Lecture # 3 REGULARITY THEORY

(a) Warnings

 $oxed{A}$ Exercise (Weierstrass' counterexample to Dirichlet's principle) Let $0 < \alpha < 1$ and set

$$v(x,y) := (x^2 - y^2) (-\ln(x^2 + y^2))^{\alpha}, \forall (x,y) \in \mathbb{D}.$$

Prove that:

- (a) $v \notin C^2(\mathbb{D})$.
- (b) The distributional Laplacian $f := \Delta v$ is continuous on \mathbb{D} .
- (c) The equation $\Delta u = f$ has no classical (i.e., C^2) solution near the origin.
- **Exercise** Let $N \geq 2$ and $u \in C^1(\mathbb{R}^N \setminus \{0\})$ be such that $\partial_1 u \in L^1_{loc}(\mathbb{R}^N)$. Prove that $u \in L^1_{loc}(\mathbb{R}^N)$ and that $\partial_1 u$ is the distributional derivative of u. What about N = 1?
- C Useful reference for items C and D: [10]

Exercise Let $\alpha \in \mathbb{R} \setminus \{-1, 1 - N\}$ and set

$$u(x) := x_1 |x|^{\alpha}, \ \forall x \in \mathbb{R}^N \setminus \{0\}, \ \beta := -\frac{\alpha(\alpha + N)}{(\alpha + 1)(\alpha + N - 1)}.$$

Then

$$\sum_{1 \le i \le N} \partial_i \left(\sum_{1 \le j \le N} (\delta_{ij} + \beta x_i x_j |x|^{-2}) \partial_j u \right) = 0 \text{ in } \mathbb{R}^N \setminus \{0\}.$$

 \fbox{D} **Theorem** (Serrin) A homogeneous uniformly elliptic equation in divergence form may have locally unbounded $W^{1,1}_{loc}(\Omega)$ weak solutions.

More specifically, if $N \ge 2$ and $0 < \varepsilon < 1$, and we set

$$u(x) := \frac{x_1}{|x|^{N-1+\varepsilon}}, \ x \in \mathbb{R}^N,$$

and

$$A(x) := \operatorname{Id}_N + \frac{b}{|x|^2} (x_i \, x_j)_{1 \le i, j \le N}, \ x \in \mathbb{R}^N, \ \text{with} \ b := \frac{N-1}{\varepsilon(\varepsilon + N - 2)} - 1,$$

then $u \in W^{1,1}_{loc}(\mathbb{R}^N) \setminus L^{\infty}_{loc}(\mathbb{R}^N)$, A is uniformly elliptic in \mathbb{R}^N , and

$$\operatorname{div}(A\nabla u) = 0 \text{ in } \mathscr{D}'(\mathbb{R}^N).$$

(b) Singular integrals

General reference: [8, Section 3]

 $\overline{\mathbb{A}}$ **Exercise.** Let ω_N be the area of \mathbb{S}^{N-1} . Let E be "the" fundamental solution of $-\Delta$ in \mathbb{R}^N ,

$$E(x) := \begin{cases} -(1/\omega_2) \ln |x|, & \text{if } N = 2\\ (1/[(N-2)\omega_N]) |x|^{2-N}, & \text{if } N \ge 3 \end{cases}.$$

(a) Prove that, in the distributions sense,

$$\partial_j E = g_j$$
, where $g_j(x) := -\frac{1}{\omega_N} \frac{x_j}{|x|^N}$.

(b) If $1 \le p \le \infty$ and $f \in L^p_c(\mathbb{R}^N)$, then, in the distributions sense,

$$\partial_j(f*E) = h_j$$
, where $h_j(x) := \int_{\mathbb{R}^N} f(y) \, g_j(x-y) \, dy$.

