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Chapter 1

Simple random walks in
dimension 1

Let pΩ,F ,Pq a probability space. Unless stated otherwise, all the random vari-
ables will be defined on that space.

1.1 Definitions

1.1.1 On the lattice Z

A simple random walk on Z is a sequence pStqtPN of integers, constructed as
follows: take

• S0 P Z distributed according to some initial probability ν0 on Z,

• a sequence of i.i.d. random variables pϵkqkPN which take values in t´1,1u,
i.e. there is p P r0, 1s such that

Prϵk “ 1s “ p, Prϵk “ ´1s “ 1 ´ p, for any k P N.

We then define

St`1 “ St ` ϵt`1, therefore St “ S0 `

t
ÿ

k“1

ϵk, t P N.

Note that pϵkqkPN are the independent steps performed by a random walker (or
random particle): St`1 increases the value of St by 1 if ϵt`1 “ 1 (one step to
the right) and decreases the value of St by 1 if ϵt`1 “ ´1 (one step to the left).
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4 CHAPTER 1. SIMPLE RANDOM WALKS IN DIMENSION 1

We denote by m :“ 2p ´ 1 the average displacement Erϵ1s. If p “
1
2 ô m “ 0,

the random walk is symmetric, otherwise it is asymmetric.

We can easily represent the graph of the random walk pStq, as the broken line
joining the points of coordinates pi, Siq. If the random walk performs N steps,
then there are 2N possible trajectories starting from p0, S0q (at each step, there
are two possibles choices).

Let us now state two important properties, which come easily from the defi-
nition. First, the law of large numbers and the central limit theorems give us
information on the asymptotic behavior of the simple random walk:

PROPOSITION 1.1 (Asymptotic behavior). Assume S0 “ 0:

• if p “
1
2 , then

lim
tÑ8

St

t
“ 0 a.s. and

St
?

t
D

ÝÝÑ
tÑ8

N p0, 1q,

where N p0, 1q is the standard normal distribution. In particular, when t is
large, with very high probability St P r´2

?
t, 2

?
ts

• if p ą
1
2 then

lim
tÑ8

St “ `8 a.s.

• if p ă
1
2 then

lim
tÑ8

St “ ´8 a.s.

Second, the simple random walk is one of the most famous examples of the
general Markov chains, which have the following property:

PROPOSITION 1.2 (Homogeneous Markov property). For any t ě 1, and any
i0, i1, . . . , it P Z,

P
`

St “ it | St´1 “ it´1, . . . , S0 “ i0
˘

“ P
`

St “ it | St´1 “ it´1

˘

“

$

’

&

’

%

p if it “ it´1 ` 1,

1 ´ p if it “ it´1 ´ 1,

0 otherwise.

which only depends on the difference it ´ it´1, but not on t.

The function P : Z ˆ Z Ñ r0,1s defined as Pi, j :“ PpSt “ j|St´1 “ iq is the
transition kernel for the random walk, and it satisfies

ÿ

jPZ

Pi, j “ 1.
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1.1.2 On the torus TN “ Z{NZ

When the particle evolves on the periodic discrete torus TN “ Z{NZ, its posi-
tion at time t P N can easily be defined similarly: we start from S0 distributed
according to an initial probability measure ν0 on TN, and then

St “

ˆ

S0 `

t
ÿ

k“1

ϵk

˙

mod N.

It has the same properties as the previous case, however, since the state space
TN is now finite, the transition probabilities are encoded by a N ˆN–stochastic
matrix:

PROPOSITION 1.3 (Transition probabilities). For any x , y P TN, let us introduce
the transition probabilities

Qx ,y :“ P
`

St`1 “ y | St “ x
˘

“ P
`

S1 “ y ´ x |S0 “ 0
˘

,

which do not depend on t, and only depend on y ´ x. Moreover, the transition
probability matrix Q :“ pQx ,yqx ,yPTN

completely characterizes the distribution of
St: for any t, s P N, for any x , y P TN, we have

P
`

St`s “ y | Ss “ x
˘

“ pQtqx ,y “ pQtq0,y´x “ P
`

St “ y ´ x |S0 “ 0
˘

. (1.1)

Finally, for any t P N, the matrix Qt is bi-stochastic:
ÿ

xPTN

pQtqx ,y “
ÿ

yPTN

pQtqx ,y “ 1.

