(2)

Lecture # 2 Maximum principles and applications

(a) Basic maximum principles for positive elliptic operators

Here, we work in a bounded domain $\Omega \subset \mathbb{R}^N$ (domain=connected open set), and consider functions $c, u : \Omega \to \mathbb{R}$ such that $u \in C^2(\Omega)$ and

$$Lu := -\Delta u + c \, u \le 0 \text{ in } \Omega,\tag{1}$$

 $c \ge 0$ in Ω and c is bounded.

The non-negativity condition in (2) will be removed later, under additional assumptions on u and/or Ω .

General references for this section: [5, Sections 3.1–3.3], [6, Sections 2.2–2.3]

A **Exercise.** Let $A = (a_{ij})_{1 \le i,j \le N}$ satisfy the (weak) ellipticity condition

$$\sum_{1 \le i,j \le N} a_{ij} \xi_i \xi_j \ge 0, \, \forall \, \xi = (\xi_1, \dots, \xi_N) \in \mathbb{R}^N.$$

Let $B = (b_{ij})_{1 \le i,j \le N}$ be a positive (symmetric) matrix. Then $\sum_{1 \le i,j \le N} a_{ij} b_{ij} \ge 0$.

Use the above exercise to undertake the following

General exercise. Extend the results in this section to more general operators of the form

$$Lu = -\sum_{1 \le i,j \le N} a_{ij} \partial_{ij} u + \sum_{1 \le j \le N} b_j \partial_j u + cu,$$

with $b_j = b_j(x)$, $\forall j, c = c(x) \ge 0$ (possibly b_j bounded), $(a_{ij})_{1 \le i,j \le N}$ weakly elliptic, or possibly satisfying the uniform ellipticity condition

$$\lambda \, |\xi|^2 \le \sum_{1 \le i,j \le N} a_{ij}(x) \, \xi_i \xi_j \le \Lambda \, |\xi|^2, \, \forall \, \xi \in \mathbb{R}^N, \, \forall \, x \in \Omega,$$

where $0 < \lambda \leq \Lambda < \infty$.

- **B** (Basic lemma; no sign or boundedness condition on *c*) If Lu < 0 and if *u* has a local maximum point $x_0 \in \Omega$, then $c(x_0) u(x_0) < 0$.
- $\fbox{C} \mbox{ (Weak maximum principle; no boundedness condition on c) If } u \in C(\overline{\Omega}), \mbox{ then } u(x) \leq \sup_{\partial \Omega} u^+, \forall x \in \Omega.$

D (Hopf lemma) If:

- (a) Ω is a ball
- (b) $x_0 \in \partial \Omega$
- (c) $u \in C^1(\overline{\Omega})$
- (d) $u(x) < u(x_0), \forall x \in \Omega$
- (e) $u(x_0) \ge 0$,

then $\frac{\partial u}{\partial \nu}(x_0) > 0$, where ν is the outward unit normal at Ω at x_0 .

In the above and in all the versions below of the Hopf lemma, we may replace the assumption $u \in C^1(\overline{\Omega})$ by the continuity of u at x_0 and the existence of $\frac{\partial u}{\partial \nu}(x_0)$. We may also require boundedness of c only near x_0 .

- E (Strong maximum principle) If $u \in C(\overline{\Omega})$ and u has an interior maximum point x_0 such that $u(x_0) \ge 0$, then u is constant.
- F (Comparison principle) If $u \in C(\overline{\Omega})$ and $u \leq 0$ on $\partial\Omega$, then either u = 0 in Ω , or u < 0 in Ω .
- G (Hopf boundary lemma)
 - a) Assume that Ω is of class C^2 . If $u \in C^1(\overline{\Omega})$, u is non constant, and $x_0 \in \partial \Omega$ is a boundary maximum point of u such that $u(x_0) \ge 0$, then $\frac{\partial u}{\partial \nu}(x_0) > 0$, where ν is the outward unit normal to Ω at x_0 .
 - b) In particular, if $u \in C^1(\overline{\Omega})$, u is non constant, and u = 0 on $\partial\Omega$, then $\frac{\partial u}{\partial\nu}(x_0) > 0$ at each point $x_0 \in \partial\Omega$.
 - c) If we don't assume Ω of class C^2 , then the above conclusions hold at each point $x_0 \in \partial \Omega$ such that there exists an open ball $B \subset \Omega$ with $\overline{B} \cap \partial \Omega = \{x_0\}$.

Useful result:

Exercise. Let Ω be a C^2 domain. (Or even a $C^{1,1}$ domain.) Then Ω satisfies the *interior ball condition* and the *exterior ball condition*: for every $x_0 \in \partial \Omega$, there exist open balls B and C such that: $B \subset \Omega, C \subset \mathbb{R}^N \setminus \overline{\Omega}, \overline{B} \cap \partial \Omega = \{x_0\}, \overline{C} \cap \partial \Omega = \{x_0\}$. In addition, we may choose balls of same radius.

