Lecture \# 3
REGULARITY THEORY

(a) Warnings

A Exercise (Weierstrass' counterexample to Dirichlet's principle) Let $0<\alpha<1$ and set

$$
v(x, y):=\left(x^{2}-y^{2}\right)\left(-\ln \left(x^{2}+y^{2}\right)\right)^{\alpha}, \forall(x, y) \in \mathbb{D} .
$$

Prove that:
(a) $v \notin C^{2}(\mathbb{D})$.
(b) The distributional Laplacian $f:=\Delta v$ is continuous on \mathbb{D}.
(c) The equation $\Delta u=f$ has no classical (i.e., C^{2}) solution near the origin.

B Exercise Let $N \geq 2$ and $u \in C^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$ be such that $\partial_{1} u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$. Prove that $u \in L_{l o c}^{1}\left(\mathbb{R}^{N}\right)$ and that $\partial_{1} u$ is the distributional derivative of u. What about $N=1$?
C Useful reference for items C and D: [10]
Exercise Let $\alpha \in \mathbb{R} \backslash\{-1,1-N\}$ and set

$$
u(x):=x_{1}|x|^{\alpha}, \forall x \in \mathbb{R}^{N} \backslash\{0\}, \beta:=-\frac{\alpha(\alpha+N)}{(\alpha+1)(\alpha+N-1)}
$$

Then

$$
\sum_{1 \leq i \leq N} \partial_{i}\left(\sum_{1 \leq j \leq N}\left(\delta_{i j}+\beta x_{i} x_{j}|x|^{-2}\right) \partial_{j} u\right)=0 \text { in } \mathbb{R}^{N} \backslash\{0\}
$$

D Theorem (Serrin) A homogeneous uniformly elliptic equation in divergence form may have locally unbounded $W_{l o c}^{1,1}(\Omega)$ weak solutions.
More specifically, if $N \geq 2$ and $0<\varepsilon<1$, and we set

$$
u(x):=\frac{x_{1}}{|x|^{N-1+\varepsilon}}, x \in \mathbb{R}^{N}
$$

and

$$
A(x):=\operatorname{Id}_{N}+\frac{b}{|x|^{2}}\left(x_{i} x_{j}\right)_{1 \leq i, j \leq N}, x \in \mathbb{R}^{N}, \text { with } b:=\frac{N-1}{\varepsilon(\varepsilon+N-2)}-1
$$

then $u \in W_{\text {loc }}^{1,1}\left(\mathbb{R}^{N}\right) \backslash L_{\text {loc }}^{\infty}\left(\mathbb{R}^{N}\right), A$ is uniformly elliptic in \mathbb{R}^{N}, and

$$
\operatorname{div}(A \nabla u)=0 \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)
$$

(b) Singular integrals

General reference: [8, Section 3]
A Exercise. Let ω_{N} be the area of \mathbb{S}^{N-1}. Let E be "the" fundamental solution of $-\Delta$ in \mathbb{R}^{N},

$$
E(x):=\left\{\begin{array}{ll}
-\left(1 / \omega_{2}\right) \ln |x|, & \text { if } N=2 \\
\left(1 /\left[(N-2) \omega_{N}\right]\right)|x|^{2-N}, & \text { if } N \geq 3
\end{array} .\right.
$$

(a) Prove that, in the distributions sense,

$$
\partial_{j} E=g_{j}, \text { where } g_{j}(x):=-\frac{1}{\omega_{N}} \frac{x_{j}}{|x|^{N}} .
$$

(b) If $1 \leq p \leq \infty$ and $f \in L_{c}^{p}\left(\mathbb{R}^{N}\right)$, then, in the distributions sense,

$$
\partial_{j}(f * E)=h_{j}, \text { where } h_{j}(x):=\int_{\mathbb{R}^{N}} f(y) g_{j}(x-y) d y
$$

Exercise. Let $K \in \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right) \cap L_{l o c}^{1}\left(\mathbb{R}^{N} \backslash\{0\}\right)$. Let $f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ and set $L:=\operatorname{supp} f$. Then:

$$
\begin{equation*}
(K * f)(x)=\int_{\mathbb{R}^{N}} f(y) K(x-y) d y=\int_{L} f(y) K(x-y) d y, \forall x \notin \operatorname{supp} L \tag{1}
\end{equation*}
$$