Proof. By definition,

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 p 0 ¨ ¨ ¨ 0 1 ´ p

1 ´ p 0 p . . . 0

0
.. . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
.. . 1 ´ p 0 p

p 0 ¨ ¨ ¨ 0 1 ´ p 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

First, for t “ 1, by homogeneity we have: for any s P N,

P
`

Ss`1 “ y | Ss “ x
˘

“ Qx ,y . (1.2)
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One proves (1.1) by induction. Let us prove it for t “ 2:

P
`

S2`s “ y | Ss “ x
˘

“
ÿ

zPTN

P
`

S2`s “ y, S1`s “ z | Ss “ x
˘

“
ÿ

zPTN

P
`

S2`s “ y | S1`s “ z and Ss “ x
˘

P
`

S1`s “ z | Ss “ x
˘

“
ÿ

zPTN

P
`

S2`s “ y | S1`s “ z
˘

Qx ,z (by Markov property and (1.2))

“
ÿ

zPTN

Qz,yQx ,z “ pQ2
qx ,y (by (1.2)).

1.1.3 Canonical measure

Let us denote X “ Z or TN the space where the random walk evolves.

Note that for each t P N fixed, the random variable St is defined on pΩ,F ,Pq.
However it is often more convenient to consider the canonical probability mea-
sure, defined as follows:

let Pν0
be the probability law on the path space XN of the full trajectory pStqtPN

starting from the initial probability measure ν0 (on X ). More precisely, con-
sider the measurable function1

ϕ : pΩ,F ,Pq ÝÑ
`

XN,B
˘

ω ÞÝÑ
`

Stpωq
˘

tPN

and then, Pν0
is the pushforward measure

Pν0
:“ ϕ˚pPq, meaning, for any B P B, ϕ˚pPqpBq “ P

`

ϕ´1
pBq

˘

.

Its corresponding expectation on XN is denoted by Eν0
.

1.2 Asymptotic behavior and universality

In order to illustrate the link between a discrete model and a continuous one,
let us go back to the one-dimensional random walk on Z.

1The σ–algebra B of XN is the smallest σ–algebra that makes the projection maps x P

XN ÞÑ xk P TN measurable.
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We first define a continuous time process in the following way: for any t ě 0,
let Sptq be the linear interpolation between Srts and Srts`1, i.e.

Sptq :“ Srts ` pt ´ rtsqpSrts`1 ´ Srtsq.

Renormalising as in Proposition 1.1, the Central Limit Theorem gives

S˚

nptq :“
Spntq
?

n
dist.

ÝÝÑ
nÑ8

N p0, tq.

Moreover, for any 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tp, the random variables tS˚

npt iq ´

S˚

npt i´1qu, 1 ď i ď d, are independent, and each one converges in distribution
to a centered normal r.v.

N p0, pt i ´ t i´1qq.

Remarkably, the CLT shows that this limit does not depend much on the law of
the ϵk’s. In fact, we obtain the same convergence as soon as pϵkqkPN are centered
i.i.d. and with variance equal to 1. We obtain a universal limit of random walks,
which has the following properties:

DEFINITION 1.4. We call standard Brownian motion started from 0 a continuous-
time stochastic process

B :“ pBt , t ě 0q which takes values in R

such that B0 “ 0 a.s. and, for any 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tp,

• the variables tBt i
´ Bt i´1

u1ďiďp are independent (we say that it has inde-
pendent increments)

• for any i, Bt i
´Bt i´1

has the same law has N p0, pt i ´ t i´1qq (we say that the
increments are stationnary gaussian)

• almost surely, the function t ÞÑ Bt is continuous.

We give a few important results:

THEOREM 1.5 (Lévy, 1933). The one-dimensional standard Brownian motion
exists.

In other words, there exists pΩ,F ,Pxq and a stochastic process pBt , t ě 0q which
is defined on that space and satisfies Definition 1.4.

PROPOSITION 1.6 (Markov property). Let B be a standard Brownian motion on
R.
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1. For any s ą 0, the process pBt`s ´ Bs, t ě 0q is a Brownian motion indepen-
dent from σpBu : 0 ď u ď sq “: Fs.

2. Let T P R` Y t8u be a random variables such that, for any t ě 0, tT ď tu

is Ft–mesurable2. We denote by FT the σ-algebra of the events “before ” T,
namely

FT “
␣

A P F8 ; @ t ě 0, A X tT ď tu P Ft

(

,

where F8 is the σ–algebra generated by Bt , t P R`.

Then for any t ě 0, the process p1Tă8pBt`T ´ Btq, t ě 0q is a standard
Brownian motion independent from FT.

