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Chapter 1

Markov chains in discrete time

Let pΩ,F ,Pq be a probability space and let S be a finite or countable set. A
random variable with possible values in a state space S is a measurable map
X : pΩ,F ,Pq Ñ pS,PpSqq where PpSq is the family of all subsets of S.

1.1 Definition

DEFINITION 1.1 (Discrete-time stochastic process). A stochastic process in dis-
crete time is a family pXpnqqnPN0

of random variables indexed by the numbers
N0 “ t0, 1, 2, . . . u. The set S of possibles values of Xpnq is the state space of the
process. In this course S will always be finite or countable.

The distribution of a discrete-time stochastic process with countable state space S
is characterized by the point probabilities

P
`

Xpnq “ in, . . . , Xp0q “ i0
˘

, in, in´1, . . . , i0 P S.

EXAMPLE 1.2 (Queues). For example, in a queue, Xpnq represents the time (in
number of minutes) that the n–th customer waits after arrival before receiving
service.

DEFINITION 1.3 (Markov chain). A discrete-time Markov chain on a countable
state space S is a stochastic process satisfying the Markov property

P
`

Xpnq “ in | Xpn ´ 1q “ in´1, . . . , Xp0q “ i0
˘

“ P
`

Xpnq “ in | Xpn ´ 1q “ in´1

˘

,

for any in, . . . , i0 P S and any n P N0.

EXAMPLE 1.4 (Gambling banker). You take part in a roulette game and you
start with a capital of m euros. At each round you gamble 1€:
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8 CHAPTER 1. MARKOV CHAINS IN DISCRETE TIME

• if the roulette gives an even number, you lose it;

• if the roulette gives an odd number, you double it (i.e. you receive 2€).

Let Xpnq be your fortune (in euros) after the n–th round. This defines a Markov
process. An interesting question is to know the probability that you will leave
the casino broke.

EXAMPLE 1.5 (Ehrenfest model). We start with N particles in a closed box,
divided into two compartments which are in contact with each other. Parti-
cles may move between compartments: at each time, one particle is chosen
uniformly at random and moved from its current compartment to the other
compartment. Let Xpnq be the number of particles in compartment 1 at step n.
This stochastic process is a Markov chain.

1 2

Xpnq “ 4

@home: Compute the probabilities

P
“

Xpn ` 1q “ j | Xpnq “ k
‰

for any j, k P N0.

EXAMPLE 1.6 (GOOGLE’s algorithm to rank pages). Let N be the number of
webpages. For any i P t1, . . . , Nu, let Li be the number of links from page i.

A random surfer goes from one webpage to another, using the following algo-
rithm: if the surfer is on page i,

• with probability q P p0, 1q, pick one page from t1, . . . , Nu uniformly at
random (page i is not interesting any more)

• with probability 1´q, pick one of the links among the Li links uniformly
at random.

If Xpnq denotes the page visited by the surfer at time n, then pXpnqqnPN is a
Markov chain. The long time behavior of this chain gives the final rank of each
page, used by Google!
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PROPOSITION 1.7. Let pXpnqqnPN0
be a Markov chain and let us introduce the

notation

pi, jpkq “ P
`

Xpk ` 1q “ j | Xpkq “ i
˘

, for any k P N0.

Then the following formula holds: for any i0, . . . , in P S,

P
`

Xpnq “ in, Xpn ´ 1q “ in´1, . . . , Xp0q “ i0
˘

“ pin´1,inpn ´ 1q ˆ pin´2,in´1
pn ´ 2q ˆ ¨ ¨ ¨ ˆ pi0,i1p0q ˆ P

`

Xp0q “ i0
˘

.

Proof. The proof goes by induction.

DEFINITION 1.8. We say that the Markov chain pXpnqqnPN0
is time homogeneous

if the transition probabilities pi, jpkq “: pi, j do not depend on the time index k P N.

TO SUM UP:
A time-homogeneous Markov chain on a finite or countable state space S is a
family of random variables pXpnqqnPN0

defined on a probability space pΩ,F ,Pq
such that

P
`

Xpnq “ j | Xpn ´ 1q “ i, Xpn ´ 1q “ in´2, . . . , Xp0q “ i0
˘

“ pi, j

for any i, j, i0, . . . , in´2 P S and n P N0. The distribution of the Markov chain is
uniquely determined by the initial distribution

Φpiq “ P
`

Xp0q “ i
˘

and the transition probabilities

pi, j “ P
`

Xpn ` 1q “ j | Xpnq “ i
˘

If the state space S if finite, the initial distribution Φ“ pΦpiqqiPS is a probability
vector (the sum of its components equals 1), and the transition probabilities
P “ ppi, jqi, jPS define a square stochastic matrix which satisfies:

pi, j P r0, 1s and
ÿ

jPS

pi, j “ 1, for any i P S.

An alternative representation of the transition probability matrix P is given
by the transition diagram with nodes representing the individual states of the
chain and directed edges labeled by the probability of possible transitions.
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EXAMPLE 1.9. @home: Write the transition matrix and diagram of first two ex-
ample (the gambling banker and the Ehrenfest model).

Write the transition matrix associated with the following transition diagram:

1

2

31
2

1
2

1
3

1
3

1
3

1

THEOREM 1.10 (n-step transition probabilities). Let pXpnqqnPN0
be a Markov

chain on a finite state space S “ t1, . . . , Nu with transition probability matrix
P P MN,NpRq and initial distribution Φ“ pΦp1q, . . . ,ΦpNqq (row vector).

Then, the distribution of Xpnq is given by

P
`

Xpnq “ j
˘

“
`

ΦPn
˘

j “

N
ÿ

i“1

ΦpiqpPnqi, j, (1.1)

i.e. the j–th component of the (row) vector ΦPn. Moreover, for any k P N,

P
`

Xpn ` kq “ j | Xpkq “ i
˘

“ pPnqi, j. (1.2)

The matrix Pn is called the n–step transition matrix.

Proof. The proof goes by induction. For n “ 1 we have

P
`

Xp1q “ j
˘

“
ÿ

iPS

P
`

Xp0q “ i, Xp1q “ jq

“
ÿ

iPS

P
`

Xp0q “ i
˘

P
`

Xp1q “ j | Xp0q “ i
˘

“
ÿ

iPS

ΦpiqPi, j.

We get for n ` 1 that

P
`

Xpn ` 1q “ j
˘

“
ÿ

iPS

P
`

Xpnq “ i, Xpn ` 1q “ jq

“
ÿ

iPS

P
`

Xpnq “ i
˘

P
`

Xpn ` 1q “ j | Xpnq “ i
˘

“
ÿ

iPS

P
`

Xpnq “ i
˘

Pi, j “
ÿ

iPS

`

ΦPn
˘

iPi, j “
`

ΦPn`1
˘

j.
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since we assume (1.1) at rank n. The second identity (1.2) is proved in the
exact same way, by induction on n.

1.2 Classification of states

DEFINITION 1.11. For a discrete-time Markov chain with state space S and tran-
sition probabilities P “ ppi, jqi, jPS we say that:

1. there is a possible path from state i to state j if there exists m P N0 and a
sequence of states

i “ i0 Ñ i1 Ñ ¨ ¨ ¨ Ñ im “ j

such that the transitions satisfy piℓ´1,iℓ ą 0 for any ℓ P t1, . . . , mu. By
convention, there always exists a possible path from i to i, taking m “ 0.