(B) Proposition. With the above notation, let $K:=\partial_{k} g_{j}=\partial_{k} \partial_{j} E$ (in the distributions sense). Then:
(a) $K \in \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right) \cap C^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}\right)$, and in particular (1) holds.
(b) $K \in \mathscr{S}^{\prime}$ and, in the distributions sense,

$$
\widehat{K}(\xi)=\ell_{j, k}, \text { where } \ell_{j, k}(\xi):=-\frac{\xi_{j} \xi_{k}}{|\xi|^{2}}
$$

(c) For some finite C, we have $|\nabla K(x)| \leq C /|x|^{N+1}, \forall x \in \mathbb{R}^{N} \backslash\{0\}$.

Useful reference: [6, Theorem 2.3.4]
C Exercise. Let (X, \mathscr{T}, μ) be a measured space. (Warning: μ is not supposed σ-finite.) If $f: X \rightarrow \mathbb{R}$ is measurable and $1 \leq p<\infty$, then

$$
\|f\|_{p}^{p}=p \int_{0}^{\infty} t^{p-1} \underbrace{\mu([|f|>t])}_{:=F_{f}(t)} d t
$$

D Marcinkiewicz interpolation theorem (special case) Let (X, \mathscr{T}, μ) be a measured space. Let $1<r<\infty$ and let T be a linear operator on $L^{1} \cap L^{r}(X)$ such that, for every $f \in$ $L^{1} \cap L^{r}(X), T f$ is a measurable function on X and, for some $K_{1}, K_{r}<\infty$, we have

$$
\begin{aligned}
& \mu([|T f|>t]) \leq K_{1} \frac{\|f\|_{1}}{t}, \forall f \in L^{1} \cap L^{r}(X), \forall t>0 \\
& \mu([|T f|>t]) \leq K_{r} \frac{\|f\|_{r}^{r}}{t^{r}}, \forall f \in L^{1} \cap L^{r}(X), \forall t>0
\end{aligned}
$$

Then, for every $1<p<r$ and some $C_{p}<\infty$,

$$
\|T f\|_{p} \leq C_{p}\|f\|_{p}, \forall f \in L^{1} \cap L^{r}(X)
$$

and in particular T admits a unique linear continuous extension from $L^{p}(X)$ into $L^{p}(X)$.
In the special case where μ is a Radon measure in \mathbb{R}^{N}, the same holds if T is initially defined on $L_{c}^{r}\left(\mathbb{R}^{N}\right)$.

F Calderón-Zygmund decomposition, second form Let $f \in C_{c}\left(\mathbb{R}^{N}\right)$ and $t>0$. Then, with finite constants independent of f and t there exist: a family of disjoint cubes $C_{n} \subset \mathbb{R}^{N}$ and functions $g, h_{n} \in L_{c}^{\infty}\left(\mathbb{R}^{N}\right)$ (depending on f and t) such that
(a) $g=f$ in $\mathbb{R}^{N} \backslash \cup_{n} C_{n}$.
(b) $|g| \leq C t$.
(c) $\operatorname{supp} h_{n} \subset C_{n}, \forall n$.
(d) $\int h_{n}=0, \forall n$.
(e) $f\left|h_{n}\right| \leq C t, \forall n$.
(f) $f=g+\sum_{n} h_{n}$ (pointwise).
(g) $\sum_{n}\left|C_{n}\right| \leq C \frac{\|f\|_{1}}{t}$.
(h) $\|g\|_{1}+\sum_{n}\left\|h_{n}\right\|_{1} \leq C\|f\|_{1}$.

G Calderón-Zygmund theorem adapted to the Laplace equation Let $K \in \mathscr{S}^{\prime}\left(\mathbb{R}^{N}\right) \cap C^{1}\left(\mathbb{R}^{N} \backslash\right.$ \{0\}) satisfy
(i) \widehat{K} is a bounded real function.
(ii) $|\nabla K(x)| \leq C /|x|^{N+1}, \forall x \in \mathbb{R}^{N} \backslash\{0\}$, for some finite C.

