Normal Subsequences of Automatic Sequences

Clemens Müllner

Thursday, March 29, 2018

Normal Sequences

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w}=\left(w_{0}\right.$,

$$
N_{u}(a, n):=\#\left\{k \leq n: u_{k}=a\right\}
$$

$$
N_{u}(\mathbf{w}, n):=\#\left\{k \leq n: u_{k}=w_{0}, \ldots, u_{k+\ell-1}=w_{\ell-1}\right\} .
$$

Definition (Subword Complexity)

The subword complexity of a sequence $u \in \mathcal{A}^{\mathbb{N}}$ is defined by

$p_{\mathrm{u}}(n) \leq|\mathcal{A}|^{n}$

Normal Sequences

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w}=\left(w_{0}, \ldots, w_{\ell-1}\right) \in \mathcal{A}^{\ell}$.

$$
\begin{aligned}
N_{\mathbf{u}}(a, n) & :=\#\left\{k \leq n: u_{k}=a\right\} \\
N_{\mathbf{u}}(\mathbf{w}, n) & :=\#\left\{k \leq n: u_{k}=w_{0}, \ldots, u_{k+\ell-1}=w_{\ell-1}\right\}
\end{aligned}
$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is defined by
$p_{\mathrm{u}}(n):=\#\left\{\mathbf{w} \in \mathcal{A}^{n}: \exists k, N_{\mathrm{u}}(\mathbf{w}, k) \geq 1\right\}$
$p_{\mathrm{u}}(n) \leq|\mathcal{A}|^{n}$

Normal Sequences

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w}=\left(w_{0}, \ldots, w_{\ell-1}\right) \in \mathcal{A}^{\ell}$.

$$
\begin{aligned}
N_{\mathbf{u}}(a, n) & :=\#\left\{k \leq n: u_{k}=a\right\} \\
N_{\mathbf{u}}(\mathbf{w}, n) & :=\#\left\{k \leq n: u_{k}=w_{0}, \ldots, u_{k+\ell-1}=w_{\ell-1}\right\}
\end{aligned}
$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$
p_{\mathbf{u}}(n):=\#\left\{\mathbf{w} \in \mathcal{A}^{n}: \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \geq 1\right\} .
$$

$p_{\mathbf{u}}(n) \leq|\mathcal{A}|^{n}$

Normal Sequences

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u}=\left(u_{n}\right)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w}=\left(w_{0}, \ldots, w_{\ell-1}\right) \in \mathcal{A}^{\ell}$.

$$
\begin{aligned}
N_{\mathbf{u}}(a, n) & :=\#\left\{k \leq n: u_{k}=a\right\} \\
N_{\mathbf{u}}(\mathbf{w}, n) & :=\#\left\{k \leq n: u_{k}=w_{0}, \ldots, u_{k+\ell-1}=w_{\ell-1}\right\}
\end{aligned}
$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$
p_{\mathbf{u}}(n):=\#\left\{\mathbf{w} \in \mathcal{A}^{n}: \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \geq 1\right\} .
$$

$$
p_{\mathbf{u}}(n) \leq|\mathcal{A}|^{n}
$$

Normal Sequences

Definition (Simple Normality)

We say that \mathbf{u} is simply normal in base b if for every $a \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \frac{N_{\mathbf{u}}(a, n)}{n}=\frac{1}{b}
$$

Definition (Normality)

We say that \mathbf{u} is normal in base b if for every $\mathbf{w} \in \mathcal{A}$

Normal Sequences

Definition (Simple Normality)

We say that \mathbf{u} is simply normal in base b if for every $a \in \mathcal{A}$

$$
\lim _{n \rightarrow \infty} \frac{N_{\mathbf{u}}(a, n)}{n}=\frac{1}{b}
$$

Definition (Normality)