Exercise. Let $K \in \mathscr{D}'(\mathbb{R}^N) \cap L^1_{loc}(\mathbb{R}^N \setminus \{0\})$. Let $f \in C_c^{\infty}(\mathbb{R}^N)$ and set $L := \operatorname{supp} f$. Then:

$$(K * f)(x) = \int_{\mathbb{R}^N} f(y)K(x - y) \, dy = \int_L f(y)K(x - y) \, dy, \, \forall \, x \notin \text{supp } L.$$
 (1)

- B **Proposition.** With the above notation, let $K:=\partial_k g_j=\partial_k \partial_j E$ (in the distributions sense). Then:
 - (a) $K \in \mathscr{D}'(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N \setminus \{0\})$, and in particular (1) holds.
 - (b) $K \in \mathscr{S}'$ and, in the distributions sense,

$$\widehat{K}(\xi) = \ell_{j,k}$$
, where $\ell_{j,k}(\xi) := -\frac{\xi_j \xi_k}{|\xi|^2}$.

(c) For some finite C, we have $|\nabla K(x)| \leq C/|x|^{N+1}$, $\forall x \in \mathbb{R}^N \setminus \{0\}$.

Useful reference: [6, Theorem 2.3.4]

Exercise. Let (X, \mathcal{T}, μ) be a measured space. (Warning: μ is not supposed σ -finite.) If $f: X \to \mathbb{R}$ is measurable and $1 \le p < \infty$, then

$$||f||_p^p = p \int_0^\infty t^{p-1} \underbrace{\mu([|f| > t])}_{:=F_t(t)} dt.$$

D Marcinkiewicz interpolation theorem (special case) Let (X, \mathcal{T}, μ) be a measured space. Let $1 < r < \infty$ and let T be a linear operator on $L^1 \cap L^r(X)$ such that, for every $f \in L^1 \cap L^r(X)$, Tf is a measurable function on X and, for some $K_1, K_r < \infty$, we have

$$\mu([|Tf| > t]) \le K_1 \frac{\|f\|_1}{t}, \, \forall f \in L^1 \cap L^r(X), \, \forall t > 0,$$

$$\mu([|Tf| > t]) \le K_r \frac{\|f\|_r^r}{t^r}, \, \forall f \in L^1 \cap L^r(X), \, \forall t > 0.$$

Then, for every $1 and some <math>C_p < \infty$,

$$||Tf||_p \le C_p ||f||_p, \ \forall f \in L^1 \cap L^r(X),$$

and in particular T admits a unique linear continuous extension from $L^p(X)$ into $L^p(X)$. In the special case where μ is a Radon measure in \mathbb{R}^N , the same holds if T is initially defined on $L^r_c(\mathbb{R}^N)$.

Calderón-Zygmund decomposition, second form Let $f \in C_c(\mathbb{R}^N)$ and t > 0. Then, with finite constants independent of f and t there exist: a family of disjoint cubes $C_n \subset \mathbb{R}^N$ and functions $g, h_n \in L_c^{\infty}(\mathbb{R}^N)$ (depending on f and t) such that

(a)
$$g = f$$
 in $\mathbb{R}^N \setminus \bigcup_n C_n$.

(b)
$$|g| \leq Ct$$
.

(c) supp
$$h_n \subset C_n$$
, $\forall n$.

(d)
$$\int h_n = 0, \forall n$$
.

(e)
$$\int |h_n| \leq Ct, \forall n$$
.

(f)
$$f = g + \sum_{n} h_n$$
 (pointwise).

$$(g) \sum_n |C_n| \le C \frac{\|f\|_1}{t}.$$

(h)
$$||g||_1 + \sum_n ||h_n||_1 \le C||f||_1$$
.

- G Calderón-Zygmund theorem adapted to the Laplace equation Let $K \in \mathscr{S}'(\mathbb{R}^N) \cap C^1(\mathbb{R}^N \setminus \{0\})$ satisfy
 - (i) \widehat{K} is a bounded *real* function.

(ii)
$$|\nabla K(x)| \leq C/|x|^{N+1}$$
, $\forall x \in \mathbb{R}^N \setminus \{0\}$, for some finite C .

Let
$$Tf:=K*f$$
 , $\forall\, f\in C_c^\infty(\mathbb{R}^N)$. Then

$$||Tf||_p \le C_{p,N} ||f||_p, \ \forall \ 1$$

In particular, for 1 , <math>T admits a unique linear continuous extension from $L^p(\mathbb{R}^N)$ into itself.

