Partial examination

October 27, 2023 - TWO HOURS

Hints

Exercise \# 1. Let:

(i) $N \geq 3$.
(ii) $\Omega \subset \mathbb{R}^{N}$ a bounded Lipschitz open set.
(iii) $a \in L^{(2 N) /(N+2)}(\Omega)$.
(iv) $f \in C^{1}(\mathbb{R}, \mathbb{R})$ a Lipschitz function.

Set

$$
F(u):=\int_{\Omega} a(x) f(u(x)) d x, \forall u \in H^{1}(\Omega)
$$

Prove that $F \in C^{1}\left(H^{1}(\Omega), \mathbb{R}\right)$, and that

$$
F^{\prime}(u) \varphi=\int_{\Omega} a(x) f^{\prime}(u(x)) \varphi(x) d x, \forall u \in H^{1}(\Omega), \forall \varphi \in H^{1}(\Omega)
$$

Hints. Let $p:=(2 N) /(N+2)$ and $q:=(2 N) /(N-2)$ and $X:=L^{q}(\Omega)$. Let G be given by the same formula as F, but for $u \in X$. By the Sobolev embedding $i: H^{1}(\Omega) \rightarrow X$, we have $F=G \circ i$, and is suffices to prove that G is C^{1} and its differential is given by the same formula as the one of F.

Fix some $u \in X$ and a sequence $\left(\varphi_{j}\right) \subset X \backslash\{0\}$ such that $\left\|\varphi_{j}\right\|_{q} \rightarrow 0$. Up to a subsequence, we have $\varphi_{j} \rightarrow 0$ a.e. Write $\varphi_{j}=t_{j} \psi_{j}$, with $\left\|\psi_{j}\right\|_{q}=1$ and $t_{j}>0, t_{j} \rightarrow 0$. Let η_{j} be such that

$$
a f\left(u+\varphi_{j}\right)-a f(u)=a f^{\prime}\left(u+\eta_{j}\right) \varphi_{j},\left|\eta_{j}\right| \leq\left|\varphi_{j}\right|
$$

By dominated convergence and the fact that p and q are conjugated, we have successively (up to a subsequence)

$$
\begin{aligned}
& a f^{\prime}\left(u+\eta_{j}\right)-a f^{\prime}(u) \rightarrow 0 \text { in } L^{q}(\Omega) \\
& \frac{a f\left(u+\varphi_{j}\right)-a f(u)-a f^{\prime}(u) \varphi_{j}}{t_{j}}=\left[a f^{\prime}\left(u+\eta_{j}\right)-a f^{\prime}(u)\right] \psi_{j} \rightarrow 0 \text { in } L^{1}(\Omega)
\end{aligned}
$$

whence the differentiability of G at u.
In order to prove the continuity of G^{\prime}, it suffices to prove that $L^{q}(\Omega) u \mapsto a f^{\prime}(u) \in L^{p}(\Omega)$ is continuous. This follows by dominated convergence.

Exercise \# 2. Recall the Sobolev embedding $H^{1}\left(\mathbb{R}^{3}\right) \hookrightarrow L^{6}\left(\mathbb{R}^{3}\right)$.
a) Preliminary question. Prove that, for each $\varepsilon>0$, there exists some $C_{\varepsilon}<\infty$ such that

$$
t \leq \varepsilon t^{3}+C_{\varepsilon}, \forall t \geq 0
$$

b) Let $\Omega \subset \mathbb{R}^{3}$ be a bounded open set. Let $f \in L^{6 / 5}(\Omega)$ and $\lambda \in \mathbb{R}$. Prove that the equation

$$
-\Delta u+u^{5}=\lambda u+f \text { in } \mathscr{D}^{\prime}(\Omega)
$$

has a distributional solution $u \in H_{0}^{1}(\Omega)$.

Hints. b) Set

$$
\begin{aligned}
J(u) & :=J_{1}(u)+J_{2}(u), \forall u \in H_{0}^{1}(\Omega) \\
J_{1}(u) & :=\frac{1}{2} \int_{\Omega}|\nabla u|^{2}+\frac{1}{6} \int_{\Omega} u^{6}-\int_{\Omega} f u, J_{2}(u):=-\frac{\lambda}{2} \int_{\Omega} u^{2} .
\end{aligned}
$$

The name of the game is to prove that J has a minimum point. We know that J_{1} is convex and continuous, while J_{2} is weakly continuous (by the compactness of $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$). We find that J is weakly l.s.c. In order to conclude, it suffices to prove that J is coercive. With $\varepsilon|\lambda|=1 / 3$, we find that

$$
\begin{aligned}
J(u) \geq & \frac{1}{2} \int_{\Omega}|\nabla u|^{2}-\frac{|\lambda| C_{\varepsilon}}{2}-\|f\|_{6 / 5}\|u\|_{6} \\
& \geq \frac{1}{2}\|u\|_{H_{0}^{1}(\Omega)}^{2}-\frac{|\lambda| C_{\varepsilon}}{2}-K_{1}\|f\|_{6 / 5}\|u\|_{H_{0}^{1}(\Omega)}
\end{aligned}
$$