We say that \mathbf{u} is normal in base b if for every $\mathbf{w} \in \mathcal{A}^{*}$

$$
\lim _{n \rightarrow \infty} \frac{N_{\mathbf{u}}(\mathbf{w}, n)}{n}=\frac{1}{b^{|\mathbf{w}|}}
$$

Examples

- Almost every sequence \mathbf{u} is normal (1909).
- Champernowne (1933): The sequence $0123456789101112131415 \ldots$ is normal in base 10.
- Coneland-Erdös (1946): The sequence 235711131719232931 . . . is normal in base 10

Examples

- Almost every sequence \mathbf{u} is normal (1909).
- Champernowne (1933): The sequence $0123456789101112131415 \ldots$ is normal in base 10.
- Copeland-Erdös (1946): The sequence $235711131719232931 \ldots$ is normal in base 10

Examples

- Almost every sequence \mathbf{u} is normal (1909).
- Champernowne (1933): The sequence $0123456789101112131415 \ldots$ is normal in base 10 .
- Copeland-Erdös (1946): The sequence $235711131719232931 \ldots$ is normal in base 10 .

Automatic Sequences

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

Automatic Sequences

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$n=22=(10110)_{2}, \quad u_{22}=1$
$\mathrm{u}=\left(u_{n}\right)_{n>0}=01101001100101101001011001101001$

Automatic Sequences

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
n=22=(10110)_{2}, \quad u_{22}=1
$$

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001
$$

Automatic Sequences

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
\begin{aligned}
& n=22=(10110)_{2}, \quad u_{22}=1 \\
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots
\end{aligned}
$$

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo $m: u_{n}=f(n) \bmod m$

- q-block-additive function modulo $m: u_{n}=f(n) \bmod m$

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo $m: u_{n}=f(n) \bmod m$

$$
f(n)=\sum_{j \geq 0} f\left(\varepsilon_{j}(n)\right) \text { and } f(0)=0
$$

- q-block-additive function modulo $m: u_{n}=f(n) \bmod m$

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo $m: u_{n}=f(n) \bmod m$

$$
f(n)=\sum_{j \geq 0} f\left(\varepsilon_{j}(n)\right) \text { and } f(0)=0
$$

- q-block-additive function modulo $m: u_{n}=f(n) \bmod m$

$$
f(n)=\sum_{j \geq 0} f\left(\varepsilon_{j}(n), \ldots, \varepsilon_{j+r}(n)\right) \text { and } f(0, \ldots, 0)=0
$$

Properties of Automatic Sequences

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear
- Every subsequence $\left(u_{a n+b}\right)_{n>0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties of Automatic Sequences

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear.
- Every subsequence $\left(u_{a n+b}\right)_{n>0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic. - Let $u^{(1)}(n) \ldots u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties of Automatic Sequences

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.

Properties of Automatic Sequences

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\log \operatorname{dens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

General Idea

- Start with an automatic sequence u_{n} that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence $u_{n_{k}}$ that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal

General Idea

- Start with an automatic sequence u_{n} that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence $u_{n_{k}}$ that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal

General Idea

- Start with an automatic sequence u_{n} that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence $u_{n_{k}}$ that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

Thue-Morse sequence along Piatetski-Shapiro

 sequence $\left\lfloor n^{c}\right\rfloor$Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101...
that is, $\left(t_{\left\lfloor n^{c}\right\rfloor}\right)_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro

 sequence $\left\lfloor n^{c}\right\rfloor$Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101... Mauduit and Rivat $(1995,2005)$, Spiegelhofer $(2014,2017,2018+$) $1<c<2$:
that is, $\left(t_{\left\lfloor n^{c}\right\rfloor}\right)_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro

 sequence $\left\lfloor n^{c}\right\rfloor$Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$:
011010011001011010010110011010011001011001101...

Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) $1<c<2$:

$$
\#\left\{0 \leq n<N: t_{\left\lfloor n^{c}\right\rfloor}=0\right\} \approx \frac{N}{2}
$$

that is, $\left(t_{\left\lfloor n^{c}\right\rfloor}\right)_{n \in \mathbb{N}}$ is simply normal in base 2.