Corollary. Let
$$1 and $f \in L^p_c(\mathbb{R}^N)$, and set $u := E * f$. Then $\|\partial_i \partial_k\|_p \le C_{p,N} \|f\|_p, \ \forall \ 1 \le j, k \le N$.$$

 \fbox{H} A standard "elliptic estimate" Let $1 , <math>K \subset \Omega \subset \mathbb{R}^N$, with K compact and Ω open. If $-\Delta u = f \in L^p(\Omega)$, then $u \in W^{2,p}_{loc}(\Omega)$ and, for some finite $C = C_{p,N,\Omega,K}$,

$$||u||_{W^{2,p}(K)} \le C(||f||_{L^p(\Omega)} + ||u||_{L^1(\Omega)}).$$

Exercise. Let $u \in H_0^1(\Omega)$ be an eigenfunction of $-\Delta$. Prove that $u \in C^{\infty}(\Omega)$.

(c) L^p regularity theory

Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory

 $oxed{A}$ Main regularity theorem (Calderón, Zygmund, Koselev, Greco, Agmon, Douglis, Nirenberg, ...) Let $\Omega \subset \mathbb{R}^N$ be a bounded $C^{1,1}$ -domain. Let $1 and <math>f \in L^p(\Omega)$. Then the problem

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (2)

has a unique (generalized) solution $u \in W^{2,p}(\Omega)$. In addition, for some finite C independent of f, $\|u\|_{W^{2,p}(\Omega)} \leq C\|f\|_p$.

Exercise. The above u is not only a distributional solution, but also a *strong solution*, in the sense that for a.e. $x \in \Omega$ we have

$$-\sum_{j=1}^{N} \partial_{jj} u(x) = f(x).$$

 \fbox{B} **Toolbox** In what follows, $\omega, \Omega \subset \mathbb{R}^N$ are bounded open sets.

For the record.

Rademacher's theorem A Lipschitz function $f: \Omega \to \mathbb{R}$ is differentiable a.e., and its distributional gradient and point gradient coincide.

Useful reference: [3, Section 3.1.2]

Exercise. Let $\Phi:\omega\to\Omega$ be a bi-Lipschitz homeomorphism. Prove that, with constants $0< C_{1,p}< C_{2,p}<\infty$ depending only on $1\leq p<\infty$ and on the Lipschitz constants of Φ and Φ^{-1} , we have

$$C_1\|f\circ\Phi\|_{L^p(\omega)}\leq \|f\|_{L^p(\Omega)}\leq C_2\|f\circ\Phi\|_{L^p(\omega)}, \forall \text{ measurable function } f:\Omega\to\mathbb{R}.$$

Exercise. Let $\Phi:\omega\to\Omega$ be a C^1 -diffeomorphism. If $f\in W^{1,1}_{loc}(\Omega)$, prove that $f\circ\Phi\in W^{1,1}_{loc}(\omega)$ and that the chain rule holds, i.e.,

$$\partial_i (f \circ \Phi) = \sum_{j=1}^N [(\partial_j f) \circ \Phi] [\partial_i \Phi_j], \ \forall \ 1 \le i \le N.$$

Exercise. Let $\Phi:\overline{\omega}\to\overline{\Omega}$ be a $C^{1,1}$ -diffeomorphism and $1\leq p\leq\infty$. Prove that $f\mapsto \|f\circ\Phi\|_{W^{2,p}(\omega)}$ is equivalent to the usual norm on $W^{2,p}(\Omega)$.