Useful reference: [7, Lemma 2.31]

(b) Maximum principles for elliptic operators

Here, we don't have any sign assumption on c, but we still assume that $-\Delta u + c u \le 0$ in Ω . General references for this section: [5, Section 9.1], [6, Section 2.5]

A (Serrin's maximum principle) If $u \leq 0$ in Ω , then either u = 0 in Ω , or u < 0 in Ω .

- <u>B</u> (Maximum principle in narrow domains) Assume that $c \ge -M$ for some $M \ge 0$. Then there exists some $\delta > 0$ and C > 0 depending only on M such that, if Ω is contained in a strip of width $\le \delta$ and $u \in C(\overline{\Omega})$, then $u(x) \le C \sup_{\Omega} u^+$, $\forall x \in \Omega$.
- $[\underline{C}]$ (Hopf boundary lemma) Let $u \in C^1(\overline{\Omega})$ satisfy $u \leq 0$ on $\partial\Omega$ and u < 0 in Ω . Then, at each point $x_0 \in \partial\Omega$ such that $u(x_0) = 0$ and there exists an open ball $B \subset \Omega$ with $\overline{B} \cap \partial\Omega = \{x_0\}$, we have $\frac{\partial u}{\partial u}(x_0) > 0$.
- D (Supercritical maximum principle) Let N . Assume that:
 - (a) $c \ge 0$
 - (b) $u \in C(\overline{\Omega})$
 - (c) $-\Delta u + c u \leq f$, with $f \in L^p(\Omega, \mathbb{R}_+)$.

If $d := \operatorname{diam}(\Omega)$, then

$$u(x) \le \sup_{\partial \Omega} u^{+} + C_{p,N} d^{2-p/N} \|f\|_{p}.$$
(3)

- [E] (Varadhan's maximum principle; maximum principle in small domains) Fix two numbers $M \ge 0$, D > 0. Then there exists some $\delta = \delta(M, D) > 0$ such that: if $c \ge -M$, diam $(\Omega) \le D$, $|\Omega| < \delta$, then: for every non constant $u \in C(\overline{\Omega})$ such that $-\Delta u + c u \le 0$ in Ω and $u \le 0$ on $\partial\Omega$, we have u < 0 in Ω .
- **F Exercise** (Alexandroff's maximum principle) With the notation in item D, we assume this time that $f \in L^N(\Omega, \mathbb{R}_+)$. Prove the estimate

$$u(x) \le \sup_{\partial \Omega} u^+ + C_N d \, \|f\|_N,\tag{4}$$

which formally corresponds to p = N in (3), following these lines:

(a) Let $M \subset \Omega$ be a Borel set. Prove that

$$\int_{M} |\det (D^{2}u)(x)| \, dx \ge |Du(M)|.$$

Hint: use the area formula/Banach indicatrix formula. [4, Section 3.4.3, Theorem 2], [8, Exercices de synthèse et avancés, Exercice 28].

(b) Let

$$M := \{ x \in \Omega; \, u(x) \ge \sup_{\partial \Omega} u_+ \text{ and } u(y) \le u(x) + Du(x) \cdot (y - x), \, \forall \, y \in \Omega \}.$$

Prove that, at each $x \in M$:

- i. $D^2u(x)$ is non-positive
- ii. $|\det(D^2u)(x)| \le \left(\frac{-\Delta u(x)}{N}\right)^N \le \left(\frac{f(x)}{N}\right)^N.$

(c) Prove that, if $a \in \mathbb{R}^N$ is such that

$$|a| < \frac{\sup_{\Omega} u - \sup_{\partial \Omega} u_+}{d},$$

then $a \in Du(M)$. Hint: prove that $\overline{\Omega} \ni x \mapsto u(x) - a \cdot x$ achieves its maximum in Ω .

(d) Derive (4).

G (Stampacchia's maximum principle) Here, Ω is of class C^1 (Lipschitz would suffice). If:

- (a) $c = c(x) > -\lambda_1(\Omega)$ for a.e. $x \in \Omega$, with $\lambda_1(\Omega)$ the least eigenvalue of $-\Delta$ in $H_0^1(\Omega)$
- (b) c is bounded from above
- (c) $u \in H^1(\Omega)$ satisfies $-\Delta u + c u \ge 0$ in Ω and $u \ge 0$ on $\partial \Omega$,

then $u \ge 0$ in Ω .