Subsequences along $\left\lfloor n^{c}\right\rfloor$

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u_{n} be a k-automatic sequence (on an alphabet \mathcal{A}) and

$$
1<c<7 / 5 .
$$

Then for each $a \in \mathcal{A}$ the asymptotic density $\operatorname{dens}\left(u_{\left\lfloor n^{c}\right\rfloor}, a\right)$ of a in the subsequence $u_{\left\lfloor n^{c}\right\rfloor}$ exists if and only if the asymptotic density of a in u_{n} exists and we have

$$
\operatorname{dens}\left(u_{\lfloor n\rfloor}, a\right)=\operatorname{dens}\left(u_{n}, a\right) .
$$

Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101... Mauduit and Rivat (2009)

Solution of a Conjecture of Gelfond (1968)

Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$:
011010011001011010010110011010011001011001101...

Mauduit and Rivat (2009)

Solution of a Conjecture of Gelfond (1968)

Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$:
011010011001011010010110011010011001011001101...

Mauduit and Rivat (2009):

$$
\#\left\{0 \leq n<N: t_{n^{2}}=0\right\} \approx \frac{N}{2} .
$$

Solution of a Conjecture of Gelfond (1968)

Thue-Morse sequence along squares

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$:
011010011001011010010110011010011001011001101...

Mauduit and Rivat (2009):

$$
\#\left\{0 \leq n<N: t_{n^{2}}=0\right\} \approx \frac{N}{2} .
$$

Solution of a Conjecture of Gelfond (1968).

Subsequences along squares

Theorem (M., 2017+)

Let u_{n} be a k-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that a initial state is mapped to itself under 0 . Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{n^{2}}, a\right)
$$

exists (and can be computed).

Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101...

Mauduit and Rivat (2010):

Solution of a Conjecture of Gelfond (1968).

Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101... Mauduit and Rivat (2010):

Solution of a Conjecture of Gelfond (1968).

Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$: 011010011001011010010110011010011001011001101... Mauduit and Rivat (2010):

$$
\#\left\{0 \leq p<N: t_{p}=0\right\} \approx \frac{\pi(N)}{2}
$$

Solution of a Conjecture of Gelfond (1968)

Thue-Morse sequence along primes

Thue-Morse sequence $\left(t_{n}\right)_{n \geq 0}$:
011010011001011010010110011010011001011001101...

Mauduit and Rivat (2010):

$$
\#\left\{0 \leq p<N: t_{p}=0\right\} \approx \frac{\pi(N)}{2} .
$$

Solution of a Conjecture of Gelfond (1968).

Subsequences along primes

Theorem (M., 2017)

Let u_{n} be a k-automatic sequence (on an alphabet \mathcal{A}) generated by a strongly connected automaton such that the initial state is mapped to itself under 0 . Then for each $a \in \mathcal{A}$ the asymptotic density

$$
\operatorname{dens}\left(u_{p_{n}}, a\right)
$$

exists, where p_{n} denotes the n-th prime number (and can be computed).

Sarnak Conjecture for automatic sequences

Theorem (M., 2016)

Let u_{n} be a complex-valued automatic sequence.
Then we have

$$
\sum_{n \leq N} u_{n} \mu(n)=o(N),
$$

where $\mu(n)$ denotes the Möbius function.
This generalizes several results by Dartyge and Tenenbaum (Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao (Rudin-Shapiro); Drmota (invertible); Ferenczi, Kulaga-Przymus, Lemanczyk, and Mauduit (invertible); Deshoulliers, Drmota and M. (synchronizing).

Thue-Morse sequence along squares

$p_{k}^{(2)} \ldots$ subword complexity of $\left(t_{n^{2}}\right)_{n \geq 0}$.