Equivalently1, there exists m P N0 such that pPmqi, j ą 0.

2. two states i, j P S communicate if there is a possible path from i to j and
from j to i. In that case we write i Ø j. The relation Ø is an equivalence
relation, which partitions the state space S into disjoint communication
classes ;

3. the Markov chain is irreducible if there is only one communication class.

EXAMPLE 1.12. We consider the following transition diagram:

1

2

4

3

5

1
2

1
4

1
4

1
2

1
2

1

1

1

1Proof : note that
pPmqi, j “

ÿ

i1,...,im´1PS

pi,i1 pi1,i2 ¨ ¨ ¨ pim´1, j .
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This Markov chain has 3 communication classes: t1u, t2, 3u and t4, 5u.

DEFINITION 1.13. We say that a communication class C is closed if, for any i P C,
we have

ÿ

jPC

pi, j “ 1.

If C is finite, then C is closed if the submatrix of transition probabilities restricted
to C has all row sums equal to 1.

EXAMPLE 1.14. In Example 1.12, t1u is not closed, but t2, 3u and t4, 5u are
closed.

REMARK 1.15. The restriction of a Markov chain to a closed communication
class is an irreducible Markov chain.

DEFINITION 1.16. For any state i P S we define the hitting time of i by

Ti “ inf
␣

n ą 0 ; Xpnq “ i
(

P NY t8u.

If two states i and j communicate, we know that

P
`

Ti ă `8 | Xp0q “ j
˘

ą 0, and P
`

Tj ă `8 | Xp0q “ i
˘

ą 0.

In other words: it is possible (with positive probability) to get from i to j and
from j to i. A much more relevant question is whether these probabilities are
equal to 1. This leads us to the following definition:

DEFINITION 1.17 (Recurrence and transience). For a discrete-time Markov chain
on S we say that a state i P S is recurrent if and only if

P
`

Ti ă `8 | Xp0q “ i
˘

“ 1.

If P
`

Ti ă `8 | Xp0q “ i
˘

ă 1 then i is said to be a transient state.

REMARK 1.18. Note that the probability P
`

Ti ă `8 | Xp0q “ i
˘

is also equal to

8
ÿ

n“1

P
`

Ti “ n | Xp0q “ i
˘

.

EXAMPLE 1.19. Going back to Example 1.12 we have

1. P
`

T1 ă `8 | Xp0q “ 1
˘

“
1
2 therefore 1 is transient.

2. P
`

T4 ă `8 | Xp0q “ 4
˘

“ P
`

T4 “ 2 | Xp0q “ 4
˘

“ 1 and 4 is recurrent.

The same holds for 5, which is also recurrent.
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3. P
`

T2 “ 1 | Xp0q “ 2
˘

“
1
2 and P

`

T2 “ 2 | Xp0q “ 2
˘

“
1
2 and then 2 is

recurrent.

4. Finally, state 3 is recurrent, but this requires more work and will be seen
in exercise.

We now give one useful criterion.

THEOREM 1.20 (Recurrence criterion). For a discrete-time Markov chain with
transition probability matrix P, the state i is recurrent if and only if

8
ÿ

n“1

pPnqi,i “ `8.

Proof. Admitted. See for instance [1, Chapter 1].

COROLLARY 1.21. All states in a communication class are either all recurrent or
all transient.

Therefore, a communication class C is either recurrent (if all the states in C are
recurrent) or transient (if all the states in C are transient).

Proof. Assume that states i and j communicate. Then there exists ℓ, m P N
such that pPℓqi, j ą 0 and pPmq j,i ą 0. By the Markov property, the quantity

pPℓqi, jpP
kq j, jpP

mq j,i

describes the probability of a loop of length ℓ` k ` m from state i to state i,
which visits j after ℓ steps and after ℓ` k steps. This is smaller than or equal
to the probability of having a loop of length ℓ` k ` m from state i to state i,
which equals pPℓ`k`mqi,i. Therefore, we can write the inequality

8
ÿ

n“1

pPnqi,i ě

8
ÿ

k“1

pPℓ`k`mqi,i ě

8
ÿ

k“1

pPℓqi, jpP
kq j, jpP

mq j,i “ pPℓqi, j

ˆ 8
ÿ

k“1

pPkq j, j

˙

pPmq j,i.

Either i and j are transient, or we assume for instance that j is recurrent, which
by Theorem 1.20 implies

ř8

n“1pPnq j, j “ `8. From the inequality above this
shows that

ř8

n“1pPnqi,i “ `8 and i is also recurrent.

COROLLARY 1.22. A finite communication class is recurrent if and only if it is
closed.
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Proof. Assume that C is a finite closed communication class. Then, for any
i P C, and k P N,

ÿ

jPC

pPkqi, j “ 1.

By interchanging the order of summation (by positivity) we get

ÿ

jPC

8
ÿ

k“1

pPkqi, j “

8
ÿ

k“1

ÿ

jPC

pPkqi, j “ `8.

Since C is finite, there exists j P C such that

8
ÿ

k“1

pPkqi, j “ `8.

Since i and j communicate, there exists m P N such that pPmqi, j ą 0. We
conclude:

8
ÿ

n“1

pPnqi,i ě

8
ÿ

k“1

pPk`mqi,i ě

8
ÿ

k“1

pPkqi, jpP
mq j,i “

ˆ 8
ÿ

k“1

pPkqi, j

˙

pPmq j,i “ `8.

Assume now that C is not closed. Then, there exists i P C such that

ÿ

jPC

pi, j ă 1.

Let k R C be any state of the Markov chain with pi,k ą 0. Then we have

P
`

Ti “ 8 | Xp0q “ i
˘

ě P
`

Xp1q “ k | Xp0q “ i
˘

.

This implies

P
`

Ti ă 8 | Xp0q “ i
˘

ď 1 ´ pi,k ă 1.

Therefore i is transient. From Corollary 1.21, this means that C is transient.
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BE CAREFUL:

• For an irreducible Markov chain there is a path with positive probability
between any two states i ‰ j.

• An irreducible Markov chain is said to be recurrent (resp. transient) if its
unique communication class is recurrent (resp. transient). For a recur-
rent Markov chain there will eventually be a transition between any two
states i ‰ j with probability onea.

aProof of the last statement: Assume that PpTi “ `8 | Xp0q “ iq “ 0 and that i communi-
cates with j ‰ i. Then, there exists m P N and i1, . . . , im´1 P Szt ju such that

PpXpmq “ j, Xpm ´ 1q “ im´1, . . . , Xp1q “ i1|Xp0q “ iq ą 0. (1.3)

By contradiction, assume that PpTi “ `8 | Xp0q “ jq ą 0. Then we have

PpTi “ `8 | Xp0q “ iq ě PpTi “ 8, Xpmq “ j, Xpm ´ 1q “ im´1, . . . , Xp1q “ i1 | Xp0q “ iq

“ PpTi “ 8 | Xpmq “ j, Xpm ´ 1q “ im´1, . . . , Xp1q “ i1, Xp0q “ iq

ˆ PpXpmq “ j, Xpm ´ 1q “ im´1, . . . , Xp1q “ i1 | Xp0q “ iq. (1.4)

One then needs to use the strong Markov property (admitted here), which tells that

PpTi “ `8 | Xpmq “ j, Xpm ´ 1q “ im´1, . . . , Xp1q “ i1, Xp0q “ iq “ PpTi “ `8 | Xp0q “ jq,

and by assumption this last quantitiy is ą 0. Using (1.3) and (1.4), one can see the contradic-
tion.