Let $T f:=K * f, \forall f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)$. Then

$$
\|T f\|_{p} \leq C_{p, N}\|f\|_{p}, \forall 1<p<\infty, \forall f \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right)
$$

In particular, for $1<p<\infty, T$ admits a unique linear continuous extension from $L^{p}\left(\mathbb{R}^{N}\right)$ into itself.
Corollary. Let $1<p<\infty$ and $f \in L_{c}^{p}\left(\mathbb{R}^{N}\right)$, and set $u:=E * f$. Then

$$
\left\|\partial_{j} \partial_{k}\right\|_{p} \leq C_{p, N}\|f\|_{p}, \forall 1 \leq j, k \leq N .
$$

H A standard "elliptic estimate" Let $1<p<\infty, K \subset \Omega \subset \mathbb{R}^{N}$, with K compact and Ω open. If $-\Delta u=f \in L^{p}(\Omega)$, then $u \in W_{\text {loc }}^{2, p}(\Omega)$ and, for some finite $C=C_{p, N, \Omega, K}$,

$$
\|u\|_{W^{2, p}(K)} \leq C\left(\|f\|_{L^{p}(\Omega)}+\|u\|_{L^{1}(\Omega)}\right) .
$$

Exercise. Let $u \in H_{0}^{1}(\Omega)$ be an eigenfunction of $-\Delta$. Prove that $u \in C^{\infty}(\Omega)$.
(c) L^{p} regularity theory

Useful references: [4, Chapter 9] for the regularity theory, [8, Section 1.5] for trace theory
A Main regularity theorem (Calderón, Zygmund, Koselev, Greco, Agmon, Douglis, Nirenberg, \ldots) Let $\Omega \subset \mathbb{R}^{N}$ be a bounded $C^{1,1}$-domain. Let $1<p<\infty$ and $f \in L^{p}(\Omega)$. Then the problem

$$
\begin{cases}-\Delta u=f & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique (generalized) solution $u \in W^{2, p}(\Omega)$. In addition, for some finite C independent of $f,\|u\|_{W^{2, p}(\Omega)} \leq C\|f\|_{p}$.
Exercise. The above u is not only a distributional solution, but also a strong solution, in the sense that for a.e. $x \in \Omega$ we have

$$
-\sum_{j=1}^{N} \partial_{j j} u(x)=f(x)
$$

B Toolbox In what follows, $\omega, \Omega \subset \mathbb{R}^{N}$ are bounded open sets.
For the record.
Rademacher's theorem A Lipschitz function $f: \Omega \rightarrow \mathbb{R}$ is differentiable a.e., and its distributional gradient and point gradient coincide.

Useful reference: [3, Section 3.1.2]
Exercise. Let $\Phi: \omega \rightarrow \Omega$ be a bi-Lipschitz homeomorphism. Prove that, with constants $0<C_{1, p}<C_{2, p}<\infty$ depending only on $1 \leq p<\infty$ and on the Lipschitz constants of Φ and Φ^{-1}, we have

$$
C_{1}\|f \circ \Phi\|_{L^{p}(\omega)} \leq\|f\|_{L^{p}(\Omega)} \leq C_{2}\|f \circ \Phi\|_{L^{p}(\omega)}, \forall \text { measurable function } f: \Omega \rightarrow \mathbb{R}
$$

Exercise. Let $\Phi: \omega \rightarrow \Omega$ be a C^{1}-diffeomorphism. If $f \in W_{l o c}^{1,1}(\Omega)$, prove that $f \circ \Phi \in$ $W_{l o c}^{1,1}(\omega)$ and that the chain rule holds, i.e.,

$$
\partial_{i}(f \circ \Phi)=\sum_{j=1}^{N}\left[\left(\partial_{j} f\right) \circ \Phi\right]\left[\partial_{i} \Phi_{j}\right], \forall 1 \leq i \leq N .
$$

Exercise. Let $\Phi: \bar{\omega} \rightarrow \bar{\Omega}$ be a $C^{1,1}$-diffeomorphism and $1 \leq p \leq \infty$. Prove that $f \mapsto\|f \circ \Phi\|_{W^{2, p}(\omega)}$ is equivalent to the usual norm on $W^{2, p}(\Omega)$.
Lemma. Let $\Phi: \omega \rightarrow \Omega$ be a C^{1}-diffeomorphism. Let $u \in W_{\text {loc }}^{1,1}(\Omega)$ satisfy $-\Delta u=f \in$ $L_{l o c}^{1}(\Omega)$ in the distributions sense. Set $v:=u \circ \Phi \in W_{l o c}^{1,1}(\omega)$. Then, in the distributions sense, we have

$$
\begin{equation*}
-\operatorname{div}(A \nabla v)=g \in L_{l o c}^{1}(\omega) \tag{3}
\end{equation*}
$$

where

$$
A=A(x):=|J \Phi|\left[(J \Phi)^{-1}\right]\left[t\left[(J \Phi)^{-1}\right]\right], g:=|J \Phi| f \circ \Phi .
$$

