Normal Subsequences of Automatic Sequences

Clemens Müllner

Thursday, March 29, 2018

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u} = (u_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \ldots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a, n) := \#\{k \le n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \le n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u}\in\mathcal{A}^{\mathbb{N}}$ is defined by

 $p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$

$$p_{\mathbf{u}}(n) \leq |\mathcal{A}|^n$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u} = (u_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a, n) := \#\{k \le n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \le n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $\mathbf{u}\in\mathcal{A}^{\mathbb{N}}$ is defined by

 $p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$

$$p_{u}(n) \leq |\mathcal{A}|^{n}$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u} = (u_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a, n) := \#\{k \le n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \le n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $u \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$$

Let \mathcal{A} be a finite alphabet with b elements and $\mathbf{u} = (u_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$.

Definition

Let $a \in \mathcal{A}$ and $\mathbf{w} = (w_0, \dots, w_{\ell-1}) \in \mathcal{A}^{\ell}$.

$$N_{\mathbf{u}}(a, n) := \#\{k \le n : u_k = a\}$$

$$N_{\mathbf{u}}(\mathbf{w}, n) := \#\{k \le n : u_k = w_0, \dots, u_{k+\ell-1} = w_{\ell-1}\}.$$

Definition (Subword Complexity)

The subword complexity of a sequence $u \in \mathcal{A}^{\mathbb{N}}$ is defined by

$$p_{\mathbf{u}}(n) := \#\{\mathbf{w} \in \mathcal{A}^n : \exists k, N_{\mathbf{u}}(\mathbf{w}, k) \ge 1\}.$$

$$p_{\mathbf{u}}(n) \leq |\mathcal{A}|^n$$

Definition (Simple Normality)

We say that **u** is *simply normal in base b* if for every $a \in \mathcal{A}$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(a,n)}{n}=\frac{1}{b}.$$

Definition (Normality)

We say that \mathbf{u} is *normal in base b* if for every $\mathbf{w} \in \mathcal{A}^*$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(\mathbf{w},n)}{n}=\frac{1}{b^{|\mathbf{w}|}}.$$

Definition (Simple Normality)

We say that **u** is *simply normal in base b* if for every $a \in \mathcal{A}$

$$\lim_{n\to\infty}\frac{N_{\mathsf{u}}(a,n)}{n}=\frac{1}{b}.$$

Definition (Normality)

We say that \mathbf{u} is *normal in base b* if for every $\mathbf{w} \in \mathcal{A}^*$

$$\lim_{n\to\infty}\frac{N_{\mathbf{u}}(\mathbf{w},n)}{n}=\frac{1}{b^{|\mathbf{w}|}}.$$

• Almost every sequence **u** is normal (1909).

- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence 235711131719232931... is normal in base 10.

- Almost every sequence **u** is normal (1909).
- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence 235711131719232931... is normal in base 10.

- Almost every sequence **u** is normal (1909).
- Champernowne (1933): The sequence 0123456789101112131415... is normal in base 10.
- Copeland-Erdös (1946): The sequence 235711131719232931... is normal in base 10.

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u_{22} = 1$ $\mathbf{u} = (u_n)_{n \ge 0} = 01101001101001011001011001...$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2,$ $u_{22} = 1$ $\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101100101100101..$

Clemens Müllner

Normal Subsequences of Automatic Sequence

29. 3. 2018 5 / 28

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2, \qquad u_{22} = 1$

 $\mathbf{u} = (u_n)_{n>0} = 01101001100101101001011001011001\dots$

Clemens Müllner

Normal Subsequences of Automatic Sequence

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

$$n = 22 = (10110)_2,$$
 $u_{22} = 1$
 $\mathbf{u} = (u_n)_{n \ge 0} = 011010011001011001011001011001\dots$

Examples of Automatic Sequences

• Periodic sequences.

• q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j \ge 0} f(\varepsilon_j(n)) \text{ and } f(0) = 0.$$

• *q*-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n), \dots, \varepsilon_{j+r}(n))$$
 and $f(0, \dots, 0) = 0$.

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• *q*-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n), \dots, \varepsilon_{j+r}(n))$$
 and $f(0, \dots, 0) = 0$.

Examples of Automatic Sequences

- Periodic sequences.
- q-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n))$$
 and $f(0) = 0$.

• *q*-block-additive function modulo m: $u_n = f(n) \mod m$

$$f(n) = \sum_{j\geq 0} f(\varepsilon_j(n), \dots, \varepsilon_{j+r}(n))$$
 and $f(0, \dots, 0) = 0$.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let u⁽¹⁾(n),..., u^(j)(n) be automatic sequences. Then u(n) = f(u⁽¹⁾(n),..., u^(j)(n)) is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

$$logdens(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{log(N)} \sum_{1 \le n \le N} \frac{1}{n} \mathbf{1}_{[u_n = a]}.$$

- The subword complexity p_k of an automatic sequence is (at most) linear.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n) = f(u^{(1)}(n), \ldots, u^{(j)}(n))$ is again automatic.

