Résumé cours Maths 4 du 23 octobre 2015

Chapitre 3. Théorie des distributions (suite)

- 1. (Rappel) Une distribution est une application $\varphi \mapsto T(\varphi)$ avec $\varphi \in C_c^{\infty}(\mathbb{R})$, qui est linéaire et "continue". La continuité, qui est l'exigence principale de cette définition, sera considérée comme toujours satisfaite et n'a pas été rigoureusement définie.
- 2. Exercice travaillé. Les fonctions a) $\varphi(x)=x$; b) $\varphi(x)=e^{-x^2/2}$ n'appartiennent pas à $C_c^\infty(\mathbb{R})$.
- 3. (Rappel) Une fonction f définit une distribution si (et seulement si) nous avons $f \in L^1([a,b])$ pour tous a,b. Dans ce cas, la distribution associée à f est donnée par la formule $f(\varphi) = \int_{-\infty}^{\infty} f(x) \varphi(x) dx$.
- 4. Exercice travaillé. Soient respectivement a) $f(x) = \ln |x|$, $x \neq 0$ et b) f(x) = 1/x, $x \neq 0$. Alors la fonction f de a) définit une distribution, mais pas celle de b).
- 5. (Rappel) Opérations avec les distributions :
 - a) $(a T)(\varphi) = T(a \varphi)$ (avec T distribution et $a \in C^{\infty}$);
 - b) $T'(\varphi) = -T(\varphi')$.
 - c) En général, pour définir une opération avec les distributions, on calcule le résultat si T est donnée par une fonction (C^{∞} , si nécessaire), puis on impose que le résultat reste vrai dans le cas général.
- 6. Exercice travaillé : la définition de T' suit le point c) ci-dessus, au sens où $f'(\varphi) = -f(\varphi')$ si $f \in C^1$.
- 7. Exercice travaillé. Calculer $(\ln |x|)'$. Réponse : $(\ln |x|)' = v$. p. $\frac{1}{x}$, où

v. p.
$$\frac{1}{x}(\varphi) := \lim_{\varepsilon \to 0+} \int_{|x| > \varepsilon} \frac{1}{x} \varphi(x) dx = \lim_{\varepsilon \to 0+} \left\{ \int_{-\infty}^{-\varepsilon} \frac{1}{x} \varphi(x) dx + \int_{\varepsilon}^{\infty} \frac{1}{x} \varphi(x) dx \right\}.$$

Remarques:

- (i) v. p. = valeur principale.
- (ii) l'action de v. p. $\frac{1}{x}$ ressemble à celle de $\frac{1}{x}$, mais nous savons que $\frac{1}{x}$ ne définit pas une distribution.
- 8. Exercice travaillé. Calculer x v. p. $\frac{1}{x}$. Réponse : 1.

9. Exercice travaillé. Trouver la définition de $\widehat{T}(\varphi)$. Réponse : $\widehat{T}(\varphi) = T(\widehat{\varphi})$, car cette égalité est vraie si T est donnée par une fonction $f \in L^1(\mathbb{R})$.

Remarques:

- (i) Dans la définition correcte, φ n'est pas dans $C_c^{\infty}(\mathbb{R})$, mais dans un espace plus grand, contenant à la fois $C_c^{\infty}(\mathbb{R})$ et les gaussiennes (fonctions de la forme e^{-ax^2} , avec a>0 constante). Il s'agit de l'espace de Schwartz $\mathscr{S}(\mathbb{R})$. Ce point ne sera pas détaillé. (ii) On ne peut pas définir la transformation de Fourier de toutes les distributions.
- (ii) On ne peut pas définir la transformation de Fourier de toutes les distributions. Mais toutes les distributions concrètes considérées jusqu'ici ont une transformation de Fourier définie comme ci-dessus : 1, H, δ_0 , |x|, $e^{-|x|}$, $\frac{1}{1+x^2}$, $\ln|x|$, v. p. $\frac{1}{x}$.
- (iii) Concrètement, pour calculer \widehat{T} pour une distribution T usuelle : on utilise le fait que la formule de $T(\zeta)$, $\zeta \in C_c^{\infty}(\mathbb{R})$, reste valable quand $\zeta = \widehat{\varphi}$, $\varphi \in C_c^{\infty}(\mathbb{R})$.