Lemma. Let $A \in \operatorname{Lip}_{l o c}(\omega), v \in W_{l o c}^{1,1}(\omega), \zeta \in \operatorname{Lip}_{l o c}(\omega)$, and $g \in L_{l o c}^{1}(\omega)$. If (3) holds, then

$$
-\operatorname{div}(A \nabla(\zeta v))=\zeta g-v \operatorname{div}(A \nabla \zeta)-(A \nabla v) \cdot \nabla \zeta-(A \nabla \zeta) \cdot \nabla v .
$$

Exercise. Let $u \in W^{1,1}(\Omega)$ and $\varphi \in C^{1}(\bar{\Omega})$. Prove that $\operatorname{tr}(\varphi u)=\varphi_{\mid \partial \Omega} \operatorname{tr} u$.
Exercise. Let Ω be a C^{1}-domain, and let $\Psi: U \rightarrow \mathbb{R}^{N}$ be a C^{1}-diffeomorphism from an open set $U \subset \mathbb{R}^{N}$ into its image. Set $\Xi:=\Psi_{\mid U}: U \rightarrow \Psi(U)$ and $\Phi:=\Xi^{-1}$. Set also $\Sigma:=\partial \Omega \cap U$ and $\Lambda:=\Psi(\Sigma)$. Let $u \in W^{1,1}(U)$ and set $v:=u \circ \Phi$. Give a meaning to and prove the equality $\operatorname{tr}_{\Psi(\Sigma)} v=\left(\operatorname{tr}_{\Sigma}(u)\right) \circ\left[(\Psi)_{\mid \Lambda}^{-1}\right]$.

Exercise. Set $\mathbb{R}_{+}^{N}:=\left\{x \in \mathbb{R}^{N} ; x_{N}>0\right\}$. Let $u \in W^{1,1}\left(\mathbb{R}_{+}^{N}\right)$. Let $h \in \mathbb{R}^{N-1} \times\{0\}$. Give a meaning to and prove the equality $\operatorname{tr} u(\cdot+h)=(\operatorname{tr} u)(\cdot+h)$.

Lemma. Let p, q be conjugated exponents, $g \in L^{q}\left(\mathbb{R}_{+}^{N}\right), w \in W^{1, p}\left(\mathbb{R}_{+}^{N}\right), h \in \mathbb{R}^{N-1} \times\{0\}$. Then

$$
\left|\int_{\mathbb{R}_{+}^{N}}(g(x+h)-g(x)) w(x) d x\right| \leq|h|\|g\|_{q}\|\nabla w\|_{p} .
$$

Exercise. Let $f \in L_{\text {loc }}^{1}\left(\mathbb{R}_{+}^{N}\right)$. Then

$$
\lim _{t \rightarrow 0} \frac{f\left(\cdot+t e_{j}\right)-f}{t}=\partial_{j} f \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}_{+}^{N}\right), \forall 1 \leq j \leq N-1 .
$$

Exercise. Let $u \in W^{2,1}\left(\mathbb{R}_{+}^{N}\right)$.
(a) Let $\Sigma:=\mathbb{R}^{N-1} \times\{0\}$, that we identify with \mathbb{R}^{N-1}. When $\varphi \in C_{c}^{2}\left(\overline{\mathbb{R}_{+}^{N}}\right)$, prove the generalized (second) Green formula

$$
\int_{\mathbb{R}_{+}^{N}}(-\Delta u) \varphi=\int_{\mathbb{R}^{N-1}}\left[\operatorname{tr}_{\mid \Sigma} \partial_{N} u\right] \varphi-\int_{\mathbb{R}^{N-1}}\left[\operatorname{tr}_{\mid \Sigma} u\right] \partial_{N} \varphi+\int_{\mathbb{R}_{+}^{N}} u(-\Delta \varphi) .
$$