Conjecture (Allouche and Shallit, 2003)

Equivalently: every block $B \in\{0,1\}^{k}, k \geq 1$, appears in $\left(t_{n^{2}}\right)_{n \geq 0}$.
(Moshe, 2007): $p_{k}^{(2)}=2^{k}$
But what can be said about the frequency of a given block?

Thue-Morse sequence along squares

$p_{k}^{(2)} \ldots$ subword complexity of $\left(t_{n^{2}}\right)_{n \geq 0}$.
Conjecture (Allouche and Shallit, 2003)

$$
p_{k}^{(2)}=2^{k}
$$

Equivalently: every block $B \in\{0,1\}^{k}, k \geq 1$, appears in $\left(t_{n^{2}}\right)_{n \geq 0}$.

(Moshe, 2007)
 But what can be said about the frequency of a given block?

Thue-Morse sequence along squares

$p_{k}^{(2)} \ldots$ subword complexity of $\left(t_{n^{2}}\right)_{n \geq 0}$.
Conjecture (Allouche and Shallit, 2003)

$$
p_{k}^{(2)}=2^{k}
$$

Equivalently: every block $B \in\{0,1\}^{k}, k \geq 1$, appears in $\left(t_{n^{2}}\right)_{n \geq 0}$.
(Moshe, 2007): $p_{k}^{(2)}=2^{k}$.
But what can be said about the frequency of a given block?

Thue-Morse sequence along squares

$p_{k}^{(2)} \ldots$ subword complexity of $\left(t_{n^{2}}\right)_{n \geq 0}$.

Conjecture (Allouche and Shallit, 2003)

$$
p_{k}^{(2)}=2^{k}
$$

Equivalently: every block $B \in\{0,1\}^{k}, k \geq 1$, appears in $\left(t_{n^{2}}\right)_{n \geq 0}$.
(Moshe, 2007): $p_{k}^{(2)}=2^{k}$.
But what can be said about the frequency of a given block?

Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)
The sequence ($t_{n^{2}}$) is normal.

Theorem (M. + Spiegelhofer, 2017)

Suppose that $1<c<3 / 2$. Then the sequence $\left(t_{\left|n^{c}\right|}\right)$ is normal

Normal subsequences of the Thue-Morse sequence

Theorem (Drmota + Mauduit + Rivat, 2013+)
The sequence ($t_{n^{2}}$) is normal.

Theorem (M. + Spiegelhofer, 2017)
Suppose that $1<c<3 / 2$. Then the sequence $\left(t_{\left\lfloor n^{c}\right\rfloor}\right)$ is normal.

Normal subsequences

Theorem (M., 2018+)

Let $f(n)$ be a block-additive function and $u_{n}=f(n) \bmod m$ an automatic sequence which is uniformly distributed on the alphabet $\{0, \ldots, m-1\}$ along arithmetic subsequences.
Then the sequence $\left(u_{\left\lfloor n^{c}\right\rfloor}\right)_{n \geq 0}$ is normal for all c with $1<c<4 / 3$.
Furthermore, $\left(u_{n^{2}}\right)_{n \geq 0}$ is normal.

Conjecture (Drmota)

Suppose that $c>1$ and $c \notin \mathbb{Z}$. Then for every automatic sequence u_{n} (on an alphabet \mathcal{A}) the asymptotic density dens $\left(u_{\lfloor n\rfloor}, a\right)$ of $a \in \mathcal{A}$ in the subsequence ($u_{\left[n^{c}\right\rfloor}$) exists if and only if the asymptotic density of a in u_{n} exists and we have up to periodic behavior

$$
\begin{gathered}
\lim _{N \rightarrow \infty} \#\left\{n<N, u_{\left\lfloor n^{c}\right\rfloor}=b_{0}, \ldots, u_{\left\lfloor(n+k-1)^{c}\right\rfloor}=b_{k-1}\right\} \\
=\operatorname{dens}\left(u_{n}, b_{0}\right) \cdots \operatorname{dens}\left(u_{n}, b_{k-1}\right)
\end{gathered}
$$

for every $k \geq 1$ and for all $b_{0}, \ldots, b_{k-1} \in \mathcal{A}$.