1.3 Limit results and invariant probabilities

The aim of this section is to study the long time behavior of a Markov chain.
More precisely we want to study PpXpnq “ jq when n Ñ 8, which boils down
to understanding the behaviour of the n–step transition probabilities pPnqi, j,
due to the identity

PpXpnq “ jq “
ÿ

iPS

ΦpiqpPnqi, j.

We first need to introduce the period of the chain. Let us start with an example:

Starting from state 1 at time n “ 0, the chain will be in state 1 at any even
time n “ 2p with probability 1. At odd times, the chain will belong to the set
t2, 3u with probability 1. In other words, the chain passes alternately from t1u

to t2, 3u, and the state space S “ t1, 2, 3u can be decomposed as S “ E0 Y E1

with the following property: if the chain starts from i P E0 then in one step it
can only go to a state j P E1, and the converse is true. In this sense, the chain
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1

2 3
1
2

1
21

1

has a periodic behavior.

The general definition is the following:

THEOREM 1.23. For any irreducible Markov chain, one can find a unique parti-
tion of S into d sets E0, E1, . . . , Ed´1 such that, for all k P t0, 1, . . . , d ´1u and for
any i P Ek,

ÿ

jPEk`1

pi, j “ 1,

where by convention Ed “ E0, and where d is maximal (that is, there is no other
such partition E0, E1, . . . , Ed1´1 with d 1 ą d.

The number d is called the period of the chain. The chain therefore moves from
one class to the other at each transition, and this cyclically.

We say that the chain is aperiodic if d “ 1.

Proof. Admitted. See [2, Theorem 4.1].

REMARK 1.24. In other words, the transition matrix can we written with blocks
as follows:

P “

¨

˚

˚

˚

˚

˚

˚

˝

E0 E1 E2 . . . Ed´1

E0 0 A0 0 . . . 0

E1 0
... A1 0 0

E2
...

. . . . . . . . . 0
... 0 0 0 Ad´2

Ed´1 Ad´1 0 ¨ ¨ ¨ ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

and it can be checked that Pd is block-diagonal: this means that the cyclic
classes E0, E1, . . . , Ed´1 are exactly the communication classes of Pd .

We now have the first result concerning the long run behavior of Markov
chains:

THEOREM 1.25. Let pXpnqqnPN be an irreducible, recurrent, and aperiodic Markov
chain.
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Then, for any state i and any initial distribution, it holds

lim
nÑ8
P
`

Xpnq “ i
˘

“
1

E
“

Ti | Xp0q “ i
‰ , where Ti “ inf

␣

n ą 0 ; Xpnq “ i
(

.

Proof. Admitted. See [1, Chapter 1.2].

REMARK 1.26. If state i is recurrent, which means PpTi “ `8 | Xp0q “ iq “ 0
then the expectation in Theorem 1.25 can be computed as

E
“

Ti | Xp0q “ i
‰

“

8
ÿ

n“1

nP
`

Ti “ n | Xp0q “ i
˘

.

Note that the expectation may or may not be finite.

DEFINITION 1.27. A recurrent state i is said to be positive recurrent if and only
if the mean return time to state i is finite :

E
“

Ti | Xp0q “ i
‰

ă `8.

Otherwise the recurrent state is said to be null recurrent. It can be shown that all
states belonging to the same recurrent class are either positive recurrent or null
recurrent.

Therefore, from Theorem 1.25, an irreducible, positive recurrent, aperiodic
Markov chain has a nontrivial limit. However, its formulation is not very use-
ful since we are rarely able to compute E

“

Ti | Xp0q “ i
‰

. Fortunately, there is
another way to characterize the limit. Let us first give a formal explanation:
we have the following identity

P
`

Xpn ` 1q “ j | Xp0q “ i
˘

“
ÿ

kPS

P
`

Xpn ` 1q “ j, Xpnq “ k | Xp0q “ i
˘

“
ÿ

kPS

P
`

Xpn ` 1q “ j | Xpnq “ k, Xp0q “ i
˘

P
`

Xpnq “ k | Xp0q “ i
˘

“
ÿ

kPS

P
`

Xpn ` 1q “ j | Xpnq “ k
˘

P
`

Xpnq “ k | Xp0q “ i
˘

“
ÿ

kPS

pk, j P
`

Xpnq “ k | Xp0q “ i
˘

.

Assuming that the limits limnÑ8P
`

Xpnq “ k | Xp0q “ i
˘

exist and do not de-
pend on i, and assuming that we can interchange the summation, we obtain
that

πp jq “ lim
nÑ8
P
`

Xpnq “ k | Xp0q “ i
˘
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solves the system of equations

πp jq “
ÿ

kPS

πpkqpk, j. (1.5)

DEFINITION 1.28. A non-negative vector π “ pπp jqq jPS solving the system of
equations (1.5) is called an invariant measure for the transition probabilities
P “ ppi, jq. If S is finite, then (1.5) is equivalent to π“ πP.

If π is a probability (i.e.
ř

jPSπp jq “ 1) then π is called an invariant probability
distribution.

THEOREM 1.29. Let pXpnqqnPN be an irreducible, recurrent, Markov chain.

There exists a unique (up to multiplication) invariant measure π solving (1.5).

The solution can be normalized into a unique invariant probability if and only if
the Markov chain is positive recurrent, and in that case

πpiq “
1

E
“

Ti | Xp0q “ i
‰ .

Sketch of the proof. Show, using the Markov property, that the measure defined
by

νp jq “ E
«

Ti´1
ÿ

n“0

1tXpnq“ ju

ˇ

ˇ

ˇ

ˇ

Xp0q “ i

ff

solves (1.5), and that its total mass is
ÿ

jPS

νp jq “ E
“

Ti | Xp0q “ i
‰

,

therefore ν can be normalized into a probability measure if and only if one has
E
“

Ti | Xp0q “ i
‰

ă 8 which means that the Markov chain is positive recurrent.
It remains to show uniqueness, which is done for instance in [2, Chapter 3].

The final (and main) result concerning the limiting behavior for discrete Markov
chains is the following:

THEOREM 1.30. Let pXpnqqnPN be an irreducible, positive recurrent, aperiodic,
Markov chain.

Then, for any state i and any initial distribution, it holds

lim
nÑ8
P
`

Xpnq “ i
˘

“ πpiq “
1

E
“

Ti | Xp0q “ i
‰ ,
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where π“ pπp jqq jPS is the unique invariant probability vector solving the system
of equations

πp jq “
ÿ

iPS

πpiqpi, j.

Finally, we can also say something about the limit for null-recurrent states and
transient states:

THEOREM 1.31. Let pXpnqqnPN be an irreducible, aperiodic, Markov chain.

For a null-recurrent, or transient, state j, it holds

lim
nÑ8
P
`

Xpnq “ j
˘

“ 0,

for any choice of initial distribution.

Proof. Admitted. See [1, Chapter 1].

TO SUM UP:

• If the chain is irreducible, recurrent and aperiodic, then the limits

lim
nÑ8
P
`

Xpnq “ j
˘

exist, are independent of the initial distribution, and belong to r0, 1s.

