ; \mathbb{R}^{m}\right)$, $\xi_{0} \in C\left(\Omega ; \mathbb{R}^{N m}\right)$. Set $\zeta_{j}(x):=2^{-j} \zeta\left(2^{j} x\right), \forall j \geq 1, \forall x \in \mathbb{R}^{N}$. Then

$$
\begin{aligned}
& \lim \quad \int_{U} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta_{j}(x)\right) d x \\
& \quad=\int_{U} \int_{Q} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta(y)\right) d y d x
\end{aligned}
$$

and

$$
\begin{aligned}
& \lim \int_{U} f\left(x, u_{0}(x)+\zeta_{j}(x), \xi_{0}(x)+D \zeta_{j}(x)\right) d x \\
& \quad=\int_{U} \int_{Q} f\left(x, u_{0}(x), \xi_{0}(x)+D \zeta(y)\right) d y d x
\end{aligned}
$$

For the record [1, Theorem II.2]:
Theorem. (Acerbi-Fusco) Let $f: \Omega \times \mathbb{R}^{m} \times \mathbb{R}^{N m}$ be a Carathéodory function such that $0 \leq f(x, u, \xi) \leq a(x)+b(u, \xi), \forall x \in \Omega, \forall(u, \xi) \in \mathbb{R}^{m} \times \mathbb{R}^{N m}$, where $a \in L^{1}(\Omega)$ and $b \in L_{l o c}^{\infty}\left(\mathbb{R}^{m} \times \mathbb{R}^{N m}\right)$. If, for every open set $U \subset \Omega$,

$$
\begin{aligned}
& {\left[u_{j} \stackrel{*}{\rightharpoonup} u \text { in } W^{1, \infty}(U)\right] \Longrightarrow} \\
& \underline{\lim } \int_{U} f\left(x, u_{j}(x), D u_{j}(x)\right) d x \geq \int_{U} f(x, u(x), D u(x)) d x
\end{aligned}
$$

then, for a.e. $x \in \Omega$ and each $u \in \mathbb{R}^{m}, \mathbb{R}^{N m} \ni \xi \mapsto f(x, u, \xi)$ is quasi-convex.
D Proposition. Assume that $N=1$ and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be continuous. Then f is quasiconvex iff f is convex.

For the record:
Theorem. Assume that $m=1$ (i.e., we work with scalar functions u) and let $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. Then f is quasi-convex iff f is convex.

Useful reference: [6, Theorem 3.1, Section 3.3.1].
E We identify $\mathbb{R}^{N m}$ with $M_{m, N}(\mathbb{R})$. Let $A \in M_{m, N}(\mathbb{R})$. Given $1 \leq \ell \leq K:=\min (m, N)$, and $I=\left\{i_{1}<i_{2}<\ldots<i_{\ell}\right\} \subset\{1, \ldots, m\}, J=\left\{j_{1}<j_{2}<\ldots<j_{\ell}\right\} \subset\{1, \ldots, N\}$, let $A_{I, J}$ denote the minor of order ℓ of A formed with the rows i_{1}, \ldots, i_{ℓ}, respectively the columns j_{1}, \ldots, j_{ℓ}. Let M be the number of all possible minors. We order the minors as A^{1}, \ldots, A^{M}.

Definition. (Morrey, Ball) A function $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ is polyconvex if there exists some convex function $g: \mathbb{R}^{M} \rightarrow \mathbb{R}$ such that $f(A)=g\left(A^{1}, \ldots, A^{M}\right)$.
Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.
A useful result:

Lemma.

1. If $\Omega \subset \mathbb{R}^{k}$ is smooth bounded and $u, v \in C^{\infty}\left(\bar{\Omega} ; \mathbb{R}^{k}\right)$ are such that $u=v$ near $\partial \Omega$, then

$$
\int_{\Omega} \operatorname{det}(\nabla u)(x) d x=\int_{\Omega} \operatorname{det}(\nabla v)(x) d x \text {. }
$$

2. Let $U \subset \mathbb{R}^{N}$ be open bounded. If I, J are as above, $A \in M_{m, N}(\mathbb{R})$ and $\zeta \in C_{c}^{\infty}\left(U ; \mathbb{R}^{m}\right)$, then

$$
\int_{U}(A+D \varphi(x))_{I, J} d x=|U| A_{I, J} .
$$

Useful references: [2, Section 4], [6, Section 4.1]
(c) Passing to the weak limits in nonlinear quantities

A Theorem (Reshetnyak) If $u^{j}, u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$ and $u^{j} \rightharpoonup u$ in $W^{1, N}$, then $\operatorname{det}\left(\nabla u^{j}\right) \rightarrow \operatorname{det}(\nabla u)$ in $\mathscr{D}^{\prime}(\Omega)$.

