All automatic sequences satisfy the full Sarnak conjecture

Clemens Müllner

23. February 2016

Complexity of a sequence

Definition

A bounded complex valued sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is said to be deterministic if for every $\varepsilon>0$ the set $\left\{\left(u_{n+1}, \ldots, u_{n+m}\right): n \in \mathbb{N}\right\}$ can be covered by $O(\exp (o(m)))$ balls of radius ε (as $m \rightarrow \infty)$.

Example

Let

for a minimal topological dynamical system (X, T) with zero topological entropy (and a continuous function f), then $\left(u_{n}\right)_{n>0}$ is deterministic.

Complexity of a sequence

Definition

A bounded complex valued sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is said to be deterministic if for every $\varepsilon>0$ the set $\left\{\left(u_{n+1}, \ldots, u_{n+m}\right): n \in \mathbb{N}\right\}$ can be covered by $O(\exp (o(m)))$ balls of radius $\varepsilon($ as $m \rightarrow \infty)$.

Example

Let

$$
u_{n}=f\left(T^{n} x\right)
$$

for a minimal topological dynamical system (X, T) with zero topological entropy (and a continuous function f), then $\left(u_{n}\right)_{n \geq 0}$ is deterministic.

Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
k
\end{array} \\
0 \text { is the number of prime factors } \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

Conjecture (Sarnak conjecture)

Fvery deterministic bounded complex valued sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$

Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\sum_{n \leq N} \mu(n) u_{n}=o(N) \quad(N \rightarrow \infty)
$$

[^0]
Sarnak Conjecture

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
k \text { is the number of prime factors }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\sum_{n \leq N} \mu(n) u_{n}=o(N) \quad(N \rightarrow \infty)
$$

Conjecture (Sarnak conjecture)

Every deterministic bounded complex valued sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

„Full" Sarnak Conjecture

Dynamical System (X, T) related to \mathbf{u}

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { bounded complex sequence }
$$

$T \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator
$X=\left\{T^{k}(\mathbf{u}): k \geq 0\right\}$
We say that u satisfies the "Full" Sarnak conjecture if all sequences $\mathbf{a}=\left(a_{n}\right)_{n \geq 0} \in X$ are orthogonal to $\mu(n)$.

„Full" Sarnak Conjecture

Dynamical System (X, T) related to \mathbf{u}

$\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots$ bounded complex sequence
$T \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator

We say that u satisfies the „Full" Sarnak conjecture if all sequences $\mathbf{a}=\left(a_{n}\right)_{n \geq 0} \in X$ are orthogonal to $\mu(n)$

,Full" Sarnak Conjecture

Dynamical System (X, T) related to \mathbf{u}

$\mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots$ bounded complex sequence
$T \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots$ shift operator
$X=\overline{\left\{T^{k}(\mathbf{u}): k \geq 0\right\}}$
We say that u satisfies the „Full" Sarnak conjecture if all sequences $\mathbf{a}=\left(a_{n}\right)_{n \geq 0} \in X$ are orthogonal to $\mu(n)$

„Full" Sarnak Conjecture

Dynamical System (X, T) related to \mathbf{u}

$$
\begin{aligned}
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0} \ldots \text { bounded complex sequence } \\
& T \mathbf{u}=\left(u_{n+1}\right)_{n \geq 0} \ldots \text { shift operator } \\
& X=\left\{T^{k}(\mathbf{u}): k \geq 0\right\}
\end{aligned}
$$

We say that \mathbf{u} satisfies the „Full" Sarnak conjecture if all sequences $\mathbf{a}=\left(a_{n}\right)_{n \geq 0} \in X$ are orthogonal to $\mu(n)$.

Deterministic Finite Automata

Definition (Automaton)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

Deterministic Finite Automata

Definition (Automaton)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

Deterministic Finite Automata

Definition (Automaton)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
n=22=(10110)_{2}, \quad u_{22}=1
$$

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001
$$

Deterministic Finite Automata

Definition (Automaton)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
\begin{aligned}
& n=22=(10110)_{2}, \quad u_{22}=1 \\
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots
\end{aligned}
$$

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n>0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n) \ldots . u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an
automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
\square $u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]} .
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.

