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Lecture # 1
The direct method: a few examples

(a) Basic examples

In what follows, Ω ⊂ RN is a “smooth” bounded open set.
In items A , B , C , a ∈ C(Ω), a ≥ 0, and f ∈ C(Ω).

A The problem{
−∆u+ a(x)u = f in Ω

u = 0 on ∂Ω

has a unique weak solution u ∈ H1
0 (Ω).

Useful reference: [4, Corollary 3.23].

B Same for the problem{
−∆u+ a(x)|u|q−1 sgnu = f in Ω

u = 0 on ∂Ω
,

with 1 < q <∞.

Useful results:

Exercise. Let 1 < q <∞. Then

Lq(X,T , µ) 3 u 7→ G(u) := |u|q−1 sgnu ∈ Lq/(q−1)(X,T , µ)

is continuous.

Lemma. Let 1 < q <∞. Then

Lq(X,T , µ) 3 u 7→ F (u) :=

ˆ
X

|u|q dµ

isC1, and

F ′(u)(ϕ) = q

ˆ
Ω

|u|q−1 (sgnu)ϕ, ∀u, ϕ ∈ Lq(X,T , µ).
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C The problem{
− div (|∇u|p−2∇u) + a(x)|u|q−1 sgnu = f in Ω

u = 0 on ∂Ω
,

with 1 < p, q <∞, has a unique weak solution u ∈ W 1,p
0 (Ω).

Useful result:

Exercise. Let 1 < p <∞. Then

Lp(X,T , µ;Rd) 3 f 7→ F (f) :=

ˆ
X

|f |p dµ

isC1, and

F ′(f)(g) = p

ˆ
Ω

|f |p−2 f · g, ∀ f, g ∈ Lp(X,T , µ;Rd).

D Definition. A Carathéodory function is a function f : Ω× Rm × Rd such that

(i) x 7→ f(x, u, ξ) is (Lebesgue) measurable, ∀ (u, ξ) ∈ Rm × Rd.

(ii) (u, ξ) 7→ f(x, u, ξ) is continuous, for a.e. x ∈ Ω.

Theorem. (Tonelli, Mac Shane, Morrey, ...) Let 1 ≤ p, q ≤ ∞. Let f be a Carathéodory
function such that:

a) f(x, u, ξ) ≥ a(x) · u + b(x) · ξ, ∀u, ξ, for a.e. x, for some a ∈ Lq′(Ω;Rm), b ∈
Lp′(Ω;Rd).

b) ξ 7→ f(x, u, ξ) is convex for a.e. x ∈ Ω.

Set

Lq(Ω;Rm)×Lp(Ω;Rd) 3 (u, ξ) 7→ L(u, ξ) :=

ˆ
Ω

f(x, u(x), ξ(x)) dx ∈ R∪ {∞}.

Then

[uj → u in Lq(Ω;Rm), ξj ⇀ ξ in Lp(Ω;Rd)] =⇒ limL(uj, ξj) ≥ L(u, ξ).

(When p =∞, we may replace⇀ by ∗
⇀.)

Useful results:

Exercise. If f is a Carathéodory function and (u, ξ) : Ω→ Rm×Rd is measurable, prove
that Ω 3 x 7→ f(x, u(x), ξ(x)) is measurable.

Exercise.

1. Let f be a Carathéodory function. Prove that, for each ε,M > 0, there exist: some
δ = δ(ε,M) > 0 and some compact setK = K(ε,M) ⊂ Ω such that:
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i. |Ω \K| < ε.
ii. [x ∈ K, u, v ∈ Rm, ξ, η ∈ Rd, |u| ≤ M, |ξ| ≤ M, |u − v| ≤ δ, |ξ − η| ≤ δ]⇒
|f(x, u, ξ)− f(x, v, η)| ≤ ε.

(Hint: consider only u, v, ξ, η with rational coordinates.)

2. Prove the Scorza-Dragoni theorem: f is a Carathéodory function iff for each ε > 0 there
exists some compact set Lε ⊂ Ω such that:

i. |Ω \ Lε| < ε.
ii. f is continuous on Lε × Rm × Rd.

(Hint: use Lusin’s theorem to find a large set L ⊂ Ω such that L 3 x 7→ f(x, u, ξ) is
continuous when u, ξ have rational coordinates.)

Useful references: [6, Theorem 3.4, Section 3.3.1], [4, Corollary 3.9], [3, Theorem 2.2.10].

(b) Notions of convexity

A Definition. A continuous function f : RNm → R is quasi-convex if

|U | f(ξ) ≤
ˆ
U

f(ξ +Dϕ(x)) dx, ∀U ⊂ RN bounded open set,

∀ ξ ∈ RNm, ∀ϕ ∈ C∞c (U ;Rm).