Useful reference: [9]
B Definition. (Ball) Let $u=\left(u_{1}, \ldots, u_{N}\right) \in W^{1, N^{2} /(N+1)}\left(\Omega, \mathbb{R}^{N}\right)$. Then
$\operatorname{Det}(\nabla u):=* d\left(u_{1} d u_{2} \wedge \cdots \wedge d u_{N}\right) \in \mathscr{D}^{\prime}(\Omega)$.
Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.
Exercise. If $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$, prove that $\operatorname{Det}(\nabla u)=\operatorname{det}(\nabla u)$.
Equivalently, prove that, if $u \in W^{1, N}\left(\Omega, \mathbb{R}^{N}\right)$, then

$$
\int_{\Omega} \operatorname{det}(\nabla u) \varphi=-\int_{\Omega} \operatorname{det}\left(\varphi, u_{2}, \ldots, u_{N}\right) u_{1}, \forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R})
$$

C Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let $N^{2} /(N+1)<p \leq N$. Let $u^{j}, u \in$ $W^{1, p}\left(\Omega, \mathbb{R}^{N}\right)$ be such that $u^{j} \rightharpoonup u$ in $W^{1, p}$. Then
$\operatorname{Det}\left(\nabla u^{j}\right) \rightarrow \operatorname{Det}(\nabla u)$ in $\mathscr{D}^{\prime}(\Omega)$.

Useful result:
Lemma. Let $p \geq N-1$ and let $q \geq 1$ satisfy $(N-1) / p+1 / q=1$. If $u, v \in C^{\infty}\left(\bar{\Omega}, \mathbb{R}^{N}\right)$, then

$$
\begin{array}{r}
\left|\int_{\Omega}[\operatorname{det}(\nabla v)-\operatorname{det}(\nabla u)] \varphi\right| \leq C_{N, \Omega}\|v-u\|_{q}\left(\|\nabla u\|_{p}+\|\nabla v\|_{p}\right)^{N-1}\|\nabla \varphi\|_{\infty} \\
\forall \varphi \in C_{c}^{\infty}(\Omega, \mathbb{R}) .
\end{array}
$$

Useful reference: [5, Theorem 1]
Exercise. When $N=2$, establish the above theorem by proving the following stronger statement: if $p>4 / 3$ and $u^{j}=\left(u_{1}^{j}, u_{2}^{j}\right) \rightharpoonup u=\left(u_{1}, u_{2}\right)$ in $W^{1, p}\left(\Omega, \mathbb{R}^{2}\right)$, then $u_{1}^{j} \nabla u_{2}^{j} \rightarrow$ $u_{1} \nabla u_{2}$ in $\mathscr{D}^{\prime}(\Omega)$.

D For the record:
Theorem. (Edelsen, Ericksen, Ball) Let $f: \mathbb{R}^{N m} \rightarrow \mathbb{R}$ be a continuous function such that, for some $1 \leq p<\infty$,

$$
\left[u^{j} \rightharpoonup u \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{m}\right)\right] \Longrightarrow\left[f\left(D u^{j}\right) \rightarrow f(D u) \text { in } \mathscr{D}^{\prime}(\Omega)\right] .
$$

Then f is an affine function of the minors of $D u$.
Similarly when $p=\infty$, for the $\stackrel{*}{\rightharpoonup}$ convergence.
Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomen

Theorem. (Maniá) Let

$$
F(x):=\int_{0}^{1}\left(x^{3}(t)-t\right)^{2} x^{\prime 6}(t) d t, \forall x \in W^{1,1}((0,1)) \text { with } x(0)=0 \text { and } x(1)=1 .
$$

Then we have the following Lavrentiev phenomenon

$$
\inf \left\{F(x) ; x \in C^{1}([0,1])\right\}>\inf \left\{F(x) ; x \in W^{1,1}((0,1))\right\}
$$

Useful reference: [7]

References

[1] Emilio Acerbi and Nicola Fusco. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal., 86(2):125-145, 1984.
[2] John M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4):337-403, 1976/1977.
[3] Vladimir I. Bogachev. Measure theory. Vol. I. Springer-Verlag, Berlin, 2007.
[4] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
[5] Haim Brezis and Hoai-Minh Nguyen. The Jacobian determinant revisited. Invent. Math., 185(1):17-54, 2011.
[6] Bernard Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer-Verlag, Berlin, 1989.
[7] Philip D. Loewen. On the Lavrentiev phenomenon. Canad. Math. Bull., 30(1):102-108, 1987.
[8] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25-53, 1952.
[9] Yuriĭ G. Reshetnyak. Mappings with bounded distortion as extremals of integrals of Dirichlet type. Sibirsk. Mat. Z̈., 9:652-666, 1968.
[10] Elias M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III.