Conjecture (Drmota)

Let $P(x)$ be a positive integer valued polynomial and u_{n} an automatic sequence generated by a strongly connected automaton. Then, for every $a \in \mathcal{A}$ the densities $\delta_{a}=\operatorname{dens}\left(u_{P(n)}, a\right)$ exists and we have (up to periodic behavior)

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \#\left\{n<N, u_{P(n)}=b_{0}, \ldots, u_{P(n+k-1)}=b_{k-1}\right\} \\
& =\delta_{b_{0}} \cdots \delta_{b_{k-1}}
\end{aligned}
$$

for every $k \geq 1$ and for all $b_{0}, \ldots, b_{k-1} \in \mathcal{A}$.

Let u_{n} be an automatic sequence and $\phi(n)$ a positive sequence such that $\phi(n) / n$ is non-decreasing.

What can be said about $u_{\lfloor\phi(n)\rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
 - If $\phi(n)=a n+b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
 - If $\phi(n)=n \log _{2}(n)$ then $t_{\varphi(n)\rfloor}$ behaves like the Thue-Morse sequence t_{n}, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

Let u_{n} be an automatic sequence and $\phi(n)$ a positive sequence such that $\phi(n) / n$ is non-decreasing.

What can be said about $u_{\lfloor\phi(n)\rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n)=a n+b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n)=n \log _{2}(n)$ then $t_{\varphi(n)}$ behaves like the Thue-Morse sequence t_{n}, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

Let u_{n} be an automatic sequence and $\phi(n)$ a positive sequence such that $\phi(n) / n$ is non-decreasing.

What can be said about $u_{\lfloor\phi(n)\rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n)=a n+b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
> - If $\phi(n)=n \log _{2}(n)$ then $t_{\lfloor\varphi(n)\rfloor}$ behaves like the Thue-Morse sequence t_{n}, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

Let u_{n} be an automatic sequence and $\phi(n)$ a positive sequence such that $\phi(n) / n$ is non-decreasing.

What can be said about $u_{\lfloor\phi(n)\rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n)=a n+b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If $\phi(n)=n \log _{2}(n)$ then $t_{\lfloor\varphi(n)\rfloor}$ behaves like the Thue-Morse sequence t_{n}, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

General Strategy

- Rewrite the statement in terms of exponential sums.
E.g. $\operatorname{dens}\left(t_{n^{2}}, 0\right)=1 / 2$ holds if

$$
\left|\sum_{n \leq N} \mathrm{e}\left(\frac{s_{2}\left(n^{2}\right)}{2}\right)\right|=o(N)
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$.

- Use independence of "high" and "low" digits
- Statement involving the discrete Fourier transform

- Recursive structure:

$$
\left|F_{\lambda}(h, 1 / 2)\right| \leq 2^{-n m}\left|F_{\lambda-m}(h, 1 / 2)\right|
$$

General Strategy

- Rewrite the statement in terms of exponential sums.
E.g. $\operatorname{dens}\left(t_{n^{2}}, 0\right)=1 / 2$ holds if

$$
\left|\sum_{n \leq N} \mathrm{e}\left(\frac{s_{2}\left(n^{2}\right)}{2}\right)\right|=o(N),
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$.

- Use independence of „high" and „low" digits.
- Statement involving the discrete Fourier transform

- Recursive structure

$$
\left|F_{\lambda}(h, 1 / 2)\right| \leq 2^{-\eta m}\left|F_{\lambda-m}(h, 1 / 2)\right|
$$

General Strategy

- Rewrite the statement in terms of exponential sums.
E.g. dens $\left(t_{n^{2}}, 0\right)=1 / 2$ holds if

$$
\left|\sum_{n \leq N} \mathrm{e}\left(\frac{s_{2}\left(n^{2}\right)}{2}\right)\right|=o(N)
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$.