• If the chain is irreducible and recurrent, then

– there exists a unique invariant measure π solving π “ πP, up to
multiplication ;

– this invariant measure π can be normalized to 1 (which is equiva-
lent to

ř

πp jq ă 8) if and only if the chain is positive recurrent.

1. In that case, if the chain is moreover aperiodic, then

lim
nÑ8
P
`

Xpnq “ j
˘

“ πp jq

2. If it is not the case, then the chain is null recurrent. If the
chain is moreover aperiodic, then

lim
nÑ8
P
`

Xpnq “ j
˘

“ 0, for any j.

• If the chain is irreducible, aperiodic and transient, then

lim
nÑ8
P
`

Xpnq “ jq “ 0, for any j.
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1. An irreducible positive-recurrent Markov chain which is not aperiodic:

Â the Markov chain associated with the diagram:

1

2 3
1
2

1
21

1

Its unique probability distribution is π“ p
1
2 , 1

4 , 1
4q.

2. An irreducible positive-recurrent aperiodic Markov chain:

Â any Markov chain on a finite state space, which is irreducible and
aperiodic (for which there exists i such that pi,i ą 0, for instance), like

1 2

p

1 ´ p

q

1 ´ q

3. An irreducible null-recurrent Markov chain which is not aperiodic:

Â the simple symmetric random walk on Z, which jumps to k ` 1 with
probability 1

2 and k ´ 1 with probability 1
2 .

1
2

1
2

Z

4. An irreducible null-recurrent aperiodic Markov chain:

Â let Xpnq “ Sp2nq where S is the simple symmetric random walk on Z
as above, then pXpnqq is aperiodic on 2kZ.

5. An irreducible transient Markov chain which is not aperiodic:

Â the simple asymmetric random walk on Z, which jumps to k ` 1 with
probability p ‰

1
2 and k ´ 1 with probability 1 ´ p.

p1 ´ p

Z

6. An irreducible transient aperiodic Markov chain:

Â let Xpnq “ Sp2nq where S is the simple asymmetric randow walk on Z
as above, then pXpnqq is aperiodic on 2kZ.



1.4. ABSORPTION PROBABILITIES 21

1.4 Absorption probabilities

Recall that recurrent classes are closed: once the Markov chain enters a re-
current class then it stays there forever. Transient classes may or may not be
closed, but in either case we know that limnÑ8P

`

Xpnq “ j
˘

“ 0 for any tran-
sient state j. This naturally raises the following questions: if a Markov chain
with multiple communication classes is started in a transient state i, how many
times will it visit state i before it leaves the state forever? And what is the prob-
ability that it will be absorbed by a closed (recurrent) class?

When the state space S is finite, these quantities can be evaluated by a tech-
nique called first-step analysis, which is the motor of most computations in
Markov chain theory, and is best illustrated by examples.

1.4.1 Probabilities

EXAMPLE 1.32 (Gambler’s ruin, part I). Two players A and B play heads or tails,
where heads occur with probability p P p0, 1q. The successive outcomes form
an i.i.d. sequence indexed by n P N.

We call Xpnq the fortune in euros of player A at time n. Then

Xpn ` 1q “ Xpnq ` Zpn ` 1q,

where

Zpn ` 1q “

#

`1 if the result of the toss is heads

´1 if the result of the toss is tails

In other words, A bets 1€on heads at each toss, and B bets 1€on tails. The
respective initial fortunes of A and B are a and b. The gain ends when a player
is ruined. The process pXpnqqnPN0

is a random walk on the state space S “

t0, 1, . . . , a, a ` 1, . . . , a ` bu. The duration of the game is denoted by T, it is
the hitting time of t0, a ` bu, namely

T “ inf
␣

n ą 0 ; Xpnq “ 0 or Xpnq “ a ` b
(

.

We denote the probability of winning for A by

upaq “ P
`

XpTq “ a ` b | Xp0q “ a
˘

.

@home: Draw an example of trajectory.

Instead of computing upaq alone, the first-step analysis consists in computing

upiq “ P
`

XpTq “ a ` b | Xp0q “ i
˘

, for any i P t0, 1, . . . , a ` bu.
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We obtain a recurrence relation as follows:

• first, note that upa ` bq “ 1 and up0q “ 0 ;

• if Xp0q “ i P t1, . . . , a ` b ´ 1u then

– with probability p, Xp1q “ i ` 1 and the probability of winning for
A with initial fortune i ` 1 is upi ` 1q

– with probability 1 ´ p, Xp1q “ i ´ 1 and the probability of winning
for A with initial fortune i ´ 1 is upi ´ 1q.

Therefore, for any i P t1, . . . , a ` b ´ 1u

upiq “ pupi ` 1q ` p1 ´ pqupi ´ 1q. (1.6)

The solution of this linear recurrence equation is

upiq “

$

’

’

’

’

’

&

’

’

’

’

’

%

1 ´
`1´p

p

˘i

1 ´
`1´p

p

˘a`b
if p ‰

1
2 ,

i
a ` b

if p “
1
2 .

Proof of (1.6). A rigorous proof can be given: let pYpnqqnPN0
denote the Markov

chain obtained by shifting pXpnqq by one time unit, namely:

Ypnq “ Xpn ` 1q, n P N0.

If Xp0q P t1, . . . , a ` b ´ 1u then the events “X is absorbed at 0” and “Y is
absorbed at 0” are equal. Therefore,

P
`

X is absorbed at 0, Xp1q “ i ˘ 1, Xp0q “ i
˘

“ P
`

Y is absorbed at 0, Xp1q “ i ˘ 1, Xp0q “ i
˘

“ P
`

Y is absorbed at 0 | Yp0q “ i ˘ 1, Xp0q “ i
˘

P
`

Xp1q “ i ˘ 1, Xp0q “ i
˘

“ P
`

Y is absorbed at 0 | Yp0q “ i ˘ 1
˘

P
`

Xp1q “ i ˘ 1, Xp0q “ i
˘

,

since Xp0q and pYpnqqnPN0
are independent given Yp0q. The two chains have

the same transition matrix, and therefore when they have the same initial state
they have the same distribution. Hence,

P
`

Y is absorbed at 0 | Yp0q “ i ˘ 1
˘

“ upi ˘ 1q.

The rest of the proof is straightforward.
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1.4.2 Average times

The same analysis can be used to compute average times before absorption.
EXAMPLE 1.33 (Gambler’s ruin, part II). We continue Example 1.32. We denote
the average duration of the game by

mpiq “ E
“

T | Xp0q “ i
‰

.

We obtain in the same way a recurrence relation as follows:

• first, note that mp0q “ 0 and mpa ` bq “ 0 ;

• if Xp0q “ i P t1, . . . , a ` b ´ 1u, then the game will last at least one unit
time. Then,

– with probability p, the fortune of A will be i`1 and therefore mpi`

1q more tosses will be needed in average to end the game,

– with probability 1 ´ p, the fortune of A will be i ´ 1 and therefore
mpi ` 1q more tosses will be needed in average to end the game.

Therefore, for any i P t1, . . . , a ` b ´ 1u,

mpiq “ 1 ` pmpi ` 1q ` p1 ´ pqmpi ´ 1q.

The solution of this linear recurrence equation, for p “
1
2 , is

mpiq “ ipa ` b ´ iq.