Exercise \# 3. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded connected open set, and let $\lambda_{1}(\Omega)$ be the best constant in Poincaré's inequality, i.e., the largest constant C such that

$$
C \int_{\Omega} u^{2} \leq \int_{\Omega}|\nabla u|^{2}, \forall u \in H_{0}^{1}(\Omega)
$$

We take for granted the following result: if $u \in H_{0}^{1}(\Omega)$ is such that

$$
\lambda_{1}(\Omega) \int_{\Omega} u^{2}=\int_{\Omega}|\nabla u|^{2}
$$

then u is smooth and either $u \equiv 0$, or $u(x) \neq 0, \forall x \in \Omega$.
Let $a \in C(\bar{\Omega})$ be such that $a(x) \leq 1, \forall x \in \Omega$, and $a \not \equiv 1$. Prove that there exists some $\varepsilon>0$ such that

$$
\left(\lambda_{1}(\Omega)+\varepsilon\right) \int_{\Omega} a u^{2} \leq \int_{\Omega}|\nabla u|^{2}, \forall u \in H_{0}^{1}(\Omega) .
$$

Hints. Argue by contradiction and consider a sequence $\left(u_{j}\right) \subset H_{0}^{1}(\Omega)$ such that

$$
1=\int_{\Omega}\left|\nabla u_{j}\right|^{2} \geq \lambda_{1}(\Omega) \int_{\Omega}\left(u_{j}\right)^{2} \geq \lambda_{1}(\Omega) \int_{\Omega} a\left(u_{j}\right)^{2}>(1-1 / j) \int_{\Omega}\left|\nabla u_{j}\right|^{2}=1-1 / j
$$

Up to a subsequence $u_{j} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$ and $u_{j} \rightarrow u$ in $L^{2}(\Omega)$. Since $\lambda_{1}(\Omega) \int_{\Omega} u^{2}=1$, we find that $\int_{\Omega}|\nabla u|^{2} \geq 1=\lim _{j} \int_{\Omega}\left|\nabla u_{j}\right|^{2}$, and thus $u_{j} \rightarrow u$ in $H_{0}^{1}(\Omega)$. Finally,

$$
1=\int_{\Omega}|\nabla u|^{2}=\lambda_{1}(\Omega) \int_{\Omega} u^{2}=\int_{\Omega} a u^{2}
$$

The second equality implies that $u(x) \neq 0, \forall x \in \Omega$. The last one yields the contradiction $a \equiv 1$.
Exercise \#4. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded open set. Let p be such that $\frac{2 N}{N+1}<p<N$. Set $r:=\frac{N p}{2 N-p}$. Sketch a proof of the following results.
a) If $u, v \in W_{0}^{1, p}(\Omega)$, then $u v \in W_{0}^{1, r}(\Omega)$.
b) If $u_{j} \rightharpoonup u$ and $v_{j} \rightharpoonup v$ in $W_{0}^{1, p}(\Omega)$, then $u_{j} v_{j} \rightharpoonup u v$ in $W_{0}^{1, r}(\Omega)$.

Proof. a) Let $q:=(N p) /(N-p)$, so that

$$
\begin{equation*}
1 / r=1 / p+1 / q \text { and } W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega) \tag{1}
\end{equation*}
$$

Let $u, v \in W^{1, p}(\Omega)$. Consider $\left(u_{j}\right),\left(v_{j}\right) \subset C_{c}^{\infty}(\Omega)$ such that $u_{j} \rightarrow u, v_{j} \rightarrow v$ in $W_{0}^{1, p}(\Omega)$. Then $\nabla\left(u_{j} v_{j}\right)=u_{j} \nabla v_{j}+v_{j} \nabla u_{j} \rightarrow u \nabla v+v \nabla u$ in $L^{r}(\Omega)$ (using (1)).
By the Sobolev embedding, we also have $u_{j} v_{j} \rightarrow u v \in L^{q / 2}(\Omega)$, and thus (since $q / 2>r$), $u_{j} v_{j} \rightarrow$ $u v \in L^{r}(\Omega)$. This yields $u v \in W_{0}^{1, r}(\Omega)$ and the Leibniz rule $\nabla(u v)=u \nabla v+v \nabla u$.
b) By the chain rule and (1), the sequence $\left(u_{j} v_{j}\right)$ is bounded in $W_{0}^{1, r}(\Omega)$, so it has, up to a subsequence, a weak limit which is also an a.e. limit. On the other hand, up to a subsequence $u_{j} v_{j} \rightarrow u v$ a.e. By uniqueness, $u_{j} v_{j} \rightharpoonup u v$.

