Semestre d'automne 2015-2016

Cours: P. Mironescu, TD: O. Kravchenko

Feuille d'exercices nº 7

FORMES DIFFÉRENTIELLES. THÉORÈME DE GREEN-RIEMANN

Formes différentielles

Exercice 1.

Simplifier:

$$dx \wedge dz \wedge dy + 3dz \wedge dy \wedge dx - dy \wedge dz \wedge dx + 5dx \wedge dx \wedge dx - 7dz \wedge dz \wedge dy$$
.

Exercice 2.

Donner la formule pour d, l'opérateur de de Rham (différentielle extérieure) en dimension 3 et calculer $d\alpha$ où :

$$\alpha := x^2 y dx + z dy + (y + x + 2z) dz$$

et $d\omega$ où :

$$\omega := x^2 y dy \wedge dz + z dz \wedge dx + (y + x + 2z) dx \wedge dy.$$

Exercice 3.

Soit $\{dx_1, \dots, dx_p\}$ une base dans l'espace des formes différentielles $\Omega^1(\mathbb{R}^p)$.

- 1. Le produit exterieur a pour propriété $\alpha \wedge \beta = -\beta \wedge \alpha$ pour $\alpha, \beta \in \Omega^1(\mathbb{R}^p)$. En déduire que $dx_i \wedge dx_i = 0, \ \forall i \in [1, p]$.
- 2. Existe-t-il une 1-forme $\gamma \in \Omega^1(\mathbb{R}^p)$ telle que $\gamma \wedge \gamma \neq 0$?
- 3. Existe-t-il une 2-forme $\omega \in \Omega^2(\mathbb{R}^p)$ telle que $\omega \wedge \omega \neq 0$?

Exercice 4.

Déterminer si les formes suivantes dans \mathbb{R}^2 sont des formes différentielles exactes. Si c'est le cas trouver leur primitives.

- a) 2(x+y)dx + 2(x-3y)dy, b) $\cos(x)dx + \sin(y)dy$, c) (x-y)dx + (x+y)dy,
- d) dx dy, e) $dx \wedge dy$, f) $x^2ydx \wedge dy$.

Exercice 5.

Resoudre l'équation différentielle $y'\cos x - y\sin x = 0$ en la voyant comme une équation sur une forme différentielle exacte : $dy\cos x - y\sin x dx = 0$. Puis resoudre $y' - (\tan x)y = 0$.

Exercice 6.

Soit $p: \mathbb{R}_+ \times [0, +\infty[\to \mathbb{R}^2 \text{ une application qui envoie } (r, t) \mapsto (x, y): x = r \cos t, y = r \sin t$. L'espace $\Omega^1(\mathbb{R}^2)$, de 1-formes dans \mathbb{R}^2 , a pour base $B = \{dx, dy\}$ et l'espace $\Omega^1(\mathbb{R}_+ \times [0, +\infty[), de$ 1-formes dans $\mathbb{R}_+ \times [0, +\infty[$, a pour base $B' = \{dr, dt\}$.

- 1. Exprimer la base B dans la base B'.
- 2. Quel est la base de $\Omega^2(\mathbb{R}^2)$, de 2-formes dans \mathbb{R}^2 ?

Exercice 7.

Soit $\{dx, dy, dz\}$ une base dans $\Omega^1(\mathbb{R}^3)$, l'espace des 1-formes differentielles de \mathbb{R}^3 . Soit $\Omega^2(\mathbb{R}^3)$, l'espace de 2-formes différentielles. On considère l'application * de Hodge.

- 1. Calculer *(dx). Quelle est la valeur de *(ydx)?
- 2. Soit $\mu = dx \wedge dz$. Quelle est la forme $*\mu$?