1.4.3 General case: countable state space

For Markov chains on a countable state space, absorption probabilities may be
found by solving a countably infinite system of equations:

THEOREM 1.34. For a Markov chain on S, let C be a recurrent class, and let T
be the set of all transient states. Then, the probabilities

up jq “ P
`

X is absorbed in C | Xp0q “ j
˘

, j P T

(that the chain will ever visit class C and stay there forever) solve the system of
equations

up jq “
ÿ

kPT

p j,k upkq `
ÿ

kPC

p j,k. (1.7)

The absorption probabilities pup jqq jPT is the smallest non-negative solution to
(1.7). There is a unique bounded solution to (1.7) if and only if there is zero
probability that the Markov chain stays in the transient states forever.
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Chapter 2

Poisson processes and Queues

A random point process is, roughly speaking, a countable random set of points
of the real line. In most applications, these real points are times of occurence of
some event, for instance: the arrival times of customers at the desk of a post
office (remember the first example of these lecture notes), or times of birth of
an biologic organism, etc.

REMINDER:

1. The exponential distribution is a probability distribution onR`, parametrized
by some λą 0, and whose density function is

fλpxq “ λe´λx1xě0.

The parameter λ is often called the rate parameter. If a random variable
X has this distribution, we write X „ Exppλq. One can easily check that
its expectation and variance are given by

E
“

X
‰

“
1
λ

, Var
“

X
‰

“
1
λ2

.

The most important property of an exponential random variable X is the
following memorylessness property: for any s, t ě 0,

P
`

X ą s ` t | X ą s
˘

“ P
`

X ą t
˘

.

@home: Prove it, using the cumulative distribution function.

2. The Poisson distribution is a probability distribution on N0, parametrized
by some λą 0, whose probability mass function is given by

fλpkq “
λke´λ

k!
, k “ 0, 1, 2, . . .

25
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One can easily check that its expectation and variance are given by

E
“

X
‰

“ Var
“

X
‰

“ λ.

2.1 Poisson processes

DEFINITION 2.1 (Random point process). A random point process on r0, `8q

is a sequence pTnqnPN0
of nonnegative random variables such that

1. T0 ” 0

2. 0 ă T1 ă T2 ă ¨ ¨ ¨

3. limnÑ8 Tn “ `8 a.s.

The sequence tSn “ Tn ´ Tn´1uně0 is the sequence of inter-arrival times.

DEFINITION 2.2 (Homogeneous Poisson point process). Let pSnqnPN0
be a se-

quence of i.i.d. exponential random variables:

Sn „ Exppλq

for some parameter λ P p0, `8q. Let

T0 “ 0, Tn “

n
ÿ

k“1

Sk, n ě 1.

Then the process defined for any t ě 0 by

Nptq “

8
ÿ

n“1

1tTnPp0,tsu “ #
␣

n ě 1 ; Tn ď t
(

is a random point process which is called homogeneous Poisson process with
intensity λą 0.

REMARK 2.3. Note that Np0q “ 0. Since the interval p0, ts is closed on the right,
the trajectories t ÞÑ Npt,ωq are right-continuous for almost every ω P Ω. The
trajectories are nondecreasing, have limits on the left at every time t, and jump
one unit upwards at each random event Tk.
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REMARK 2.4. By induction, one can compute the probability density function of
Tn for any n: it is given by

fTn
ptq “

λn

pn ´ 1q!
yn´1e´λy .

@home: Prove it.

PROPOSITION 2.5. A Poisson process of intensity λ ą 0 has the following prop-
erties:

1. For any t ě 0, the random variable Nptq is distributed according to a Pois-
son distribution with mean λt.

2. The process has independent increments, namely: for any sequence of
times 0 “ t0 ď t1 ď ¨ ¨ ¨ ď tn, the variables Npt jq ´ Npt j´1q, j P t1, . . . , nu

are independent.

3. The process has stationary increments, namely: for any s ď t, the random
variables Npt ` sq ´ Nptq and Npsq have the same distribution.

Proof. To prove the first claim, it is enough to compute the generating function
ErqNptqs for any q P p0, 1q (since it characterizes the distribution). We get

E
“

qNptq
‰

“

8
ÿ

n“0

qnP
`

Nptq “ n
˘

“

8
ÿ

n“0

qnP
`

Tn ď t, Tn`1 ą t
˘

.

Note that

P
`

Tn ď t
˘

“ P
`

Tn ď t, Tn`1 ď t
˘

` P
`

Tn ď t, Tn`1 ą t
˘

“ P
`

Tn`1 ď t
˘

` P
`

Tn ď t, Tn`1 ą t
˘

.

Therefore,

E
“

qNptq
‰

“

8
ÿ

n“0

qn
´

P
`

Tn ď t
˘

´ P
`

Tn`1 ď t
˘

¯

“ 1 ´

8
ÿ

j“1

q j´1p1 ´ qqP
`

Tj ď t
˘

“ 1 ´

8
ÿ

j“1

q j´1p1 ´ qq

ż t

0

λ j

p j ´ 1q!
y j´1e´λy d y

“ 1 ´

ż t

0
p1 ´ qqλe´λy`λq y d y “ e´λtp1´qq,
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which is the probability generating function of the Poisson distribution with
parameter λt.

The claims 2. and 3. are consequences of the Markov property for continuous-
time processes, which we are going to define now. We will end the proof in the
following section (see also [3, Chapter 8]).

2.2 Markov processes in continuous time

2.2.1 Minimal construction

DEFINITION 2.6 (Homogeneous Markov process). A continuous-time Markov
process on a finite or countable set S is a family of random variables pXptqqtě0

such that the following Markov property is satisfied:

for any j, i, in´1, . . . , i0, for any 0 ď t0 ă t1 ă ¨ ¨ ¨ ă tn ă tn`1,

P
`

Xptn`1q “ j | Xptnq “ i, Xptn´1q “ in´1, . . . , Xpt0q “ i0
˘

“ P
`

Xptn`1q “ j | Xptnq “ i
˘

“ P
`

Xptn`1 ´ tnq “ j | Xp0q “ i
˘

“: pi, jptn`1 ´ tnq. (2.1)

The distribution of the Markov process is determined by the initial distribution

Φpiq “ P
`

Xp0q “ i
˘

and the transition probabilities

pi, jptq “ P
`

Xpt ` sq “ j | Xpsq “ i
˘

through the identity

P
`

Xptn`1q “ j, Xptnq “ i, Xptn´1q “ in´1, . . . , Xpt0q “ i0
˘

“ pi, jptn`1 ´ tnqpin´1,iptn ´ tn´1q ¨ ¨ ¨ pi0,i1pt1 ´ t0qΦpi0q.

Note that this definition does not say what conditions on the transition proba-
bilities ppi, jptqqi, jPS,tě0 must satisfy in order to define a Markov process. This is
one of the main problems with this construction. We now present a dynamical
construction of a class of stochastic processes which satisfy the Markov prop-
erty (2.1), and which we call the minimal construction. All Markov processes
in this course will be constructed in this way.
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DEFINITION 2.7 (Minimal construction). Let Φ“ pΦpiqqiPS be a probability vec-
tor, and let Q “ pqi, jqi, jPS be real numbers with the following properties:

qi, j ě 0, for any i ‰ j,

qi,i “ ´
ÿ

j‰i

qi, j.

The homogeneous Markov process with initial distribution Φ and transition in-
tensity Q is the stochastic process pXptqqtě0 given by the following construction:

1. Let Yp0q be distributed according to Φ, namely:

P
`

Yp0q “ i
˘

“ Φpiq.