Here, the meaning of $-\Delta u + c u \ge 0$ is

$$\int_{\Omega} \nabla u \cdot \nabla \varphi + \int_{\Omega} c \, u \, \varphi \ge 0, \, \forall \, \varphi \in C_c^{\infty}(\Omega, \mathbb{R}_+).$$

Useful results: the *de la Vallée Poussin chain rule* and its consequences [7, Theorem 3.16, Corollary 3.17, Lemma 3.20], and basic trace theory [7, Section 1.5], [2, Theorem 9.17]

(c) Moving planes

General references: [6, Section 2.6], [1]

A Theorem. (Gidas-Ni-Nirenberg) Let Ω be a convex bounded domain, symmetric with respect to the hyperplane $\{x_1 = 0\}$. If $f \in \operatorname{Lip}_{loc}(\mathbb{R}, \mathbb{R})$ and if $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfies

$$\begin{cases} -\Delta u + f(u) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega , \\ u > 0 & \text{in } \Omega \end{cases}$$
(5)

then:

- (a) $u(-x_1, x_2, ..., x_N) = u(x_1, ..., x_N), \forall x = (x_1, ..., x_N) \in \Omega$
- (b) $\partial_1 u < 0$ in the set $\{x \in \Omega; x_1 > 0\}$.
- **B Theorem.** (Gidas-Ni-Nirenberg) Let $\Omega = B_R(0)$, and f and u as above. Then there exists some $g \in C^2([0, R]) \cap C([0, R])$ such that:
 - (a) $u(x) = g(|x|), \forall x \in \overline{\Omega}$
 - (b) $g'(r) < 0, \forall 0 < r < R$.

(d) Sub- and supersolutions

General reference: [3, Section 9.3] We consider the problem

$$\begin{aligned} -\Delta u &= f(x, u) & \text{in } \Omega \\ u &= 0 & \text{on } \partial \Omega \end{aligned}$$
(6)

We assume that:

- 1. Ω is connected and of class C^3 .
- 2. $f \in C^1(\overline{\Omega} \times \mathbb{R})$.
- A **Theorem.** Assume that there exist $\underline{u}, \overline{u} \in C^2(\Omega) \cap C(\overline{\Omega})$ such that:
 - (a) $-\Delta \underline{u} \leq f(x, \underline{u})$ in Ω and $\underline{u} \leq 0$ on $\partial \Omega$ (\underline{u} is a subsolution)
 - (b) $-\Delta \overline{u} \ge f(x, \overline{u})$ in Ω and $\overline{u} \ge 0$ on $\partial \Omega$ (\overline{u} is a supersolution)
 - (c) $\underline{u} \leq \overline{u}$ in Ω .

Then the set

$$M := \{ u \in C^2(\overline{\Omega}); u \text{ solves (6) and } \underline{u} \le u \le \overline{u} \}$$

is non-empty, and contains a minimal element and a maximal element.

- **B** Same conclusion if $\underline{u}, \overline{u} \in H^1(\Omega) \cap C(\overline{\Omega})$.
- **C Exercise.** [3, Section 9.7, exercise 6] Assume f = f(u), with f(0) = 0, $f'(0) > \lambda_1(\Omega)$, and f bounded from above on \mathbb{R}_+ . Prove that the problem

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ u > 0 & \text{in } \Omega \end{cases}$$
(7)

has a solution $u \in C^2(\overline{\Omega})$.

(e) Uniqueness

In this section, Ω is of class C^2 , and we work with functions $u \in C^2(\overline{\Omega})$. General reference: [3, Section 9.4.2]

A **Theorem.** (Krasnoselskii) Let $f : [0, \infty) \to [0, \infty)$ be a continuous function such that

$$(0,\infty) \ni t \mapsto \frac{f(t)}{t}$$
 is (strictly) decreasing

Then the problem

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \\ u > 0 & \text{in } \Omega \end{cases}$$
(8)

has at most one solution.

B Theorem (Pohozaev) Assume $N \ge 3$ and $\frac{N+2}{N-2} . Assume also that <math>\Omega$ is convex. Then the problem

$$\begin{cases} -\Delta u = |u|^{p-1} u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(9)

has only the trivial solution u = 0.

References

- [1] Henri Berestycki and Louis Nirenberg. On the method of moving planes and the sliding method. *Bol. Soc. Brasil. Mat. (N.S.)*, 22(1):1–37, 1991.
- [2] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
- [3] Lawrence C. Evans. *Partial differential equations*, volume 19 of *Graduate Studies in Mathematics*. American Mathematical Society, Providence, RI, second edition, 2010.
- [4] Lawrence C. Evans and Ronald F. Gariepy. *Measure theory and fine properties of functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [5] David Gilbarg and Neil S. Trudinger. *Elliptic partial differential equations of second order*, volume 224 of *Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, second edition, 1983.
- [6] Qing Han and Fanghua Lin. *Elliptic partial differential equations*, volume 1 of *Courant Lecture Notes in Mathematics*. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
- [7] Petru Mironescu. Sobolev spaces. Elliptic equations (Partial lecture notes). http: //math.univ-lyon1.fr/~mironescu/resources/sobolev_spaces_elliptic_ equations_2010.pdf, 2010.
- [8] Petru Mironescu. Mesure et intégration. http://math.univ-lyon1.fr/~mironescu/ resources/complet_mesure_integration.pdf, 2020.