Théorème de Green-Riemann

Soient D un domain de \mathbb{R}^2 et $C = \partial D$, le bord de D. Soit $P, Q : D \to \mathbb{R}$ deux fonctions C^1 . Alors, la formule de Green-Riemann relie l'intégrale curviligne avec l'intégrale double :

$$\oint_C Pdx + Qdy = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dxdy.$$

En particulier, si Q = x et P = y,

$$Aire(D) = \iint_D dxdy = \frac{1}{2} \oint_C xdy - ydx.$$

On remarque aussi la formule de Green-Riemann relie une 1-forme différentielle avec sa différentielle c'est une formule de Stokes:

$$\oint\limits_{C}\alpha=\iint_{D}\mathrm{d}\alpha,\ \mathrm{où}\ C=\partial D.$$

Cela se généralise en \mathbb{R}^3 en un lien de l'intégrale curviligne sur une courbe C avec l'intégrale de surface sur une surface S si la courbe C est le bord de la surface S : $C = \partial S$. En particulier, si $\alpha = P dx + Q dy + R dz$ on a

$$\oint_C P dx + Q dy + R dz = \iint_S \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx dz + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Soit α une forme exacte, i.e. il existe une fonction f tel que $\alpha = du$. L En particulier, si $\alpha = Pdx + Qdy + Rdz$ telle que $\frac{\partial u}{\partial x} = P$, $\frac{\partial u}{\partial y} = Q$, $\frac{\partial u}{\partial z} = R$, par la formule de Stokes on a $\oint_C P dx + Q dy + R dz = 0$. La consequence de ce resultat est que l'intégrale curviligne d'une forme exacte sur un parcours C menant d'un point A au point B d'une forme exacte depend que de A et de Bet ne depend pas de parcours choisi entre A et B. En effet,

$$\int_C \mathrm{d}u = u(B) - u(A).$$

Exercice 8.

Soit la courbe C un cercle donné par l'équation $x^2 + y^2 = a^2$.

En utilisant la formule de Green-Riemann calculer les intégrales :

1.
$$\oint_C xy dx + (x+y) dy, \text{ 2.} \oint_C (x-y) dx + (x+y) dy, \text{ 3.} \oint_C x^2 y dx - xy^2 dy.$$

Exercice 9.

Soit la courbe E un ellipse donné par l'équation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

En utilisant la formule de Green-Riemann calculer l'intégrale : $\oint (x+y) dx - (x-y) dy$.

Exercice 10.

Soit la courbe T un triangle ABC de sommets A(a,0), B(a,a), D(0,a)En utilisant la formule de Green-Riemann calculer l'intégrale : $\oint_T y^2 dx + (x+y)^2 dy$.

Exercice 11.

Soit la courbe L un quart du cercle d'équation $x^2 + y^2 = a^2$, $x \ge 0$ et $y \ge 0$. En utilisant la formule de Green-Riemann calculer l'intégrale : $\oint_T (y - x^2) dx - (x + y^2) dy$.

Exercice 12.

Soit la courbe Q un carré A(1,0), B(0,1), D(-1,0), E(0,-1). En utilisant la formule de Green-Riemann calculer l'intégrale : $\oint_Q \left(\frac{\mathrm{d}x - \mathrm{d}y}{x+y}\right)$.

Exercice 13.

Soit R le domaine délimité par l'astroïde de l'équation $x = a\cos^3 t$, $y = a\sin^3 t$, $0 \le t \le 2\pi$. En utilisant la formule de Green-Riemann calculer son aire.

Exercice 14.

Trouver l'aire de l'ellipse définie paramétriquement : $x = a \cos t, \ y = b \sin t, \ 0 \le t \le 2\pi$.

Exercice 15.

On considère $\oint_C P(x,y) dx + Q(x,y) dy$, avec $P(x,y) := \frac{-y}{x^2 + y^2}$ et $Q(x,y) := \frac{x}{x^2 + y^2}$ définie sur un ouvert $U := \mathbb{R}^2 \setminus \{(0,0)\}$.

1. Vérifier que

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$

la condition nécessaire pour que la 1-forme Pdx + Qdy soit exacte.

- 2. Calculer $\oint_C P(x,y) dx + Q(x,y) dy$ où C est un cercle unitaire paramétré comme suit : $\gamma(t) := (\cos t, \sin t), \ t \in [0,2\pi], \ x(t) := \cos t, \ y(t) := \sin t.$
- 3. Conclure que la forme Pdx + Qdy n'est pas exacte.

Exercice 16.

Montrer que l'intégrale $\oint_L \frac{\partial (x^2y^3)}{\partial x} dx + \frac{\partial (x^2y^3)}{\partial y} dy$, le long du segment de droite allant du point (7,1) au point (5,2) est égale à 151. Quelle est la valeur de la même intégrale si L est une partie d'une parabôle passant du point (7,1) au point (5,2).

3