Properties

- For every automatic sequence \mathbf{u} there exists the logarithmic density

$$
\operatorname{logdens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{\log (N)} \sum_{1 \leq n \leq N} \frac{1}{n} \mathbf{1}_{\left[u_{n}=a\right]}
$$

- The subword complexity p_{k} of an automatic sequence is (at most) linear. The dynamical system (X, T) related to an automatic sequence has zero topological entropy.
- Every subsequence $\left(u_{a n+b}\right)_{n \geq 0}$ along an arithmetic progression of an automatic sequence $\left(u_{n}\right)_{n \geq 0}$ is again automatic.
- Let $u^{(1)}(n), \ldots, u^{(j)}(n)$ be automatic sequences. Then $u(n)=f\left(u^{(1)}(n), \ldots, u^{(j)}(n)\right)$ is again automatic.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.
Example

$\mathbf{w}_{0}=010$.

Theorem (Deshouillers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathrm{u}=\left(u_{n}\right)_{n>0}$ satisfies the full Sarnak conjecture.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.

Theorem (Deshouilers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then
$\mathbf{u}=\left(u_{n}\right)_{n>0}$ satisfies the full Sarnak conjecture.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.
Theorem (Deshouilers + Drmota +M .)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathbf{u}=\left(u_{n}\right)_{n>0}$ satisfies the full Sarnak conjecture.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.
Theorem (Deshouillers + Drmota + M.)
Let $\mathbf{u}=\left(u_{n}\right) n>0$ be generated by a synchronizing automaton. Then $\mathbf{u}=\left(u_{n}\right)_{n>0}$ satisfies the full Sarnak conjecture.

$$
M_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
M_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$M_{0}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) ; M_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) ; M_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$
$11=(102)_{3}:$

$$
M_{2} \circ M_{0} \circ M_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
M_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

$$
u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the densities

exist and coincide with the logarithmic densities.

Theorem [Drmota, Ferenczi
 Kulaga-Przymus +Lemanczyk+Mauduit

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton. Then \mathbf{u} is orthogonal to $\mu(n)$

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the densities

$$
\operatorname{dens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=a\right]}
$$

exist and coincide with the logarithmic densities.

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton. Then \mathbf{u} is orthogonal to $\mu(n)$

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the densities

$$
\operatorname{dens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=a\right]}
$$

exist and coincide with the logarithmic densities.

```
Theorem [Drmota, Ferenczi +
Kulaga-Przymus+Lemanczyk+Mauduit]
```

Suppose that an automatic sequence $\mathbf{u}=\left(u_{n}\right)_{n \geq 0}$ is generated by an invertible automaton. Then \mathbf{u} is orthogonal to $\mu(n)$.

Example (Rudin-Shapiro)

Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.

Example (Rudin-Shapiro)

Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff

(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(a, a)=\lambda(a, a) \cdot \delta(a, a)$
(9) \mathcal{T}_{A} is synchronizing
(3) some minimality conditions

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff
(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(q, a)=\lambda(q, a) \cdot \delta(q, a)$
(4) \mathcal{T}_{A} is synchronizing
(3) some minimality conditions

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff
(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(q, a)=\lambda(q, a) \cdot \delta(q, a)$
(9) \mathcal{T}_{A} is synchronizing
(5) some minimality conditions

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff
(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(q, a)=\lambda(q, a) \cdot \delta(q, a)$
(9) \mathcal{T}_{A} is synchronizing
(3) some minimality conditions

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff
(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(q, a)=\lambda(q, a) \cdot \delta(q, a)$
(4) \mathcal{T}_{A} is synchronizing
(3) some minimality conditions

Definition (Naturally Induced Transducer)

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}\right)$ be a strongly connected automata. We call $\mathcal{T}_{A}=\left(Q, \Sigma, \delta, q_{0}, \Delta, \lambda\right)$ a naturally induced transducer iff
(1) $\exists n_{0} \in \mathbb{N}: Q \subseteq\left(Q^{\prime}\right)^{n_{0}}$
(2) some technical conditions
(3) $\delta^{\prime}(q, a)=\lambda(q, a) \cdot \delta(q, a)$
(a) \mathcal{T}_{A} is synchronizing
(5) some minimality conditions