Lemma. Let $\Phi:\omega\to\Omega$ be a C^1 -diffeomorphism. Let $u\in W^{1,1}_{loc}(\Omega)$ satisfy $-\Delta u=f\in L^1_{loc}(\Omega)$ in the distributions sense. Set $v:=u\circ\Phi\in W^{1,1}_{loc}(\omega)$. Then, in the distributions sense, we have

$$-\operatorname{div}(A\nabla v) = g \in L^1_{loc}(\omega), \tag{3}$$

where

$$A = A(x) := |J \Phi| [(J\Phi)^{-1}] [^t [(J\Phi)^{-1}]], g := |J \Phi| f \circ \Phi.$$

Lemma. Let $A \in \operatorname{Lip}_{loc}(\omega)$, $v \in W^{1,1}_{loc}(\omega)$, $\zeta \in \operatorname{Lip}_{loc}(\omega)$, and $g \in L^1_{loc}(\omega)$. If (3) holds, then

$$-\operatorname{div}(A\nabla(\zeta v)) = \zeta g - v \operatorname{div}(A\nabla\zeta) - (A\nabla v) \cdot \nabla\zeta - (A\nabla\zeta) \cdot \nabla v.$$

Exercise. Let $u \in W^{1,1}(\Omega)$ and $\varphi \in C^1(\overline{\Omega})$. Prove that $\operatorname{tr}(\varphi u) = \varphi_{|\partial\Omega} \operatorname{tr} u$.

Exercise. Let Ω be a C^1 -domain, and let $\Psi: U \to \mathbb{R}^N$ be a C^1 -diffeomorphism from an open set $U \subset \mathbb{R}^N$ into its image. Set $\Xi := \Psi_{|U}: U \to \Psi(U)$ and $\Phi := \Xi^{-1}$. Set also $\Sigma := \partial \Omega \cap U$ and $\Lambda := \Psi(\Sigma)$. Let $u \in W^{1,1}(U)$ and set $v := u \circ \Phi$. Give a meaning to and prove the equality $\operatorname{tr}_{\Psi(\Sigma)} v = (\operatorname{tr}_{\Sigma}(u)) \circ [(\Psi)_{|\Lambda}^{-1}]$.

Exercise. Set $\mathbb{R}^N_+ := \{x \in \mathbb{R}^N; x_N > 0\}$. Let $u \in W^{1,1}(\mathbb{R}^N_+)$. Let $h \in \mathbb{R}^{N-1} \times \{0\}$. Give a meaning to and prove the equality $\operatorname{tr} u(\cdot + h) = (\operatorname{tr} u)(\cdot + h)$.

Lemma. Let p,q be conjugated exponents, $g\in L^q(\mathbb{R}^N_+)$, $w\in W^{1,p}(\mathbb{R}^N_+)$, $h\in \mathbb{R}^{N-1}\times\{0\}$. Then

$$\left| \int_{\mathbb{R}^{N}_{+}} (g(x+h) - g(x)) w(x) dx \right| \le |h| \|g\|_{q} \|\nabla w\|_{p}.$$

Exercise. Let $f \in L^1_{loc}(\mathbb{R}^N_+)$. Then

$$\lim_{t\to 0}\frac{f(\cdot+te_j)-f}{t}=\partial_j f \text{ in } \mathscr{D}'(\mathbb{R}^N_+), \ \forall \ 1\leq j\leq N-1.$$

Exercise. Let $u \in W^{2,1}(\mathbb{R}^N_+)$.

(a) Let $\Sigma:=\mathbb{R}^{N-1}\times\{0\}$, that we identify with \mathbb{R}^{N-1} . When $\varphi\in C^2_c(\overline{\mathbb{R}^N_+})$, prove the generalized (second) Green formula

$$\int_{\mathbb{R}^{N}_{+}}(-\Delta u)\,\varphi=\int_{\mathbb{R}^{N-1}}[\operatorname{tr}_{|\Sigma}\,\partial_{N}u]\,\varphi-\int_{\mathbb{R}^{N-1}}[\operatorname{tr}_{|\Sigma}\,u]\,\partial_{N}\varphi+\int_{\mathbb{R}^{N}_{+}}u\,(-\Delta\varphi).$$

(b) If $F: \mathbb{R}^n_+ \to \mathbb{R}$, set

$$F^*(x) = F^*(x_1, \dots, x_N) := \begin{cases} F(x), & \text{if } x_N > 0 \\ -F(x_1, \dots, x_{N-1}, -x_N), & \text{if } x_N < 0 \end{cases}.$$

Let $u \in W^{2,1}(\mathbb{R}^N_+)$ satisfy $\operatorname{tr}_{|\Sigma} u = 0$. Prove that $-\Delta(u^*) = (-\Delta u)^*$.