(b) If $F: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$, set

$$
F^{*}(x)=F^{*}\left(x_{1}, \ldots, x_{N}\right):=\left\{\begin{array}{ll}
F(x), & \text { if } x_{N}>0 \\
-F\left(x_{1}, \ldots, x_{N-1},-x_{N}\right), & \text { if } x_{N}<0
\end{array} .\right.
$$

Let $u \in W^{2,1}\left(\mathbb{R}_{+}^{N}\right)$ satisfy $\operatorname{tr}_{\mid \Sigma} u=0$. Prove that $-\Delta\left(u^{*}\right)=(-\Delta u)^{*}$.
C Theorem (Higher order regularity) Let $k \geq 0, \Omega \in C^{k+2,1}$, and $1<p<\infty$. If $f \in W^{k, p}(\Omega)$, then the solution u of (2) satisfies $u \in W^{k+2, p}(\Omega)$ and, for some finite C independent of $f,\|u\|_{W^{k+2, p}(\Omega)} \leq C\|f\|_{W^{k, p}(\Omega)}$.

D For the record, we mentions some results in lower order regularity theory.
Theorem. Let $\Omega \in C^{1,1}$ and $1<p<\infty$. For $F \in L^{p}\left(\Omega ; \mathbb{R}^{N}\right)$, the equation
$-\Delta u=\operatorname{div} F$ in $\mathscr{D}^{\prime}(\Omega)$
has a unique solution $u \in W_{0}^{1, p}(\Omega)$. In addition, with some finite constant C independent of F, we have the estimate $\|\nabla u\|_{p} \leq C\|F\|_{p}$.

Theorem (Stampacchia) Let $\Omega \in C^{1,1}$. For $f \in L^{1}(\Omega)$, the equation

$$
-\Delta u=f \text { in } \mathscr{D}^{\prime}(\Omega)
$$

has a unique solution $u \in W_{0}^{1,1}(\Omega)$. Moreover, this u satisfies $u \in \cap_{1 \leq p<N /(N-1)} W_{0}^{1, p}(\Omega)$ and, with finite constants C_{p} independent of f,

$$
\|\nabla u\|_{p} \leq C_{p}\|f\|_{1}, \forall 1 \leq p<\frac{N}{N-1}
$$

Useful reference: [9, Section 4.1]

(d) A glimpse of the C^{α} regularity theory

Useful reference: [4, Lemma 4.4, Theorem 6.14, Theorem 6.19]. For the record:
Theorem (C^{α} regularity) (Kellogg) Let $0<\alpha<1, k \geq 0, \Omega \in C^{k+2, \alpha}$. If $f \in C^{k, \alpha}(\bar{\Omega})$, then the solution of (2) satisfies $u \in C^{k+2, \alpha}(\bar{\Omega})$. In addition, for some finite C independent of f, $\|u\|_{C^{k+2, \alpha}(\bar{\Omega})} \leq C\|f\|_{C^{k, \alpha}(\bar{\Omega})}$.
Lemma (Hölder estimates for the Newtonian potential) (Korn) Let $0<\alpha<1$. If $f \in C_{c}^{\alpha}\left(\mathbb{R}^{N}\right)$ and $u:=E * f$, then, for some finite C independent of f,

$$
\left|D^{2} u\right|_{C^{\alpha}\left(\mathbb{R}^{N}\right)} \leq C|f|_{C^{\alpha}\left(\mathbb{R}^{N}\right)}
$$

(e) Power growth nonlinearities. Bootstrap

Useful reference: [8, Section 3.3.2]. In what follows, we assume that $N \geq 3$.
Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function satisfying

$$
\mid f(x, t) \leq C\left(1+|t|^{p}\right), \forall x \in \Omega, \forall t \in \mathbb{R}
$$

Let u satisfy

$$
\begin{aligned}
& u \in H_{l o c}^{1}(\Omega), x \mapsto f(x, u(x)) \in L_{l o c}^{1}(\Omega) \\
& -\Delta u=f(x, u(x)) \text { in } \mathscr{D}^{\prime}(\Omega) .
\end{aligned}
$$

A Exercise. Assume that $p<\frac{N+2}{N-2}$. Then $u \in W_{l o c}^{2, r}(\Omega), \forall r<\infty$.
(B) Proposition. The same holds when $p=\frac{N+2}{N-2}$.

