OPTIMISATION

LICENCE MATHÉMATIQUE ET GESTION 2013-2014

Pratique de l'algorithme du simplexe

1. Tableau initial d'un $(PL\Sigma)$

Pour un problème de la forme $\min d \cdot x$ sous $Ax \leq b$ et $x \geq 0$ (avec $A \in M_{m,n}$ et $b \geq 0$), on a :

- 1. Base initiale $\mathcal{B} = \{n+1, \dots, n+m\}$
- 2. $B = I_m, N = A$
- 3. $c_B = 0, c_N = d$
- 4. c = (d, 0)
- 5. $x_B = b, x_N = 0$
- 6. Dernière ligne du tableau :

$$c^{T} - c_{R}^{T} B^{-1}(A \mid \mathbf{I}_{m}) = c^{T} = (d^{T}, 0^{T})$$

7.
$$w = -(c_B \cdot x_B + c_N \cdot x_N) = 0$$

Ce qui donne le tableau initial

2. Tableau initial du (PA)

Pour un problème de la forme $(PLS) \min d \cdot x$, sous Ax = b et $x \ge 0$, en absence de base admissible « visible », on part du $(PA) \min y_1 + \ldots + y_m$ sous Ax + y = b, $x \ge 0$, $y \ge 0$. Ici, $b \ge 0$ et $A \in M_{m,n}$. Pour ce problème :

- 1. Base initiale $\mathcal{B} = \{n+1, \dots, n+m\}$
- 2. $B = I_m, N = A$

3.
$$c_B = (\underbrace{1, \dots, 1}_{m})^T, c_N = 0$$

4.
$$c = (\underbrace{0, \dots, 0}_{n}, \underbrace{1, \dots, 1}_{m})^{T}$$

5.
$$x_B = b, x_N = 0$$

6. Dernière ligne du tableau :

$$c^{T} - c_{B}^{T}B^{-1}(A \mid \mathbf{I}_{m}) = (-c_{B}^{T}A, 0^{T}) = -(s_{1}, \dots, s_{n}, \underbrace{0, \dots, 0}_{m}),$$

avec s_j la somme de la j^e colonne de A.

7.
$$w = -c_B \cdot b - c_N \cdot 0 = -c_B \cdot b = -s$$
, avec s la somme de b

Ce qui donne le tableau initial

Dans le même tableau, la ligne correspondant au problème initial (PLS) s'obtient comme suit.

1.
$$c_B = 0, c_N = d$$

2.
$$c = (d, 0)$$

3. Dernière ligne du tableau :

$$c^{T} - c_{B}^{T}B^{-1}(A | \mathbf{I}_{m}) = (-(c_{B}A)^{T}, 0^{T}) = c^{T} = (d^{T}, 0^{T})$$

4.
$$w = -c_B \cdot b - c_N \cdot 0 = -0 \cdot b = 0$$

Ce qui donne le tableau « à double comptabilité »

3. Passage du (PA) au (PLS)

Soit z_0 le minimum de (PA). Rappelons que, si $z_0 > 0$, alors le système Ax = b, $x \ge 0$ n'a pas de solution.

Si $z_0 = 0$, alors soit $\mathcal{B} \subset \{1, \dots, n+m\}$ la base obtenue par la méthode du simplexe appliquée au (PA). Soit X = (x, y) la solution optimale de (PA) correspondant à la base \mathcal{B} . On peut aussi écrire $X \sim (X_B, X_N) = (X_B, 0)$.

- * Commençons par noter que $0 = z_0 = y_1 + \cdots + y_m$, d'où y = 0. Il s'ensuit que X = (x, 0).
- * On décompose $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$. Ici, $\mathcal{B}_1 \subset \{1, \dots, n\}$ contient les indices de \mathcal{B} qui correspondent aux variables originales x_1, \dots, x_n du problème. \mathcal{B}_2 correspond aux variables artificielles y_1, \dots, y_m .
- * Commençons par le cas où $\mathcal{B}_2 = \emptyset$, et donc $\mathcal{B} = \mathcal{B}_1$ (ce qui arrive le plus souvent en pratique).
- * Notons que les colonnes correspondant à \mathcal{B} sont des colonnes de A, et qu'elles sont libres (car \mathcal{B} est une base de $(A \mid I_m)$.
- * En utilisant les contraintes Ax + y = b, $x \ge 0$, et le fait que y = 0, on trouve que Ax = b et $x \ge 0$. Donc x est la solution de base correpondant à la base \mathcal{B} de A, et $x \ge 0$.
- * Conclusion : \mathcal{B} est une base admissible.
- * Supposons maintenant que $\mathcal{B}_2 \neq \emptyset$.
- * Rappelons que y=0. Par ailleurs, les coordonnées de X hors base sont nulles, c'est-à-dire $X_N=0$. Nous obtenons que les coordonnées (strictement) positives de X correspondent à \mathcal{B}_1 .
- * Comme les colonnes correspondant à \mathcal{B}_1 sont libres (pourquoi?), on trouve que x est une solution de base admissible (cf Corollaire 2.9, p. 5 du poly).
- * La preuve de la Proposition 2.8, pp. 4-5, montre que une base admissible \mathcal{C} donnant x comme solution de base admissible s'obtient en complétant la famille libre \mathcal{B}_1 à une base $\mathcal{C} \subset \{1, \ldots, n\}$.
- * Concrètement, ceci se fait ainsi : nous disposons d'une base $\mathcal{B} \subset \{1, \dots, n+m\}$ donnant (x,0) comme solution de base admissible. Soit $l=\#\mathcal{B}_2$. On sort \mathcal{B}_2 de la base et on fait rentrer dans la base l coordonnées parmi $\{1,\dots,n\}\setminus\mathcal{B}_2$ en utulisant l pivots de Gauss. La seule condition est de choisir à chaque fois un pivot non nul.
- * Preuve du fait que la famille $\mathcal C$ obtenue à la fin donne x comme solution de base admissible : soit B_1 la matrice correspondant à $\mathcal B_1$, de sorte que si $(A \mid I_m) \sim (B_1 \mid N_1)$, alors (1) $(x,0) \sim (x_{B_1},0)$. Dans la base $\mathcal C$ (qui contient $\mathcal B_1$), (x,0) s'écrit $(x_{C},0)$ (grâce à (1)). D'où (x,0) est la solution de base associée à $\mathcal C$ (pour le système Ax + y = b). Il s'ensuit que x est la solution de base associée à $\mathcal C$ pour le système Ax = b (pourquoi?).