Theorem (Higher order regularity) Let $k \geq 0$, $\Omega \in C^{k+2,1}$, and $1 . If <math>f \in W^{k,p}(\Omega)$, then the solution u of (2) satisfies $u \in W^{k+2,p}(\Omega)$ and, for some finite C independent of f, $\|u\|_{W^{k+2,p}(\Omega)} \leq C\|f\|_{W^{k,p}(\Omega)}$.

D For the record, we mentions some results in lower order regularity theory.

Theorem. Let $\Omega \in C^{1,1}$ and $1 . For <math>F \in L^p(\Omega; \mathbb{R}^N)$, the equation

$$-\Delta u = \operatorname{div} F \text{ in } \mathscr{D}'(\Omega)$$

has a unique solution $u \in W_0^{1,p}(\Omega)$. In addition, with some finite constant C independent of F, we have the estimate $\|\nabla u\|_p \leq C\|F\|_p$.

Theorem (Stampacchia) Let $\Omega \in C^{1,1}$. For $f \in L^1(\Omega)$, the equation

$$-\Delta u = f \text{ in } \mathscr{D}'(\Omega)$$

has a unique solution $u \in W_0^{1,1}(\Omega)$. Moreover, this u satisfies $u \in \cap_{1 \le p < N/(N-1)} W_0^{1,p}(\Omega)$ and, with finite constants C_p independent of f,

$$\|\nabla u\|_p \le C_p \|f\|_1, \ \forall \ 1 \le p < \frac{N}{N-1}.$$

Useful reference: [9, Section 4.1]

(d) A glimpse of the C^{α} regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:

Theorem (C^{α} **regularity)** (Kellogg) Let $0 < \alpha < 1$, $k \geq 0$, $\Omega \in C^{k+2,\alpha}$. If $f \in C^{k,\alpha}(\overline{\Omega})$, then the solution of (2) satisfies $u \in C^{k+2,\alpha}(\overline{\Omega})$. In addition, for some finite C independent of f, $\|u\|_{C^{k+2,\alpha}(\overline{\Omega})} \leq C\|f\|_{C^{k,\alpha}(\overline{\Omega})}$.

Lemma (Hölder estimates for the Newtonian potential) (Korn) Let $0 < \alpha < 1$. If $f \in C^{\alpha}_c(\mathbb{R}^N)$ and u := E * f, then, for some finite C independent of f,

$$\left| D^2 u \right|_{C^{\alpha}(\mathbb{R}^N)} \le C|f|_{C^{\alpha}(\mathbb{R}^N)}.$$

(e) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume that $N \geq 3$. Let $f: \Omega \times \mathbb{R} \to \mathbb{R}$ be a measurable function satisfying

$$|f(x,t)| < C(1+|t|^p), \forall x \in \Omega, \forall t \in \mathbb{R}.$$

Let *u* satisfy

$$u \in H^1_{loc}(\Omega), x \mapsto f(x, u(x)) \in L^1_{loc}(\Omega)$$

 $-\Delta u = f(x, u(x)) \text{ in } \mathscr{D}'(\Omega).$

$$\fbox{A}$$
 Exercise. Assume that $p<\dfrac{N+2}{N-2}.$ Then $u\in W^{2,r}_{loc}(\Omega)$, $\forall\,r<\infty.$

 $oxed{B}$ **Proposition.** The same holds when $p = \frac{N+2}{N-2}$.

Moreover, if $u \in H^1_{loc}(\Omega)$ satisfies

$$-\Delta u = a(x)u + b(x), \text{ with } a \in L^{N/2}_{loc}(\Omega), \ b \in L^{\infty}_{loc}(\Omega),$$

then $u \in L^r_{loc}(\Omega)$, $\forall r < \infty$.

C **Exercise.** Let $p > \frac{N+2}{N-2}$. Prove that the equation $-\Delta u = |u|^p$ has a locally unbounded solution $u \in H^1 \cap L^p(B_1(0))$, of the form $u(x) = \lambda |x|^{-\alpha}$, for appropriate constants $\lambda, \alpha > 0$.