- Use independence of „high" and "low" digits.
- Statement involving the discrete Fourier transform

$$
F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \sum_{u<2^{\lambda}} \mathrm{e}\left(\alpha s_{2}(u)-h u 2^{-\lambda}\right)
$$

- Recursive structure

$$
\left|F_{\lambda}(h, 1 / 2)\right| \leq 2^{-\eta m}\left|F_{\lambda-m}(h, 1 / 2)\right|
$$

General Strategy

- Rewrite the statement in terms of exponential sums.
E.g. dens $\left(t_{n^{2}}, 0\right)=1 / 2$ holds if

$$
\left|\sum_{n \leq N} \mathrm{e}\left(\frac{s_{2}\left(n^{2}\right)}{2}\right)\right|=o(N)
$$

where $\mathrm{e}(x)=\exp (2 \pi i x)$.

- Use independence of ,"high" and „low" digits.
- Statement involving the discrete Fourier transform

$$
F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \sum_{u<2^{\lambda}} \mathrm{e}\left(\alpha s_{2}(u)-h u 2^{-\lambda}\right)
$$

- Recursive structure:

$$
\left|F_{\lambda}(h, 1 / 2)\right| \leq 2^{-\eta m}\left|F_{\lambda-m}(h, 1 / 2)\right| .
$$

Representation of automatic sequences

Example (Rudin-Shapiro)

Representation of automatic sequences

Example (Rudin-Shapiro)

Representation of automatic sequences

Example (Rudin-Shapiro)

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

0|(12)

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Definition

Denote by

$$
\begin{aligned}
T\left(q, w_{1} \ldots w_{r}\right):=\lambda\left(q, w_{1}\right) \circ & \lambda\left(\delta\left(q, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta\left(q, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_{A} a naturally induced transducer. Then,

$$
\delta^{\prime}\left(q_{0}^{\prime}, \mathbf{w}\right)=\pi_{1}\left(T\left(q_{0}, \mathbf{w}\right) \cdot \delta\left(q_{0}, \mathbf{w}\right)\right)
$$

holds for all $\mathbf{w} \in \Sigma$

Definition

Denote by

$$
\begin{aligned}
T\left(q, w_{1} \ldots w_{r}\right):=\lambda\left(q, w_{1}\right) \circ & \lambda\left(\delta\left(q, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta\left(q, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_{A} a naturally induced transducer. Then,

$$
\delta^{\prime}\left(q_{0}^{\prime}, \mathbf{w}\right)=\pi_{1}\left(T\left(q_{0}, \mathbf{w}\right) \cdot \delta\left(q_{0}, \mathbf{w}\right)\right)
$$

holds for all $\mathbf{w} \in \Sigma^{*}$.

Thue-Morse vs. automatic sequences: Similarities

$$
s_{2}(n) \bmod 2 \quad T\left(q_{0}, n\right)
$$

Rewrite the statement in terms of exponential sums:

Independence of "high" and "low" digits

Discrete Fourier transform / Recursive structure

Thue-Morse vs. automatic sequences: Similarities

$$
s_{2}(n) \bmod 2 \quad T\left(q_{0}, n\right)
$$

Rewrite the statement in terms of exponential sums:

$$
\sum_{\ell<2} \frac{1}{2} \mathrm{e}\left(\frac{\ell\left(s_{2}(n)-a\right)}{2}\right) \quad \sum_{D} c_{D} \cdot D\left(T\left(q_{0}, n\right)\right)
$$

Independence of "high" and "low" digits

Discrete Fourier transform / Recursive structure

Thue-Morse vs. automatic sequences: Similarities

$$
s_{2}(n) \bmod 2 \quad T\left(q_{0}, n\right)
$$

Rewrite the statement in terms of exponential sums:

$$
\sum_{\ell<2} \frac{1}{2} \mathrm{e}\left(\frac{\ell\left(s_{2}(n)-a\right)}{2}\right) \quad \sum_{D} c_{D} \cdot D\left(T\left(q_{0}, n\right)\right)
$$