- Start with an automatic sequence *u_n* that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

- Start with an automatic sequence *u_n* that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

- Start with an automatic sequence *u_n* that is uniformly distributed on the output alphabet.
- Consider a relatively sparse subsequence u_{n_k} that has the same asymptotic frequencies. (The size of the gaps needs to increase sufficiently fast.)
- This subsequence should be normal.

Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

$$\#\{0 \le n < N : t_{\lfloor n^c \rfloor} = 0\} \approx \frac{N}{2},$$

that is, $(t_{\lfloor n^c \rfloor})_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

Thue-Morse sequence $(t_n)_{n\geq 0}$: 011010011001011010010110011001011001011001... Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) 1 < c < 2:

$$\#\{0 \le n < N : t_{\lfloor n^c \rfloor} = 0\} \approx \frac{N}{2},$$

that is, $(t_{|n^c|})_{n \in \mathbb{N}}$ is simply normal in base 2.

Thue-Morse sequence along Piatetski-Shapiro sequence $\lfloor n^c \rfloor$

Thue-Morse sequence $(t_n)_{n\geq 0}$: 011010011001011010010110010110010110011001101... Mauduit and Rivat (1995, 2005), Spiegelhofer(2014,2017, 2018+) 1 < c < 2:

$$\#\{0\leq n< N: t_{\lfloor n^c\rfloor}=0\}\approx \frac{N}{2},$$

that is, $(t_{\lfloor n^c \rfloor})_{n \in \mathbb{N}}$ is simply normal in base 2.

Theorem (Deshouillers, Drmota and Morgenbesser, 2012)

Let u_n be a k-automatic sequence (on an alphabet A) and

1 < c < 7/5.

Then for each $a \in A$ the asymptotic density $dens(u_{\lfloor n^c \rfloor}, a)$ of a in the subsequence $u_{\lfloor n^c \rfloor}$ exists if and only if the asymptotic density of a in u_n exists and we have

 $dens(u_{\lfloor n^c \rfloor}, a) = dens(u_n, a).$

Mauduit and Rivat (2009):

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

Mauduit and Rivat (2009):

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

$$\#\{0 \le n < N : t_{n^2} = 0\} \approx \frac{N}{2}.$$

Theorem (M., 2017+)

Let u_n be a k-automatic sequence (on an alphabet A) generated by a strongly connected automaton such that a initial state is mapped to itself under 0. Then for each $a \in A$ the asymptotic density

 $dens(u_{n^2}, a)$

exists (and can be computed).

Mauduit and Rivat (2010):

$$\#\{0\leq p$$

Mauduit and Rivat (2010):

$$\#\{0\leq p$$

$$\#\{0\leq p< N: t_p=0\}\approx \frac{\pi(N)}{2}.$$
$$\#\{0\leq p<\mathsf{N}:t_p=0\}\approx \frac{\pi(\mathsf{N})}{2}.$$

Solution of a Conjecture of Gelfond (1968).

Let u_n be a k-automatic sequence (on an alphabet A) generated by a strongly connected automaton such that the initial state is mapped to itself under 0. Then for each $a \in A$ the asymptotic density

 $dens(u_{p_n}, a)$

exists, where p_n denotes the *n*-th prime number (and can be computed).

Let u_n be a complex-valued automatic sequence. Then we have

$$\sum_{n\leq N}u_n\mu(n)=o(N),$$

where $\mu(n)$ denotes the Möbius function.

This generalizes several results by Dartyge and Tenenbaum (Thue-Morse); Mauduit and Rivat (Rudin-Shapiro); Tao (Rudin-Shapiro); Drmota (invertible); Ferenczi, Kulaga-Przymus, Lemanczyk, and Mauduit (invertible); Deshoulliers, Drmota and M. (synchronizing).

$$p_k^{(2)}\ldots$$
 subword complexity of $(t_{n^2})_{n\geq 0}$.

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \ge 1$, appears in $(t_{n^2})_{n \ge 0}$.

$$p_k^{(2)}$$
... subword complexity of $(t_{n^2})_{n\geq 0}$.

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \ge 1$, appears in $(t_{n^2})_{n \ge 0}$.

$$p_k^{(2)}$$
... subword complexity of $(t_{n^2})_{n\geq 0}$.