(f) A glimpse of the De Giorgi regularity theory

Useful references: [4, Sections 8.5–8.9], [5, Chapter 4]. For the record:

A Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let A=A(x) be uniformly elliptic in $\Omega:=B_1(0)$. Let $u\in H^1(\Omega)$ satisfy $-\operatorname{div}(A\nabla u)=f\in L^p(\Omega)$, where $p>\frac{N}{2}$. Then $u\in L^\infty_{loc}(\Omega)$ and, with a finite constant depending only on 0< R<1 and p,

$$||u||_{L^{\infty}(B_R(0))} \le C(||f||_{L^q(\Omega)} + ||u||_{L^1(\Omega)}).$$

B **Theorem** (local C^{α} regularity; **De Giorgi**, Nash, Ladyzhenskaya, Uraltseva, **Moser**,...) There exists some $0<\alpha<1$ depending only on p and the ellipticity constants of A such that the above u belongs to $C^{\alpha}_{loc}(\Omega)$ and satisfies, with a finite constant C depending only on R and p

$$|u(x) - u(y)| \le C(||f||_{L^{q}(\Omega)} + ||u||_{L^{2}(\Omega)}), \forall x, y \in B_{R}(0).$$

(g) Wente estimates. Compensation phenomena

Useful references: [1], [2], [7, Section 10.3]

 $oxed{\mathbb{A}}$ **Theorem** (Wente) Let $\Omega \in C^{1,1}$ be a bounded domain in \mathbb{R}^N , and let $F \in H^1(\Omega; \mathbb{R}^2)$. Then the problem

$$\begin{cases} -\Delta u = \det(JF) & \text{in } \Omega \\ u = 0 & \text{on } \partial\Omega \end{cases}$$

has a (unique) weak solution $u \in H^1_0(\Omega)$. In addition, we have $u \in C(\overline{\Omega})$ and, for some finite constant independent of F, we have the Wente estimates

$$||u||_{\infty} + ||\nabla u||_{2} \le C||\nabla F||_{2}.$$

B For the record:

Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If $F \in W^{1,N}_c(\mathbb{R}^N;\mathbb{R}^N)$, and we set $u := E * [\det JF)]$, then $D^2u \in L^1(\mathbb{R}^N)$ and, with a finite constant independent of F and of its support,

$$\left\| D^2 u \right\|_1 \le C \|\nabla F\|_N.$$

References

- [1] Haïm Brezis and Jean-Michel Coron. Multiple solutions of *H*-systems and Rellich's conjecture. *Comm. Pure Appl. Math.*, 37(2):149–187, 1984.
- [2] Ronald Coifman, Pierre-Louis Lions, Yves Meyer, and Stephen Semmes. Compensated compactness and Hardy spaces. *J. Math. Pures Appl.* (9), 72(3):247–286, 1993.
- [3] Lawrence C. Evans and Ronald F. Gariepy. *Measure theory and fine properties of functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
- [4] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
- [5] Qing Han and Fanghua Lin. *Elliptic partial differential equations*, volume 1 of *Courant Lecture Notes in Mathematics*. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
- [6] Lars Hörmander. The analysis of linear partial differential operators. I, volume 256 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier analysis.
- [7] Petru Mironescu. Fine properties of functions: an introduction. http://math.univ-lyon1.fr/~mironescu/resources/introduction_fine_properties_functions_2005.pdf, 2005.
- [8] Petru Mironescu. Sobolev spaces. Elliptic equations (Partial lecture notes). http://math.univ-lyon1.fr/~mironescu/resources/sobolev_spaces_elliptic_equations_2010.pdf, 2010.
- [9] Augusto C. Ponce. *Elliptic PDEs, measures and capacities,* volume 23 of *EMS Tracts in Mathematics*. European Mathematical Society (EMS), Zürich, 2016. From the Poisson equations to nonlinear Thomas-Fermi problems.
- [10] James Serrin. Pathological solutions of elliptic differential equations. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (3), 18:385–387, 1964.