1.2.1 Universality and Donsker Theorem

The convergence of random walks is even stronger. We already know, from the
CLT, that

pS˚

npt1q, . . . , S˚

nptpqq
dist.

ÝÝÑ
nÑ8

pBt1
, . . . , Btp

q

(as random variables taken values in Rp). We have the following stronger
result

THEOREM 1.7 (Donsker, 1956). For any T ą 0, the random function S˚

n : r0, Ts Ñ

R converges in distribution towards the standard Brownian motion B in the metric
space pCpr0, Tsq, } ¨ }8q.

Some idea of the proof. We build pSnq on the same probability space as B, in a
way that their trajectories are close to each other.

This theorem is very powerful and it has several applications:

• discrete Ñ continuous :

We use a (simple!) random walk to show that pBt ´ Bt , t ě 0q has the
same distribution as p|B|t , t ě 0q, where Bt :“ supsďt Bs.

• continuous Ñ discrete :

We use direct computations on the Brownian motion to show that the
last moment where the random walk changes sign is asymptotically dis-
tributed as the Arcsin law:

sup
␣

1 ď k ď n ´ 1 ; SkSk`1 ď 0
( dist.

ÝÝÑ
nÑ8

A „ Arcsin law.

2In other words the “information” contained in the r.v. T only depends on the past and
present, not on future.



Chapter 2

Independent random walks on TN

We investigate here a toy model of a particle system, where indistinguishable
particles move as simple independent random walks on one-dimensional lat-
tices, with probability p to jump the right, and probability 1 ´ p to jump to the
left.

Let us start by distinguishing all particles: let K denote the total number of
particles at time 0 and take x1, . . . , xK P Z which will correspond to their initial
positions. Let tpϵi

nqui“1,...,K be K independent copies of sequences of i.i.d. ran-
dom variables such that

Ppϵi
n “ 1q “ p, Ppϵi

n “ ´1q “ 1 ´ p.

We define, for any t P N (the time variable), any i P t1, . . . , Ku,

Xi
t “

ˆ

x i `

t
ÿ

n“1

ϵi
n

˙

mod N, (2.1)

which therefore represents the position at time t of the i–th particle on the
torus. For any i, the sequence pXi

tqtPN is a simple random walk on the torus TN

starting at px i mod Nq with transition matrix Q.

Now, we are not interested in the individual position of each particle, but only
in the total number of particles at each site. For a site x P TN, we denote by
ηpxq P N the number of particles at site x for the configuration η P NTN . The
state space of the system, also called configuration space is ΩN “ NTN .

From the construction above, we are interested in the configuration of particles
at time t P N which is given by

ηtpxq “

K
ÿ

i“1

1tXi
t “ xu, x P TN.

9
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REMARK 2.1. Conversely, given an initial configuration η P ΩN, to define the
evolution of the system, we can first label all particles and then let them evolve
according to the stochastic dynamics described above. In fact, in the following
we will start from η0 distributed according to a certain probability measure µ0

on ΩN, and thefefore K will become a random variable, given by

K “
ÿ

xPTN

η0pxq.

DEFINITION 2.2. Let µ0 be an initial probability measure on ΩN. We denote by
Pµ0

the canonical probability measure on the path space EN :“ pΩNqN induced by
the independent random walks dynamics described above and the initial measure
µ0. Expectation with respect to Pµ0

is denoted by Eµ0
.

We denote by η0 the initial configuration distributed according to µ0. Then, for
any t P N and x P TN we have the representation

ηtpxq “
ÿ

yPTN

η0pyq
ÿ

i“1

1tXi,y
t “ xu,

where
␣

pXi,y
t qtPN ; y P TN , i P N

(

are independent simple random walks on TN,
with transition matrix Q, such that for any i, Xi,y

0 “ y a.s.

For any probability measure µ on ΩN we denote by Eµ the expectation with
respect to µ, namely Eµr f s “

ş

ΩN
f pηqµpdηq. Note the difference between Eµ

and Eµ: if η0 is distributed according to µ, then we have EµrFpη0qs “ EµrFpηqs

for any bounded continuous function F on ΩN.

2.1 Equilibrium states

One of the first questions to answer is the characterization of all invariant prob-
ability distributions, which have the following property: if the initial configu-
ration η0 P NTN is distributed according to an invariant probability measure µ
on ΩN, then, the configurations keep the same distribution forever, i.e. ηt is
distributed according to µ for any t P N.