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \ge 1$, appears in $(t_{n^2})_{n \ge 0}$.

$$p_k^{(2)}$$
... subword complexity of $(t_{n^2})_{n\geq 0}$.

$$p_k^{(2)} = 2^k$$

Equivalently: every block $B \in \{0,1\}^k, k \ge 1$, appears in $(t_{n^2})_{n \ge 0}$.

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t_{n^2}) is normal.

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence $(t_{\lfloor n^c \rfloor})$ is normal.

Theorem (Drmota + Mauduit + Rivat, 2013+)

The sequence (t_{n^2}) is normal.

Theorem (M. + Spiegelhofer, 2017)

Suppose that 1 < c < 3/2. Then the sequence $(t_{|n^c|})$ is normal.

Let f(n) be a block-additive function and $u_n = f(n) \mod m$ an automatic sequence which is uniformly distributed on the alphabet $\{0, \ldots, m-1\}$ along arithmetic subsequences. Then the sequence $(u_{\lfloor n^c \rfloor})_{n \ge 0}$ is normal for all c with 1 < c < 4/3. Furthermore, $(u_{n^2})_{n \ge 0}$ is normal.

Conjecture (Drmota)

Suppose that c > 1 and $c \notin \mathbb{Z}$. Then for every automatic sequence u_n (on an alphabet \mathcal{A}) the asymptotic density $dens(u_{\lfloor n^c \rfloor}, a)$ of $a \in \mathcal{A}$ in the subsequence $(u_{\lfloor n^c \rfloor})$ exists if and only if the asymptotic density of a in u_n exists and we have up to periodic behavior

$$\begin{split} &\lim_{N o\infty} \#\{n < N, u_{\lfloor n^c
floor} = b_0, \dots, u_{\lfloor (n+k-1)^c
floor} = b_{k-1}\} \ &= dens(u_n, b_0) \cdots dens(u_n, b_{k-1}) \end{split}$$

for every $k \geq 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

Conjecture (Drmota)

Let P(x) be a positive integer valued polynomial and u_n an automatic sequence generated by a strongly connected automaton. Then, for every $a \in A$ the densities $\delta_a = dens(u_{P(n)}, a)$ exists and we have (up to periodic behavior)

$$\lim_{N \to \infty} \#\{n < N, u_{P(n)} = b_0, \dots, u_{P(n+k-1)} = b_{k-1}\}$$
$$= \delta_{b_0} \cdots \delta_{b_{k-1}}$$

for every $k \geq 1$ and for all $b_0, \ldots, b_{k-1} \in \mathcal{A}$.

What can be said about $u_{\lfloor \phi(n) \rfloor}$?

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If φ(n) = n log₂(n) then t_{↓φ(n)} behaves like the Thue-Morse sequence t_n, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

```
What can be said about u_{\lfloor \phi(n) \rfloor}?
```

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If φ(n) = an + b with integers a, b. Then u_{φ(n)} is again an automatic sequence.
- If φ(n) = n log₂(n) then t_{↓φ(n)} behaves like the Thue-Morse sequence t_n, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

```
What can be said about u_{|\phi(n)|}?
```

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If $\phi(n) = an + b$ with integers a, b. Then $u_{\phi(n)}$ is again an automatic sequence.
- If φ(n) = n log₂(n) then t_{↓φ(n)} behaves like the Thue-Morse sequence t_n, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

```
What can be said about u_{|\phi(n)|}?
```

- We cannot expect general results for exponentially growing sequences $\phi(n)$.
- If φ(n) = an + b with integers a, b. Then u_{φ(n)} is again an automatic sequence.
- If φ(n) = n log₂(n) then t_{↓φ(n)↓} behaves like the Thue-Morse sequence t_n, but the density for blocks of length 2 does not exist. (Deshouillers + Drmota + Morgenbesser (2012))

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi i x)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

• Recursive structure:

 $\left|F_{\lambda}(h,1/2)\right| \leq 2^{-\eta m} \left|F_{\lambda-m}(h,1/2)\right|.$

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} \operatorname{e}\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu2^{-\lambda}).$$

• Recursive structure:

 $\left|F_{\lambda}(h,1/2)\right| \leq 2^{-\eta m} \left|F_{\lambda-m}(h,1/2)\right|.$

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} \operatorname{e}\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h, \alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu 2^{-\lambda}).$$

Recursive structure:

 $\left|F_{\lambda}(h,1/2)\right| \leq 2^{-\eta m} \left|F_{\lambda-m}(h,1/2)\right|.$

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} \operatorname{e}\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

- Use independence of "high" and "low" digits.
- Statement involving the discrete Fourier transform

$$F_{\lambda}(h, \alpha) = \frac{1}{2^{\lambda}} \sum_{u < 2^{\lambda}} e(\alpha s_2(u) - hu 2^{-\lambda}).$$

Recursive structure:

$$|F_{\lambda}(h, 1/2)| \leq 2^{-\eta m} |F_{\lambda-m}(h, 1/2)|$$
.

