Université Claude Bernard Lyon 1 Mesure et intégration

Licence de mathématiques $3^{\rm e}$ année Année 2020–2021

Épreuve de substitution – le jeudi 11 février 2021 – – durée 60 + 30 minutes –

Consignes

- 1. Le seul document accepté est le support complet de cours, sous forme papier. Il ne doit pas contenir d'ajouts concernant la correction des exercices.
- 2. Pas d'ordinateur, tablette, téléphone, calculatrice, montre connectée, ou autre objet connecté.
- 3. Pour chaque intégrale de la forme $\int_a^b f(x) \, dx$, préciser s'il s'agit d'une intégrale de Riemann, généralisée et/ou par rapport à la mesure de Lebesgue; justifier son existence et préciser à quel type d'intégrale s'appliquent les résultats utilisés.

Sujet # 1

Exercice # 1. Soit $f(x) := \int_0^1 \frac{t^{x-1}}{1+t} dt$, $\forall x \in \mathbb{R}$.

- a) Montrer que f est finie si et seulement si x > 0.
- b) Montrer que f est continue sur $]0, \infty[$.
- c) Calculer f(x) + f(x+1) pour x > 0. En déduire la valeur de $\lim_{x \searrow 0} x f(x)$.

Exercice # 2.

- a) Montrer que l'intégrale généralisée $I:=\int_0^\infty \frac{\ln x}{x^2-1}\,dx$ existe et que $I=2\int_0^1 \frac{\ln x}{x^2-1}\,dx$.
- b) Calculer de deux façons différentes l'intégrale

$$\int_{\mathbb{R}_+ \times \mathbb{R}_+} \frac{dxdy}{(1+y)(1+x^2y)}.$$

En déduire que $I=\pi^2/4$.

c) Déduire des questions précédentes et d'un développement en série entière de la fonction $x\mapsto \frac{1}{1-x^2}$ que

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8} \text{ et } \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice # 3. Calculer la transformée de Fourier de la fonction

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) := e^{-|x|-y^2}, \ \forall x, y \in \mathbb{R}.$$

Sujet # **2**

Exercice # 1. Soit
$$I(\alpha) := \int_0^\infty \frac{\ln(1 + \alpha x^2)}{1 + x^2} dx$$
, $\alpha \ge 0$.

a) Montrer que la fonction $I: \mathbb{R}_+ \to \mathbb{R}$ est continue sur \mathbb{R}_+ et de classe C^1 sur \mathbb{R}_+^* .

b) Donner la formule de $I'(\alpha)$ si $\alpha > 0$.

c) Soit $\alpha \in \mathbb{R}_+^* \setminus \{1\}$. Décomposer la fraction $\frac{x^2}{(1+x^2)(1+\alpha x^2)}$ en éléments simples. En déduire la valeur de $I'(\alpha)$ pour $\alpha>0$.

d) Calculer $I(\alpha)$ pour $\alpha \geq 0$.

Exercice # **2.** Pour $(x, y) \in [-1, 1]^2$, soit

$$f(x,y) := \begin{cases} (xy)/(x^2 + y^2)^2, & \text{si } (x,y) \neq (0,0) \\ 0, & \text{sinon} \end{cases}.$$

a) Montrer que les intégrales itérées de f existent et sont égales.

b) La fonction f est-elle λ_2 -intégrable sur $[-1, 1]^2$?

Exercice # **3.** Calculer

$$\lim_{n \to \infty} \int_0^\infty \frac{e^{-x/n}}{1+x} \, dx.$$

Sujet #3

Exercice # 1. Soient a,b>0 deux constantes. Déterminer, en fonction de a et b, la nature de l'intégrale

$$I := \int_0^\infty \frac{\sin x}{x^a (1+x)^b} \, dx,$$

vue comme intégrale généralisée ou comme intégrale de Lebesgue.

Exercice # 2. Calculer

$$\lim_{n\to\infty} \int_0^n \left(1 - \frac{x}{n}\right)^n \sin x \, dx.$$