Moreover, if $u \in H_{\text {loc }}^{1}(\Omega)$ satisfies

$$
-\Delta u=a(x) u+b(x), \text { with } a \in L_{l o c}^{N / 2}(\Omega), b \in L_{l o c}^{\infty}(\Omega),
$$

then $u \in L_{l o c}^{r}(\Omega), \forall r<\infty$.
© Exercise. Let $p>\frac{N+2}{N-2}$. Prove that the equation $-\Delta u=|u|^{p}$ has a locally unbounded solution $u \in H^{1} \cap L^{p}\left(B_{1}(0)\right)$, of the form $u(x)=\lambda|x|^{-\alpha}$, for appropriate constants $\lambda, \alpha>0$.

(f) A glimpse of the De Giorgi regularity theory

Useful references: [4, Sections 8.5-8.9], [5, Chapter 4]. For the record:
A Theorem (local boundedness; Stampacchia, Ladyzhenskaya, Uraltseva, Trudinger,...) Let $A=A(x)$ be uniformly elliptic in $\Omega:=B_{1}(0)$. Let $u \in H^{1}(\Omega)$ satisfy $-\operatorname{div}(A \nabla u)=$ $f \in L^{p}(\Omega)$, where $p>\frac{N}{2}$. Then $u \in L_{\text {loc }}^{\infty}(\Omega)$ and, with a finite constant depending only on $0<R<1$ and p,

$$
\|u\|_{L^{\infty}\left(B_{R}(0)\right)} \leq C\left(\|f\|_{L^{q}(\Omega)}+\|u\|_{L^{1}(\Omega)}\right) .
$$

B Theorem (local C^{α} regularity; De Giorgi, Nash, Ladyzhenskaya, Uraltseva, Moser,...) There exists some $0<\alpha<1$ depending only on p and the ellipticity constants of A such that the above u belongs to $C_{l o c}^{\alpha}(\Omega)$ and satisfies, with a finite constant C depending only on R and p

$$
|u(x)-u(y)| \leq C\left(\|f\|_{L^{q}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right), \forall x, y \in B_{R}(0) .
$$

(g) Wente estimates. Compensation phenomena

Useful references: [1], [2], [7, Section 10.3]
A Theorem (Wente) Let $\Omega \in C^{1,1}$ be a bounded domain in \mathbb{R}^{N}, and let $F \in H^{1}\left(\Omega ; \mathbb{R}^{2}\right)$. Then the problem

$$
\begin{cases}-\Delta u=\operatorname{det}(J F) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a (unique) weak solution $u \in H_{0}^{1}(\Omega)$. In addition, we have $u \in C(\bar{\Omega})$ and, for some finite constant independent of F, we have the Wente estimates

$$
\|u\|_{\infty}+\|\nabla u\|_{2} \leq C\|\nabla F\|_{2} .
$$

B For the record:
Theorem (Fefferman, Stein, Coifman, Lions, Meyer, Semmes) If $F \in W_{c}^{1, N}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$, and we set $u:=E *[\operatorname{det} J F)]$, then $D^{2} u \in L^{1}\left(\mathbb{R}^{N}\right)$ and, with a finite constant independent of F and of its support,

$$
\left\|D^{2} u\right\|_{1} \leq C\|\nabla F\|_{N} .
$$

References

[1] Haïm Brezis and Jean-Michel Coron. Multiple solutions of H-systems and Rellich's conjecture. Comm. Pure Appl. Math., 37(2):149-187, 1984.
[2] Ronald Coifman, Pierre-Louis Lions, Yves Meyer, and Stephen Semmes. Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 72(3):247-286, 1993.
[3] Lawrence C. Evans and Ronald F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.
[4] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order, volume 224 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1983.
[5] Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1997.
[6] Lars Hörmander. The analysis of linear partial differential operators. I, volume 256 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 1990. Distribution theory and Fourier analysis.
[7] Petru Mironescu. Fine properties offunctions: an introduction. http://math.univ-lyon1. fr/~mironescu/resources/introduction_fine_properties_functions_2005. pdf, 2005.
[8] Petru Mironescu. Sobolev spaces. Elliptic equations (Partial lecture notes). http: //math.univ-lyon1.fr/~mironescu/resources/sobolev_spaces_elliptic_ equations_2010.pdf, 2010.
[9] Augusto C. Ponce. Elliptic PDEs, measures and capacities, volume 23 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2016. From the Poisson equations to nonlinear Thomas-Fermi problems.
[10] James Serrin. Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18:385-387, 1964.