2. Given Yp0q, choose S1 according to an exponential distribution with rate
parameter ´qYp0q,Yp0q ě 0, let T1 “ S1 and define

Xptq “ Yp0q, for any t P r0, T1q.

3. Given Yp0q and T1, chose Yp1q such that

P
`

Yp1q “ j | Yp0q
˘

“
qYp0q, j

´qYp0q,Yp0q

, j ‰ Yp0q.

4. Recursively, given Yp0q, Yp1q, . . . , Ypnq, S1, . . . , Sn,

(a) choose Sn`1 according to an exponential distribution with parameter
´qYpnq,Ypnq, let Tn`1 “ Tn ` Sn`1 and define

Xptq “ Ypnq, for any t P rTn, Tn`1q

REMARK 2.8. If the Markov chain at time Tn jumps to a state Ypnq “ i such that
´qi,i “ 0, then we let

Xptq “ Ypnq, for any t ě Tn,

and we say that the Markov chain is absorbed at state i. In fact, the construction
still makes sense if we say that an exponential distribution with rate parameter
0 is a random variable with probability mass 1 at `8.

THEOREM 2.9. Take a continuous Markov chain with transition intensity Q “

pqi, jqi, jPS given by the minimal construction above. Then, it satisfies the Markov
property (2.1).
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THEOREM 2.10 (Embedded Markov chain). Take a continuous Markov chain
with transition intensity Q “ pqi, jqi, jPS given by the minimal construction above,
and assume that limnÑ8 Tn “ 8 a.s.

Then, the sequence pYpnqqnPN0
of visited states is a discrete-time Markov chain

with transition probabilities

Pi, j “

$

’

’

’

’

’

&

’

’

’

’

’

%

´qi, j

qi,i
if j ‰ i and qi,i ‰ 0

0 if j ‰ i and qi,i “ 0

0 if j “ i and qi,i ‰ 0

1 if j “ i and qi,i “ 0.

Theorems 2.9 and 2.10 are admitted in this lecture.

2.2.2 Birth-and-death processes

The birth-and-death process is a special case of continuous time Markov process
on N0, where the states (for example) represent a current size of a population
and the transitions are limited to birth and death. When a birth occurs, the
process goes from state i to state i`1. Similarly, when death occurs, the process
goes from state i to state i ´ 1. It is assumed that the birth and death events
are independent of each other. The birth-and-death process is characterized
by the birth rates pβiqiPN0

and death rates pδiqiPN which vary according to state
i of the system.

In terms of transition intensities, we have

qi, j “ 0 if |i ´ j| ě 2,

qi,i`1 “ βi ą 0, i P N0,

qi,i´1 “ δi ą 0, i P N.

In other words

Q “

¨

˚

˚

˚

˝

´β0 β0 0 0 ¨ ¨ ¨

δ1 ´pδ1 ` β1q β1 0 ¨ ¨ ¨

0 δ2 ´pδ2 ` β2q β2 ¨ ¨ ¨
... 0 δ3

. . . . . .

˛

‹

‹

‹

‚

The dynamics is very simple: if the process is in state i, then the waiting time
to the next jump follows an exponential distribution with rate βi ` δi. At the
(random) time of the jump the process moves one step Õ with probability βi

βi`δi

and one step Œ with probability δi
βi`δi

.
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REMARK 2.11. A Poisson process of intensity λ ą 0 is a pure birth process on
N0 with intensities qi,i`1 “ λ for any i P N0. Therefore, it satisfies the Markov
property (2.1) and we have all in hands to end the proof of Proposition 2.5.
Let us compute

P
`

Npt1q ´ Npt0q “ n1, . . . , Nptpq ´ Nptp´1q “ np

˘

“ P
`

Npt1q ´ Np0q “ n1, . . . , Nptpq “

p
ÿ

i“1

ni

˘

“ P
`

Npt1q ´ Np0q “ n1

˘

P
`

Npt2q “ n1 ` n2, . . . , Nptpq “

p
ÿ

i“1

ni | Npt1q “ n1

˘

“ ¨ ¨ ¨

“ P
`

Npt1q ´ Np0q “ n1

˘

p
ź

k“2

P
ˆ

Nptkq “

k
ÿ

i“1

ni | Npt1q “ n1, . . . , Nptk´1q “

k´1
ÿ

i“1

ni

˙

“ P
`

Npt1q ´ Np0q “ n1

˘

p
ź

k“2

P
`

Nptk ´ tk´1q “ nk | Np0q “ 0
˘

“

p
ź

k“1

P
`

Nptk ´ tk´1q “ nk

˘

.

This proves (ii) and (iii) of Proposition 2.5.

PROPOSITION 2.12 (Kolmogorov equations). Let pXptqqtPR be a birth-and-death
process on N0 with positive birth rates pβiqiPN0

and death rates pδiqiPN. Recall the
definition

pi, jptq “ P
`

Xptq “ j | Xp0q “ i
˘

“ P
`

Xps ` tq “ j | Xpsq “ i
˘

,

for any s, t ě 0.

The (infinite) matrix Pptq “ ppi, jptqqi, jPN0
satisfies the backward Kolmogorov

differential equation

P1ptq “ QPptq, Pp0q “ Id, (2.2)

where Id is the infinite identity matrix.

It also satisfies the forward Kolmogorov differential equation

P1ptq “ PptqQ, Pp0q “ Id. (2.3)

Proof. Admitted.
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@home: Find the differential equations satisfied by the real quantities pi, jptq for
any i, j P N0.

The backward equations can be rewritten as

p1
0, jptq “ ´β0p0, jptq ` β0p1, jptq

p1
i, jptq “ δ1pi´1, jptq ´ pβi `δiqpi, jptq ` βi`1pi`1, jptq, i ě 1.

The forward equations can be rewritten as

p1
i,0ptq “ ´β0pi,0ptq `δ1pi,1ptq

p1
i, jptq “ β j´1pi, j´1ptq ´ pβ j `δ jqpi, jptq `δ j`1pi, j`1ptq, j ě 1.

REMARK 2.13. In general the rates pβi,δiq may not determine a unique stochas-
tic process. There exist sufficient conditions to ensure this is the case, but we
will not pursue in that direction, since in our examples the process will always
be uniquely defined.

Let us now briefly describe the behavior of pi, jptq as t becomes large. It can be
proved the following (admitted):

THEOREM 2.14. The limits

lim
tÑ8

pi, jptq “ πp jq

exist and are independent of the initial state i, and they satisfy the equations

0 “ ´β0πp0q `δ1πp1q (2.4)

0 “ βn´1πpn ´ 1q ´ pβn `δnqπpnq `δn`1πpn ` 1q, n P N, (2.5)

which is obtained by solving πQ “ 0.

If moreover
ř

j πp jq “ 1 then the sequence pπpiqq is called a stationary distribu-
tion.

2.3 Queuing theory

Queues are common in computer systems: there are queues of inquiries wait-
ing to be processed by an interactive computer system, queues of data base
requests, etc.
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Typically, a queue has one service facility, although there may be more than one
server in the service facility, and a waiting room of finite or infinite capacity.

Customers from a population enter a queuing system to receive some service.
Upon arrival a customer joins the waiting room if all servers in the service
center are busy. When a customer has been served, it leaves the system.