Independence of "high" and "low" digits

$$
\begin{array}{ll}
s_{2}\left(\mathbf{w}_{1} \mathbf{w}_{2}\right) & T\left(q_{0}, \mathbf{w}_{1} \mathbf{w}_{0} \mathbf{w}_{2}\right) \\
=s_{2}\left(\mathbf{w}_{1}\right)+s_{2}\left(\mathbf{w}_{2}\right) & =T\left(q_{0}, \mathbf{w}_{1} \mathbf{w}_{0}\right) T\left(q_{0}, \mathbf{w}_{2}\right)
\end{array}
$$

Discrete Fourier transform / Recursive structure

Thue-Morse vs. automatic sequences: Similarities

$$
s_{2}(n) \bmod 2 \quad T\left(q_{0}, n\right)
$$

Rewrite the statement in terms of exponential sums:

$$
\sum_{\ell<2} \frac{1}{2} \mathrm{e}\left(\frac{\ell\left(s_{2}(n)-a\right)}{2}\right) \quad \sum_{D} c_{D} \cdot D\left(T\left(q_{0}, n\right)\right)
$$

Independence of "high" and "low" digits

$$
\begin{array}{ll}
s_{2}\left(\mathbf{w}_{1} \mathbf{w}_{2}\right) & T\left(q_{0}, \mathbf{w}_{1} \mathbf{w}_{0} \mathbf{w}_{2}\right) \\
=s_{2}\left(\mathbf{w}_{1}\right)+s_{2}\left(\mathbf{w}_{2}\right) & =T\left(q_{0}, \mathbf{w}_{1} \mathbf{w}_{0}\right) T\left(q_{0}, \mathbf{w}_{2}\right)
\end{array}
$$

Discrete Fourier transform / Recursive structure

$$
\begin{aligned}
& F_{\lambda}(h, \alpha)=\frac{1}{2^{\lambda}} \sum_{n<2^{\lambda}} \mathrm{e}\left(\alpha s_{2}(n)-h n 2^{-\lambda}\right) \\
& F_{\lambda}^{\prime}(h, D)=\frac{1}{2^{\lambda}} \sum_{n<2^{\lambda}} D\left(T\left(q_{0}, n\right)\right) \mathrm{e}\left(-h n 2^{-\lambda}\right) .
\end{aligned}
$$

Thue-Morse vs. automatic sequences: Differences

$s_{2}(n) \bmod 2$
$T(q, n)$
complex valued
matrix valued (not commuting!)
each digit independently
depends on q

Thue-Morse vs. automatic sequences: Differences

$s_{2}(n) \bmod 2$
$\mathrm{e}\left(\alpha \boldsymbol{s}_{2}(n)\right)$
$T(q, n)$
$D(T(q, n))$

Thue-Morse vs. automatic sequences: Differences

$s_{2}(n) \bmod 2$
$\mathrm{e}\left(\alpha \boldsymbol{s}_{2}(n)\right)$
complex valued

$$
T(q, n)
$$

$$
D(T(q, n))
$$

matrix valued (not commuting!)
depends on q.

Thue-Morse vs. automatic sequences: Differences

$s_{2}(n) \bmod 2$
$\mathrm{e}\left(\alpha \boldsymbol{s}_{2}(n)\right)$
complex valued
each digit independently
$T(q, n)$
$D(T(q, n))$
matrix valued (not commuting!) depends on q.

Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)
Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and $m(n)$ a bounded multiplicative function. Then we have

$$
\sum_{n<N}(-1)^{s_{\varphi}(n)} m(n)=o(N) \quad(N \rightarrow \infty) .
$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Fibonacci Base

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and $m(n)$ a bounded multiplicative function. Then we have

$$
\sum_{n<N}(-1)^{s_{\varphi}(n)} m(n)=o(N) \quad(N \rightarrow \infty) .
$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