Let Pα be the Poisson distribution of parameter α ě 0, namely the probability
measure on N given by

Pαpkq “ e´αα
k

k!
, k P N.

We introduce a probability measure on ΩN as follows:
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DEFINITION 2.3. Let ρ : TN Ñ R` be a fixed positive function. We call Poisson
measure on TN associated to the function ρ a probability measure on the con-
figuration space ΩN “ NTN , denoted by νN

ρp¨q
, having the following two properties:

1. Under νN
ρp¨q

, the random variables tηpxquxPTN
are independent.

2. For every fixed x P TN, ηpxq is distributed according to a Poisson distribu-
tion of parameter ρpxq.

In other words, νN
ρp¨q

is the product measure

νN
ρp¨q

“
â

xPTN

Pρpxq.

If the function ρ is constant equal to α, we denote this measure by νN
α
.

In the following, expectation with respect to any measure ν is denoted by Eν.

The measure νN
ρp¨q

is fully characterized by its multidimensional Laplace trans-
form, given by: for any positive sequence tλpxquxPTN

,

EνN
ρp¨q

”

exp
!

´
ÿ

xPTN

λpxqηpxq

)ı

“
ź

xPTN

exp
!

ρpxq
`

e´λpxq ´ 1
˘

)

“ exp
!

ÿ

xPTN

ρpxq
`

e´λpxq ´ 1
˘

)

.

The first result consists in proving that the Poisson measures associated to con-
stant functions are invariant:

PROPOSITION 2.4. If η0 is distributed according to νN
α
, then ηt is distributed

according to νN
α

for any t P N.

Proof. By assumption, we know that, for any y P TN, η0pyq is distributed ac-
cording to Pα. We want to get the distribution of ηt . Since a probability mea-
sure on ΩN is characterized by its multidimensional Laplace transform, let us
compute the following expectation, for any t P N:

EνN
α

”

exp
!

´
ÿ

xPTN

λpxqηtpxq

)ı

.

For any i and any site y P TN we denote by Xi,y
t the position at time t of the

i–th particle initially at y . In this way, the number of particles at site x at time
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t is explicitely given by

ηtpxq “
ÿ

yPTN

η0pyq
ÿ

i“1

1tXi,y
t “ xu,

with the convention
ř

H “ 0. From this identity, and inverting the order of
summations, we get

ÿ

xPTN

λpxqηtpxq “
ÿ

yPTN

η0pyq
ÿ

i“1

λ
`

Xi,y
t

˘

.

Recall that each particle evolves independently from each other. Let us denote
by St the position at time t of a generic random walk on the torus TN starting
from 0 (with transition probability matrix Q) and by Erw the expectation with
respect to its probability distribution. Then, for any i and any y P TN, Xi,y

t has
the same distribution as y ` St . In particular, from Proposition 1.3 we have

Erw

“

FpStq
‰

“
ÿ

xPTN

pQt
q0,x Fpxq,

for any bounded and continuous function F. Besides, from the independence
of the particles trajectories, if we take K continuous and bounded functions
F1, . . . , FK, we can write,

EνN
α

”
K
ź

i“1

FipX
i,y
t q

ı

“

k
ź

i“1

Erw

“

Fipy ` Stq
‰

.
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We now use these relations in order to compute1:

EνN
α

”

exp
!

´
ÿ

xPTN

λpxqηtpxq

)ı

“
ź

yPTN

EνN
α

”

exp
!

´

η0pyq
ÿ

i“1

λ
`

Xi,y
t

˘

)ı

“
ź

yPTN

ż

ΩN

νN
α

pdηqEνN
α

”

exp
!

´

ηpyq
ÿ

i“1

λ
`

Xi,y
t

˘

)ı

“
ź

yPTN

ż

ΩN

νN
α

pdηq

´

Erw

”

exp
␣

´λpy ` Stq
(

ı¯ηpyq

“
ź

yPTN

exp
!

α
´

Erw

“

exp
␣

´λpy ` Stq
(‰

´ 1
¯)

“ exp
!

ÿ

yPTN

α
´

ÿ

zPTN

pQt
q0,z e´λpy`zq

´ 1
¯)

“ exp
!

ÿ

yPTN

α
´

ÿ

zPTN

pQt
q0,z´y e´λpzq

´ 1
¯)

“ exp
!

α
ÿ

yPTN

ÿ

zPTN

pQt
qy,z

`

e´λpzq
´ 1

˘

)

“ exp
!