There is a specific way, called Kendall’s notation, to describe a queuing system:
the notation has the form

A{B{c{K

where

• A describes the interarrival time distribution;

• B describes the service time distribution;

• c is the number of servers;

• K is the size of the service capacity (= waiting room + servers).

The symbols used for A and B are:

• M for exponential distribution (M stands for Markov);

• D for deterministic distribution;

• G for general distribution.

The most common systems are: M{M{1{8, M{M{c{8, M{G{1{8 and G{M{1{8.

2.3.1 The M{M{1{8 queue

In that case, there is one server, and there is no bound imposed on the num-
ber of customers waiting for service. Moreover, the interarrival times are ex-
ponential random variables with parameter λ ą 0 and the service times are
exponential random variables with parameter µ ą 0. Let Xptq be the number
of customers in the system at time t. This queue process is therefore a birth-
and-death process on N0 with constant birth rates λ and constant death rates
µ.

PROPOSITION 2.15. If λă µ (meaning that the mean arrival time is bigger than
the mean service time), then there exists a unique stationary distribution given by

πpiq “
`

1 ´
λ
µ

˘`

λ
µ

˘i
.
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Proof. Solve equations (2.5).

Therefore, from Proposition 2.15, one can compute the mean number of cus-
tomers (in the long-time run, i.e. according to the stationary state) which is
equal to

m “

`8
ÿ

i“0

iπpiq “

λ
µ

1 ´
λ
µ

.

Note that the queue will be empty infinitely many times, since πp0q ą 0.

From now on we define the traffic intensity

ρ “
λ

µ
.

The condition ρ ă 1 means that the system is stable: the work which is brought
to the system is strictly smaller than the processing rate. Observe that

m ÝÝÑ
ρÑ1

`8,

therefore, in practice, if the system is not stable, then the queue will explode.
Finally, one may also be interested in the probability that the queue exceeds K
customers (in the stationary state). This is equal, from Proposition 2.15:

Pπ
`

X ě K
˘

“ ρK ÝÝÑ
KÑ8

0.

2.3.2 The M{M{c{8 queue

This is the M{M{1{8 queue except that there are c P N servers. Therefore, the
birth and death rates are now given by

βi “ λą 0, i P N0,

δi “ inf
␣

i, cuµą 0, i P N.

Indeed: if there are Xptq “ i ď c customers, there are i independent expo-
nentials of mean 1{µ which can provoke a transition i Ñ i ´ 1. If there are
Xptq “ i ą c customers, then only c exponentials are active since there are only
c servers.
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In this case, the system of equations satisfied by the stationary state can be
written as

´λπp0q `µπp1q “ 0

λπp0q ´ pµ`λqπp1q ` 2µπp2q “ 0
...

λπpi ´ 1q ´ piµ`λqπpiq ` pi ` 1qµπpi ` 1q “ 0, i ď c ´ 1,

λπpi ´ 1q ´ pcµ`λqπpiq ` cµπpi ` 1q “ 0, i ě c.

Solving this system gives:

PROPOSITION 2.16. If ρ ă c (meaning that the mean incoming work is smaller
than the maximum service time), then there exists a unique stationary distribution
given by

πpiq “

$

’

’

’

’

&

’

’

’

’

%

πp0q
ρi

i!
if i P t0, 1, . . . , cu

πp0q
ρicc´i

c!
if i ě c,

where

πp0q “

ˆ c´1
ÿ

i“0

ρi

i!
`

´ρc

c!
1

1 ´
ρ

c

¯

˙´1

.

Therefore, the probability that an arriving customer cannot find any available
server is (in the stationary state)

Pπ
`

X ě c
˘

“

8
ÿ

i“c

πp0q
ρicc´i

c!
.

This probability is widely used in telephony to help understand the functioning
of a group of agents taking incoming calls in a call center. It is referred to as
Erlang’s waiting formula.

@home: show that the average number of working servers is

Eπ
“

inftX, cu
‰

“ ρ.

Show that the average number of customers inside the system is

Eπ
“

X
‰

“ ρ`πp0q

ρ

c

p1 ´
ρ

c q2

ρc

c!
.
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Chapter 3

Monte Carlo methods

Monte Carlo methods are computational algorithms that rely on repeated ran-
dom sampling to obtain numerical results. In other words, one uses random-
ness in order to solve problems which might be deterministic in principle. The
most famous examples are:

• the computation of number π using the experiment of a “uniform rain”
on the square r´1, 1s ˆ r´1, 1s. Indeed, the probability that a raindrop
falls into the unit circle is

P
`

drop within circle
˘

“
area of the unit circle

area of the square
“
π

4
.

The probability can we estimated by the empirical average of the num-
ber of points inside the circle (and is better estimated is the number of
raindrops is very large) ;

• the evaluation of any integral
ş1

0 f pxqdx .

The Monte Carlo methods have the advantage of being relatively simple and
easy to implement on a computer.

3.1 Metropolis-Hastings algorithm

Let π be a probability measure on a finite or countable state space S. The
goal is to simulate a draw from the distribution π (our target distribution),
which we know up to a constant. In other words, we know how to compute a

37
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function proportional to π, which is f piq “ Kπpiq (but we don’t know how to
compute nor π neither K P R). We will generate a Markov chain with invariant
probability distribution π. This means that, in the long run, the samples from
the Markov chain look like the samples from π. As we will see, the algorithm
is incredibly simple and flexible. Its main limitation is that, for difficult prob-
lems, “in the long run” may mean after a very long time. However, for simple
problems the algorithm can work well.

3.1.1 The transition matrix

First of all, the user must provide a transition matrix P. The key assumption
we will make is that the Markov chain is reversible:

DEFINITION 3.1. A Markov chain with transition matrix P is called reversible if
there exists a probability distribution π‹ on S such that, for any i, j P S,

π‹piqPi, j “ π‹p jqPj,i. (3.1)

PROPOSITION 3.2. If π‹ satisfies the reversibility condition (3.1), then π‹ is an
invariant probability distribution.

Proof. For any state j, we have
ÿ

iPS

π‹piqPi, j “
ÿ

iPS

π‹p jqPj,i “ π‹p jq.

The Metropolis-Hastings algorithm designs a transition matrix P so that the
Markov chain is reversible, and so that the target distribution π satisfies (3.1).
Let Q “ pQi, jqi, jPS be any proposal transition matrix. We construct the transition
matrix P as:

Pi, j “

$

’

’

’

&

’

’

’

%

Qi, jαpi, jq if j ‰ i,

Qi,i `
ÿ

k‰i

Qi,k

`

1 ´αpi, kq
˘

otherwise,

where

αpi, jq “ min

"

1,
πp jqQ j,i

πpiqQi, j

*

.
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Note that αpi, jq can be rewritten in terms of f as

αpi, jq “ min

"

1,
f p jqQ j,i

f piqQi, j

*

, (3.2)

which is better for our simulation purposes.

PROPOSITION 3.3. The target measureπ satisfies the reversibility condition (3.1)
with respect to the matrix P constructed above.

Proof. By definition ofα, we can assume without loss of generality thatαp j, iq “

1 and αpi, jq “
f p jqQ j,i

f piqQi, j
(the other case being symmetric). Then,

πpiqPi, j “ K f piqQi, j

f p jqQ j,i

f piqQi, j
“ K f p jqQ j,i “ πp jqPj,i.

The reversibility condition does not provide uniqueness of the invariant prob-
ability distribution: one needs to ensure that the Markov chain is irreducible
and aperiodic. This depends on the proposal transition matrix Q and target
probability distribution π.

