PARTIAL EXAMINATION OCTOBER 27, 2023 – TWO HOURS

Exercise # **1**. Let:

- (i) $N \ge 3$.
- (ii) $\Omega \subset \mathbb{R}^N$ a bounded Lipschitz open set.
- (iii) $a \in L^{(2N)/(N+2)}(\Omega)$.
- (iv) $f \in C^1(\mathbb{R}, \mathbb{R})$ a Lipschitz function.

Set

$$F(u) := \int_{\Omega} a(x) f(u(x)) dx, \, \forall u \in H^{1}(\Omega).$$

Prove that $F \in C^1(H^1(\Omega), \mathbb{R})$, and that

$$F'(u)\varphi = \int_{\Omega} a(x)f'(u(x))\varphi(x) dx, \ \forall u \in H^{1}(\Omega), \ \forall \varphi \in H^{1}(\Omega).$$

Exercise # **2**. Recall the Sobolev embedding $H^1(\mathbb{R}^3) \hookrightarrow L^6(\mathbb{R}^3)$.

- a) Preliminary question. Prove that, for each $\varepsilon>0$, there exists some $C_{\varepsilon}<\infty$ such that $t\leq \varepsilon t^3+C_{\varepsilon},\ \forall\ t\geq 0.$
- b) Let $\Omega \subset \mathbb{R}^3$ be a bounded open set. Let $f \in L^{6/5}(\Omega)$ and $\lambda \in \mathbb{R}$. Prove that the equation $-\Delta u + u^5 = \lambda u + f$ in $\mathscr{D}'(\Omega)$

has a distributional solution $u \in H_0^1(\Omega)$.

Exercise # 3. Let $\Omega \subset \mathbb{R}^N$ be a bounded *connected* open set, and let $\lambda_1(\Omega)$ be the best constant in Poincaré's inequality, i.e., the largest constant C such that

$$C \int_{\Omega} u^2 \le \int_{\Omega} |\nabla u|^2, \ \forall u \in H_0^1(\Omega).$$

We take for granted the following result: if $u \in H^1_0(\Omega)$ is such that

$$\lambda_1(\Omega) \int_{\Omega} u^2 = \int_{\Omega} |\nabla u|^2,$$

then u is smooth and either $u\equiv 0$, or $u(x)\neq 0$, $\forall\, x\in \Omega$.

Let $a\in C(\overline{\Omega})$ be such that $a(x)\leq 1$, $\forall\,x\in\Omega$, and $a\not\equiv 1$. Prove that there exists some $\varepsilon>0$ such that

$$(\lambda_1(\Omega) + \varepsilon) \int_{\Omega} au^2 \le \int_{\Omega} |\nabla u|^2, \, \forall \, u \in H_0^1(\Omega).$$

Exercise # **4**. Let $\Omega \subset \mathbb{R}^N$ be a bounded open set. Let p be such that $\frac{2N}{N+1} . Set <math>r := \frac{Np}{2N-p}$. Sketch a proof of the following results.

- a) If $u, v \in W_0^{1,p}(\Omega)$, then $uv \in W_0^{1,r}(\Omega)$.
- b) If $u_j \rightharpoonup u$ and $v_j \rightharpoonup v$ in $W_0^{1,p}(\Omega)$, then $u_j v_j \rightharpoonup uv$ in $W_0^{1,r}(\Omega)$.