(1)

Exercise. Prove that the f is quasi-convex iff (1) is satisfied for one non empty U .

Exercise. Assume that U is bounded and convex.

1. Prove thatW 1,∞(U) = Lip (U).

2. Prove that (1) still holds when ϕ ∈ W 1,∞
c (U,Rm).

3. Prove that, with (ϕj) ⊂ W 1,∞(U ;Rm), ϕj
∗
⇀ 0 iff (ϕj) has uniformly bounded Lips-

chitz constants and ϕj → 0 uniformly on U .

Lemma. (Morrey) If f is quasi-convex andQ ⊂ RN is a cube, then

[(ϕj) ⊂ W 1,∞(Q;Rm), ϕj
∗
⇀ 0] =⇒ lim

ˆ
Q

f(ξ +Dϕj(x)) dx ≥ |Q| f(ξ),

∀ ξ ∈ RNm.

Useful reference: [8, Lemma 2.2].

Exercise. Prove a version of Morrey’s lemma withQ replaced by a finite volume open set.

B Theorem. (Morrey, ..., Acerbi-Fusco) Let f be a Carathéodory function on Ω×Rm×RNm

such that:

a) for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

b) 0 ≤ f(x, u, ξ) ≤ a(x) + b(u, ξ), with a ∈ L1(Ω), b ∈ L∞loc(Rm × RNm).
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If (uj) ⊂ W 1,∞(Ω;Rm) and uj
∗
⇀ u, then

lim

ˆ
Ω

f(x, uj(x), Duj(x)) dx ≥
ˆ

Ω

f(x, u(x), Du(x)) dx.

Useful result:

Exercise. (Easy version of Lebesgue’s differentiation theorem) Let Q := (0, 1)N and let
g ∈ L1(Q). Let ` ≥ 1 be an integer and

g`(x) :=

 
C

g(y) dy if x belongs to the dyadic cubeC of size 2−`.

Then, up to a subsequence `n →∞, g` → g a.e.

Useful references: [1, Theorem II.1], [10, Corollary, p. 13].

For the record [1, Theorem II.4]:

Theorem. (Acerbi-Fusco) Let 1 ≤ p <∞. Let f be a Carathéodory function on Ω×Rm×
RNm such that:

a) for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

b) 0 ≤ f(x, u, ξ) ≤ a(x) + C(|u|p + |ξ|p), with a ∈ L1(Ω) andC finite.

If (uj) ⊂ W 1,p(Ω;Rm) and uj⇀u, then

lim

ˆ
Ω

f(x, uj, Duj(x)) dx ≥
ˆ

Ω

f(x, u,Du(x)) dx.

C Theorem. (Morrey) Let f : Ω×Rm ×RNm be continuous. If, for every open setU ⊂ Ω,

[uj
∗
⇀ u inW 1,∞(U)] =⇒

lim

ˆ
U

f(x, uj(x), Duj(x)) dx ≥
ˆ
U

f(x, u(x), Du(x)) dx,

then, for each x ∈ Ω and u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

Useful result:

Lemma. Let Q := (0, 1)N and let ζ ∈ C∞c (Q;Rm), extended as a smooth 1-periodic
function to Rm. Let U ⊂ Ω be relatively compact. Let u0 ∈ C(Ω;Rm), ξ0 ∈ C(Ω;RNm).

Set ζj(x) := 2−jζ(2jx), ∀ j ≥ 1, ∀x ∈ RN . Then

lim

ˆ
U

f(x, u0(x), ξ0(x) +Dζj(x)) dx

=

ˆ
U

ˆ
Q

f(x, u0(x), ξ0(x) +Dζ(y)) dydx
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and

lim

ˆ
U

f(x, u0(x) + ζj(x), ξ0(x) +Dζj(x)) dx

=

ˆ
U

ˆ
Q

f(x, u0(x), ξ0(x) +Dζ(y)) dydx.

For the record [1, Theorem II.2]:

Theorem. (Acerbi-Fusco) Let f : Ω × Rm × RNm be a Carathéodory function such that
0 ≤ f(x, u, ξ) ≤ a(x) + b(u, ξ), ∀x ∈ Ω, ∀ (u, ξ) ∈ Rm × RNm, where a ∈ L1(Ω) and
b ∈ L∞loc(Rm × RNm). If, for every open set U ⊂ Ω,

[uj
∗
⇀ u inW 1,∞(U)] =⇒

lim

ˆ
U

f(x, uj(x), Duj(x)) dx ≥
ˆ
U

f(x, u(x), Du(x)) dx,

then, for a.e. x ∈ Ω and each u ∈ Rm, RNm 3 ξ 7→ f(x, u, ξ) is quasi-convex.