3.1.2 The algorithm

According to the definition of P, one can now implement:

METROPOLIS-HASTINGS ALGORITHM:

1. Initialize Xp0q P S.

2. Given Xpnq “ i P S, move to Xpn ` 1q as follows:

(a) Draw a sample j from the transition matrix Q, i.e. choose j P S with
probability Qi, j.

(b) Accept the move i ÞÑ j with probability αpi, jq where α is given in
(3.2). In other words: if αpi, jq “ 1 then Xpn`1q “ j. If αpi, jq ă 1,
then draw u „ Upr0, 1sq (distributed according to a uniform random
variable on r0, 1s, then:

• if u ă αpi, jq then Xpn ` 1q “ j,
• if u ě αpi, jq then Xpn ` 1q “ i.
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In practice, we start the chain with an arbitrary Xp0q, run the algorithm many
times (say M times), and then use the last N ! M draws as samples from π.

The algorithm is often used with symmetric candidate probabilities, satisfying
Qi, j “ Q j,i for any i, j P S. In this case, the formula for α reduces to a simpler
form and the behavior of the algorithm is easier to understand: it will always
make a transition to a state j whenever πp jq ą πpiq, but it can also make a
transition to a state j if πp jq ď πpiq; the probability of such a transition is equal
to the ratio πp jq{πpiq.

3.1.3 An example: the Ising model

The Ising model is a model of ferromagnetism in statistical physics. Consider
the state space S “ t´1, `1uNˆN constituted by all square matrices of size NˆN
whose coefficients are either ´1 or `1. An element Bi, j of B P S is called spin
at site pi, jq. We say that two sites pi1, j1q and pi2, j2q are adjacent if both their
coordinates differ at most by 1, and we write pi1, j1q „ pi2, j2q.

For any B P S, its probability πpBq is a function of its energy, which is given by
the formula

HpBq “ ´
ÿ

pi1, j1q„pi2, j2q

Bi1, j1Bi2, j2 .

Note that two adjacent sites with the same spin reduce the value of H by 1,
while two adjacent sites with the opposite spin contribute by 1. The probability
of a state B (using Boltzmann’s theory) favors the states with low energy, and
is given by

πpBq “
1

Zβ
e´βHpBq, (3.3)

where β ą 0 is a constant which can be chosen, and Zβ is the normalizing
constant, which is very hard to calculate, even numerically.

One can see the advantage of the Metropolis-Hastings algorithm: it is hopeless
to generate a random state distributed according to π using the formula (3.3),
because of the size of S (which is 2N2

). In the algorithm, we need to

1. choose a symmetric candidate probability Q, for instance: we move from
B ÞÑ B1 according to the uniform distribution on all states which differ
from B at exactly one site, namely:

QB,B1 “

$

&

%

1
N2

if B and B1 differ at exactly one site pi, jq

0 otherwise;
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2. compute the acceptance probability α, which here is given by

πpB1q

πpBq
“ e´βpHpB1q´HpBqq.

Since B and B1 differ by only one site, say pi, jq, one can easily check that
HpB1q ´HpBq actually contains a finite number of terms, namely:

HpB1q ´HpBq “ ´
ÿ

pi1, j1q„pi, jq

´

B1
i1, j1

B1
i, j ´ Bi1, j1Bi, j

¯

“ 2Bi, j

ÿ

pi1, j1q„pi, jq

Bi1, j1 ,

since Bi, j “ ´B1
i, j and Bi1, j1 “ B1

i1, j1
by definition.

3.2 Simulated Annealing Algorithm

The Metropolis-Hastings algorithm has other applications. Let us assume that
we are given a functionH : S Ñ Rwhere S is finite, and we want to compute the
points where H achieves its minimum. The function H is often called energy,
by analogy with statistical physics theory (as in the Ising model).

DEFINITION 3.4. The Gibbs measure associated to the energy function H at tem-
perature T ą 0 is the probability measure µT defined on S by

µTpxq “
1
ZT

e´Hpxq{T, x P S,

where ZT is the normalization constant also called partition function.

When T Ñ 0, the Gibbs measures concentrate on the points where H achieves
its minimum: let M Ă S be the set of all minimas of H, then

µTpxq ÝÝÑ
TÑ0

$

’

’

&

’

’

%

0 if x R M
1

|M|
if x P M.

The general idea of the Simulated Annealing Algorithm is:

• generate a Markov chain which is irreducible, aperiodic, with invariant
probability µT, like in the Metropolis-Hastings algorithm;

• let this chain evolve until it becomes close to the invariant measure:
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• at each step, decrease the temperature.

At the end, the chain should always visit states in M. We have the following
proposition:

PROPOSITION 3.5. Let pXpnqqnPN0
be a Markov chain which is irreducible, aperi-

odic, with invariant probability measure µT. Then, for any initial distribution,

lim
TÑ0

lim
nÑ8
P
“

Xpnq “ x
‰

“

$

’

’

&

’

’

%

0 if x R M
1

|M|
if x P M.

For practical reasons, it is much more convenient to undertake both limits si-
multaneously, i.e. to choose Tpnq Ñ 0 as n Ñ 8. We obtain an inhomogeneous
Markov chain, with transition probabilities at step n which depend on Tpnq.
Note that Tpnq should not decrease too fast towards 0, so that the chain has
enough time to reach its invariant measure. In practice, we use the following
theorem:

THEOREM 3.6. There exists h‹ ą 0 such that, for any h ě h‹, the simulated
annealing algorithm associated to the Metropolis-Hastings scheme at temperature
Tpnq “ h{ logpnq, whose transition matrix is irreducible and aperiodic, converges
as n Ñ 8 to the uniform measure on M.

Proof. Admitted, from Hajek (1988).

3.2.1 An example: the traveling salesman problem

The concrete problem of a traveling salesman is the following: there are m
cities which are situated at distinct locations V1, . . . , Vm. The salesman needs
to find the order of cities to visit which minimizes the total distance: in other
words, find the permutation σ P Σm which minimizes the function

σ P Σm ÞÑ Hpσq :“
m
ÿ

i“1

dist
`

Vσpiq, Vσpi`1q

˘

, σpm ` 1q “ σp1q.

It is hopeless to compute H for any permutation σ (even for m ě 10 it is not
feasible).

We are therefore going to apply the Simulated Annealing Algorithm by con-
structing a Markov chain on the set of permutations: one needs to define the
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possible transitions. The most efficient way is the following: we say that σ “

px1, . . . , xmq and σ1 “ py1, . . . , ymq are neighbours if there exists 1 ď i ă k ď m
such that

py1, . . . , ymq “ px1, . . . , x i´1, xk, xk´1, . . . , x i`1, x i, xk`1, . . . , xmq.

In other words, the cities order between rank i and rank k is reversed.

SIMULATED ANNEALING ALGORITHM (TRAVELING SALESMAN PROBLEM):

1. Choose an irreducible transition probability matrix P, aperiodic, on Σm,
such that pσ,σ1 ą 0 if and only if σ and σ1 are neighbours. An exemple
will be given during the practical session.

2. Initialize Xp0q “ σ0 P Σm.

3. Repeat the Metropolis-Hastings Algorithm scheme to construct Xpnq,
changing Tpnq “ c{ logpnq at any step. The choice of the constant c will be
investigated in the practical session.
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