Representation of automatic sequences

Example (Rudin-Shapiro)

Normal Subsequences of Automatic Sequence

Representation of automatic sequences

Example (Rudin-Shapiro)

- 一司

Normal Subsequences of Automatic Sequence

Representation of automatic sequences

Example (Rudin-Shapiro)

Normal Subsequences of Automatic Sequence

- 一司

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Normal Subsequences of Automatic Sequence

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Normal Subsequences of Automatic Sequence

29. 3. 2018

24 / 28

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q'_0, \mathbf{w}) = \pi_1(\mathcal{T}(q_0, \mathbf{w}) \cdot \delta(q_0, \mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

- ∢ ศ⊒ ▶

- 4 ∃ ≻ 4

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q'_0, \mathbf{w}) = \pi_1(\mathcal{T}(q_0, \mathbf{w}) \cdot \delta(q_0, \mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

Thue-Morse vs. automatic sequences: Similarities

 $s_2(n) \mod 2$

 $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

 $\sum_{\ell < 2} \frac{1}{2} \operatorname{e} \left(\frac{\ell(s_2(n) - a)}{2} \right) \qquad \sum_{D} c_D \cdot D(T(q_0, n))$

Independence of "high" and "low" digits

 $\begin{aligned} s_2(\mathbf{w}_1 \, \mathbf{w}_2) & T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2) \\ &= s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2) & = T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2) \end{aligned}$

Discrete Fourier transform / Recursive structure

 $F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$ $F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} D(T(q_0,n)) e(-hn2^{-\lambda}).$

Thue-Morse vs. automatic sequences: Similarities

 $s_2(n) \mod 2$ $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

 $\sum \frac{1}{2} \operatorname{e} \left(\frac{\ell(s_2(n) - a)}{2} \right) \qquad \sum c_D \cdot D(T(q_0, n))$ $F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum e(\alpha s_2(n) - hn2^{-\lambda})$

Thue-Morse vs. automatic sequences: Similarities

 $s_2(n) \mod 2$ $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

 $\sum_{\ell < 2} \frac{1}{2} e\left(\frac{\ell(s_2(n) - a)}{2}\right) \qquad \sum_D c_D \cdot D(T(q_0, n))$ Independence of "high" and "low" digits $s_2(\mathbf{w}_1 \mathbf{w}_2) \qquad T(q_0, \mathbf{w}_1 \mathbf{w}_0 \mathbf{w}_2)$ $= s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2) \qquad = T(q_0, \mathbf{w}_1 \mathbf{w}_0)T(q_0, \mathbf{w}_2)$

Discrete Fourier transform / Recursive structure

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_2(n) - hn2^{-\lambda})$$
$$F'_{\lambda}(h,D) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} D(T(q_0,n)) e(-hn2^{-\lambda}).$$
Thue-Morse vs. automatic sequences: Similarities

 $s_2(n) \mod 2$ $T(q_0, n)$

Rewrite the statement in terms of exponential sums:

 $\sum_{\ell < 2} \frac{1}{2} \operatorname{e} \left(\frac{\ell(s_2(n) - a)}{2} \right) \qquad \sum_{D} c_D \cdot D(T(q_0, n))$

Independence of "high" and "low" digits

 $\begin{aligned} s_2(\mathbf{w}_1 \, \mathbf{w}_2) & T(q_0, \mathbf{w}_1 \, \mathbf{w}_0 \, \mathbf{w}_2) \\ &= s_2(\mathbf{w}_1) + s_2(\mathbf{w}_2) & = T(q_0, \mathbf{w}_1 \, \mathbf{w}_0) T(q_0, \mathbf{w}_2) \end{aligned}$

Discrete Fourier transform / Recursive structure

$$F_{\lambda}(h,\alpha) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} e(\alpha s_{2}(n) - hn2^{-\lambda})$$

$$F_{\lambda}'(h,D) = \frac{1}{2^{\lambda}} \sum_{n < 2^{\lambda}} D(T(q_{0},n)) e(-hn2^{-\lambda}).$$

29. 3. 2018

26

Clemens Müllner

Normal Subsequences of Automatic Sequence

<i>s</i> ₂ (<i>n</i>) mod 2	T(q, n)
$e(\alpha s_2(n))$	D(T(q, n))
complex valued	matrix valued (not commuting!)
each digit independently	depends on <i>q</i> .

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n< N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N \to \infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Theorem (Drmota, M., Spiegelhofer, 2017+)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and m(n) a bounded multiplicative function. Then we have

$$\sum_{n< N} (-1)^{s_{\varphi}(n)} m(n) = o(N) \qquad (N \to \infty).$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.