α
ÿ

zPTN

`

e´λpzq
´ 1

˘

)

,

since the matrix Q is bi-stochastic.

REMARK 2.5. The parameterα is related to the conservation of the total number
of particles. In fact, note that

ż

ΩN

νN
α

pdηq

ˆ

1
N

ÿ

xPTN

ηpxq

˙

“
ÿ

kě0

e´αα
k

k!
k “ α.

Furthermore, from the law of large numbers,

lim
NÑ8

1
N

ÿ

xPTN

ηpxq “ α, a.s.

1We also use the fact that

ÿ

kPN

λkPαpkq “ exppαpλ´ 1qq
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2.2 Local equilibrium

We want to rigorously perform a limit in which the distance between particles
converges to 0, so as to pass from a microscopic description to a macroscopic
one. This point does not present any difficulty in formalization. We will con-
sider the torus TN as embedded in the continuous torus T “ r0,1q “ R{Z. In
this way, each macroscopic point u P T us associated with a microscopic site
x “ ruNs P TN, and reciprocally, each site x P TN is associated with a macro-
scopic point u “

x
N P T.

In order to see a non-trivial evolution of the system, we initially distribute
particles according to a Poisson measure with slowly varying parameter. The
resulting measure on ΩN is defined similarly as in Definition 2.3:

DEFINITION 2.6. Let ρ0 : T Ñ R` be a smooth initial density profile. We call
local equilibrium associated to the function ρ0 a probability measure on ΩN “

NTN , denoted by νN
ρ0p¨q

, having the following two properties:

1. Under νN
ρ0p¨q

, the random variables tηpxquxPTN
are independent.

2. For any x P TN, ηpxq is distributed according to a Poisson law of parameter
ρ0p

x
N q.

In other words, νN
ρ0p¨q

is the product measure

νN
ρp¨q

“
â

xPTN

Pρ0p
x
N q.

As the parameter N increases to infinity, the discrete torus TN tends to the full
lattice Z. We can also define a Poisson measure on the space NZ, with constant
parameter αą 0, in a very similar way as in Definition 2.3.

The term local equilibrium comes from the following observation: as N Ò 8,
when we look “close” to a point u P T (i.e. around x “ ruNs), we observe a
Poisson measure of parameter (almost) constant equal to ρ0puq.

To perform the limit N Ò 8, we embed the space NTN into NZ be identifying
a configuration on the torus to a periodic configuration on the full lattice, as
done for instance in (2.1). We can also see ρ0 as a function on R by periodiza-
tion. The configuration space NZ is endowed with the product topology. We
denote by M1 the space of probability measures onNZ endowed with the weak
topology.

The notion of local equilibrium is a bit more general:



2.3. HYDRODYNAMIC EQUATION 15

DEFINITION 2.7. We say that a probability measure µN on ΩN is a local equilib-
rium associated to the continuous function ρ0 : TÑ r0, 1s if, for any continuous
function ϕ : r0, 1s Ñ R, the following convergence holds, in probability (with η
distributed according to µN):

lim
NÑ8

1
N

ÿ

xPTN

ηpxqϕ
`

x
N

˘

“

ż

T
ρ0puqϕpuqdu. (2.2)

In particular, under νN
ρ0p¨q

, we have the following convergence2: locally around
any point u P T,

lim
ϵÑ0

lim
NÑ`8

1
2ϵ

ÿ

|y´ruNs|ďϵ

ηpyq “ ρ0puq,

which means that the average density of particles in the box of size 2ϵ around
the site ruNs is asymptotically equal to ρ0puq.

REMARK 2.8. The fact that νN
ρ0p¨q

indeed satisfies (2.2) is a consequence of
Chebyshev’s inequality (Exercise).

2.3 Hydrodynamic equation

We now turn to the study of the distribution of particles at later times, start-
ing from a product measure with slowly varying parameter. We would like to
obtain the same kind of convergence as in (2.2).

We can repeat the computations we did to prove Proposition 2.4, and, if η0 is
distributed according to νN

ρ0p¨q
, then

EνN
ρ0p¨q

”

exp
!

´
ÿ

xPTN

λpxqη0pxq

)ı

“ exp
!

ÿ

zPTN

`

e´λpzq ´ 1
˘

ρ0

`

z
N

˘

)

and we now obtain that

EνN
ρ0p¨q

”

exp
!

´
ÿ

xPTN

λpxqηtpxq

)ı

“ exp
!