D Proposition. Assume that N = 1 and let f : Rm → R be continuous. Then f is quasi-
convex iff f is convex.

For the record:

Theorem. Assume thatm = 1 (i.e., we work with scalar functionsu) and let f : RN → R.
Then f is quasi-convex iff f is convex.

Useful reference: [6, Theorem 3.1, Section 3.3.1].

E We identify RNm with Mm,N(R). Let A ∈ Mm,N(R). Given 1 ≤ ` ≤ K := min(m,N),
and I = {i1 < i2 < . . . < i`} ⊂ {1, . . . ,m}, J = {j1 < j2 < . . . < j`} ⊂ {1, . . . , N},
letAI,J denote the minor of order ` ofA formed with the rows i1, . . . , i`, respectively the
columns j1, . . . , j`. LetM be the number of all possible minors. We order the minors as
A1, . . . , AM .

Definition. (Morrey, Ball) A function f : RNm → R is polyconvex if there exists some
convex function g : RM → R such that f(A) = g(A1, . . . , AM).

Proposition. (Morrey, Ball) A polyconvex function is quasi-convex.

A useful result:

Lemma.

1. If Ω ⊂ Rk is smooth bounded and u, v ∈ C∞(Ω;Rk) are such that u = v near ∂Ω,
then ˆ

Ω

det (∇u)(x) dx =

ˆ
Ω

det (∇v)(x) dx.
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2. LetU ⊂ RN be open bounded. If I, J are as above,A ∈Mm,N(R) and ζ ∈ C∞c (U ;Rm),
then ˆ

U

(A+Dϕ(x))I,J dx = |U |AI,J .

Useful references: [2, Section 4], [6, Section 4.1]

(c) Passing to the weak limits in nonlinear quantities

A Theorem (Reshetnyak) If uj, u ∈ W 1,N(Ω,RN) and uj ⇀ u inW 1,N , then

det (∇uj)→ det (∇u) in D ′(Ω).

Useful reference: [9]

B Definition. (Ball) Let u = (u1, . . . , uN) ∈ W 1,N2/(N+1)(Ω,RN). Then

Det (∇u) := ∗d(u1du2 ∧ · · · ∧ duN) ∈ D ′(Ω).

Exercise. Using the Sobolev embeddings, prove that the above definition makes sense.

Exercise. If u ∈ W 1,N(Ω,RN), prove that Det (∇u) = det (∇u).

Equivalently, prove that, if u ∈ W 1,N(Ω,RN), then
ˆ

Ω

det (∇u)ϕ = −
ˆ

Ω

det (ϕ, u2, . . . , uN)u1,∀ϕ ∈ C∞c (Ω,R).

C Theorem. (Reshetnyak, Ball, Brezis-Nguyen) Let N2/(N + 1) < p ≤ N . Let uj, u ∈
W 1,p(Ω,RN) be such that uj ⇀ u inW 1,p. Then

Det (∇uj)→ Det (∇u) in D ′(Ω).

Useful result:

Lemma. Let p ≥ N − 1 and let q ≥ 1 satisfy (N − 1)/p+ 1/q = 1. If u, v ∈ C∞(Ω,RN),
then ∣∣∣∣ˆ

Ω

[det (∇v)− det (∇u)]ϕ

∣∣∣∣ ≤ CN,Ω||v − u||q (||∇u||p + ||∇v||p)
N−1||∇ϕ||∞,

∀ϕ ∈ C∞c (Ω,R).

Useful reference: [5, Theorem 1]

Exercise. When N = 2, establish the above theorem by proving the following stronger
statement: if p > 4/3 and uj = (uj1, u

j
2) ⇀ u = (u1, u2) inW 1,p(Ω,R2), then uj1∇u

j
2 →

u1∇u2 in D ′(Ω).
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D For the record:

Theorem. (Edelsen, Ericksen, Ball) Let f : RNm → R be a continuous function such
that, for some 1 ≤ p <∞,

[uj ⇀ u inW 1,p(Ω,Rm)] =⇒ [f(Duj)→ f(Du) in D ′(Ω)].

Then f is an affine function of the minors ofDu.

Similarly when p =∞, for the ∗
⇀ convergence.

Useful reference: [6, Theorem 1.5 in Section 4.1.2, and Section 4.2.2].

E Gap (or Lavrentiev) phenomen

Theorem. (Maniá) Let

F (x) :=

ˆ 1

0

(x3(t)− t)2 x′6(t) dt, ∀x ∈ W 1,1((0, 1)) with x(0) = 0 and x(1) = 1.

Then we have the following Lavrentiev phenomenon

inf{F (x); x ∈ C1([0, 1])} > inf{F (x); x ∈ W 1,1((0, 1))}.

Useful reference: [7]
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