ÿ

yPTN

ρ0

` y
N

˘

ÿ

zPTN

pQt
qy,z

`

e´λpzq
´ 1

˘

)

“ exp
!

ÿ

zPTN

`

e´λpzq
´ 1

˘

´

ÿ

yPTN

pQt
qy,z ρ0

` y
N

˘

¯)

.

2Take the approximation of the Dirac function δu given by ψϵpvq “
1
2ϵ if |v ´ u| ă ϵ and 0

otherwise.
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Therefore, at time t, ηt is still distributed according to a product Poisson mea-
sure with slowly varying parameter, which is now at site z P TN,

ψN,tpzq :“
ÿ

yPTN

pQtqy,z ρ0

` y
N

˘

(2.3)

instead of ρ0p
z
N q. Namely, we have obtain the following:

LEMMA 2.9. For any t P N,

ηt „
â

zPTN

PψN,t pzq.

where

ψN,tpzq “
ÿ

xPTN

pQtq0,x ρ0

`

z´x
N

˘

“ Erw

“

ρ0

` z´Yt
N

˘‰

.

We now want to look close to a macroscopic point u P T, and therefore we
need to understand the behavior of ψN,tpruNsq as N Ñ 8, in other words we
want to compute

lim
NÑ8

ψN,tpruNsq “ lim
NÑ8
Erw

“

ρ0

`

u ´
1
N Yt

˘‰ ??
“ ρpt, uq.

We state the results in distinct propositions. First, let us assume that t is fixed
and does not depend on N.

PROPOSITION 2.10 (No evolution). Let t P N be fixed. Then, for any u P T,

lim
NÑ8

ψN,tpruNsq “ ρ0puq.

This means that the density profile remains unchanged. The system did not
have time to evolve and this reflects the fact that, at the macroscopic scale, par-
ticles did not move. We solve this problem by distinguishing two time scales:
a microscopic time t and a macroscopic time tN which is infinitely large with
respect to t.

PROPOSITION 2.11 (Hyperbolic time scale). Recall that m “ 2p ´ 1, and let
t P R` be fixed.

Then, in the hyperbolic time scale rtNs, for any u P T,

lim
NÑ8

ψN,rtNspruNsq “ ρ0pu ´ mtq “: ρpt, uq.
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In this new time scale, we observe a new density profile, which is the original
one translated by mt. This new profile satisfies the partial differential equa-
tion:

Btρ` mBuρ “ 0,

which corresponds to the macroscopic deterministic evolution for the unique
conserved quantity (the density). An interacting particle system for which
there exists a time and space macroscopic scales in which the conserved quan-
tities evolve according to some partial differential equation is said to have a
hydrodynamic description. This equation is called hydrodynamic equation as-
sociated to the system.

When m vanishes, the profile did not change in the hyperbolic time change.
In this case, to observe an interesting evolution, we need to consider a larger
time scale:

PROPOSITION 2.12. Assume p “
1
2 , namely m “ 0 and denoteσ “ 1 the variance

of the elementary displacement. Let t P R` be fixed.

Then, in the diffusive time scale rtN2s, for any u P T,

lim
NÑ8

ψN,rtN2spruNsq “

ż

R
ρ0pθqGtpu ´ θqdθ ,

where Gt is the density of the centered Gaussian distribution with variance tσ “ t.

Since the Gaussian distribution is the fundamental solution of the heat equa-
tion, we obtain that the hydrodynamic equation in the diffusive time scale is

Btρ “ σB2
uρ.

We now state the final result, which follows from the last three propositions:

THEOREM 2.13 (Hydrodynamic behaviors). Assume that η0 is distributed ac-
cording to νN

ρ0p¨q
with ρ0 : TÑ R` a smooth initial density profile. Let ϕ : TÑ R

be a smooth test function.

Then, we have the following convergence in probability

1
N

ÿ

xPTN

ϕ
`

x
N

˘

ηtN
pxq ÝÝÑ

NÑ8

ż

T
ϕpuqρpt, uqdu,

where ρpt, uq is

• constant equal to ρ0puq if tN ” t does not depend on N,
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• solution to the transport equation

Btρ` mBuρ “ 0, ρp0, ¨q “ ρ0p¨q

if tN “ rtNs and m ‰ 0,

• solution to the heat equation

Btρ “ B
2
uρ, ρp0, ¨q “ ρ0p¨q

if tN “ rtN2s and m “ 0.
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