Example

Example

Example

Example

Example

Example

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

 Define$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$

- $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M, a)}$
- choose λ accordingly.
- synchronizing:

$$
\forall q: \delta\left(q, w_{M}\right)=q_{M} .
$$

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$ - $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M, a)}$

- choose λ accordingly.
- synchronizing

$$
\forall q: \delta\left(q, w_{M}\right)=q_{M} .
$$

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
n_{0}:=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$

- $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M . a)}$
- choose λ accordingly.
- synchronizing

$$
\forall q: \delta\left(q, w_{M}\right)=q_{M} .
$$

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$
\square

- choose λ accordingly.
- synchronizing:

$$
\forall q: \delta\left(q, \mathbf{w}_{M}\right)=q_{M}
$$

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$.
\square

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$.

- $\delta^{\prime}(M, a) \in S(A)$ \square
\square
- choose λ accordingly.
- synchronizing:
$\forall q: \delta\left(a, w_{M}\right)=q_{M}$.

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$.

- $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M, a)}$
- synchronizing:
$\forall a: \delta\left(a \cdot \mathbf{w}_{M}\right)=q_{M}$.

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$.

- $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M, a)}$
- choose λ accordingly.
- synchronizing:
$\forall q: \delta\left(q, \mathbf{w}_{M}\right)=q_{M}$.

Theorem

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Proof (first part of the Theorem):

Define

$$
\begin{aligned}
n_{0} & :=\min \left\{\# \delta^{\prime}\left(Q^{\prime}, \mathbf{w}\right): \mathbf{w} \in \Sigma^{*}\right\} \\
S(A) & :=\left\{M \subseteq Q^{\prime}: \# M=n_{0}, \exists \mathbf{w}_{M} \in \Sigma^{*}, \delta^{\prime}\left(Q^{\prime}, \mathbf{w}_{M}\right)=M\right\}
\end{aligned}
$$

Define n_{0}-tuple q_{M} corresponding to $M \in S(A)$.

- $\delta^{\prime}(M, a) \in S(A) \Rightarrow \delta\left(q_{M}, a\right):=q_{\delta^{\prime}(M, a)}$
- choose λ accordingly.
- synchronizing:

$$
\forall q: \delta\left(q, \mathbf{w}_{M}\right)=q_{M}
$$

Definition
 Denote by

$$
\begin{aligned}
T\left(q, w_{1} \ldots w_{r}\right):=\lambda\left(q, w_{1}\right) \circ & \lambda\left(\delta\left(q, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta\left(q, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_{A} a naturally induced transducer. Then,

$$
\delta^{\prime}\left(q_{0}^{\prime}, \mathbf{w}\right)=\pi_{1}\left(T\left(q_{0}, \mathbf{w}\right) \cdot \delta\left(q_{0}, \mathbf{w}\right)\right)
$$

holds for all $\mathbf{w} \in \Sigma$

Definition

Denote by

$$
\begin{aligned}
T\left(q, w_{1} \ldots w_{r}\right):=\lambda\left(q, w_{1}\right) \circ & \lambda\left(\delta\left(q, w_{1}\right), w_{2}\right) \circ \ldots \\
& \circ \lambda\left(\delta\left(q, w_{1} \ldots w_{r-1}\right), w_{r}\right) .
\end{aligned}
$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_{A} a naturally induced transducer. Then,

$$
\delta^{\prime}\left(q_{0}^{\prime}, \mathbf{w}\right)=\pi_{1}\left(T\left(q_{0}, \mathbf{w}\right) \cdot \delta\left(q_{0}, \mathbf{w}\right)\right)
$$

holds for all $\mathbf{w} \in \Sigma^{*}$.

Are some naturally induced transducers better than others?

(Oversimplified) Example

Are some naturally induced transducers better than others?

(Oversimplified) Example

Are some naturally induced transducers better than others?

(Oversimplified) Example

Are some naturally induced transducers better than others?

(Oversimplified) Example

All elements of Δ appear as values of $T\left(q_{0},.\right)$ for ,,good" naturally induced transducer.
Do all elements of Δ appear as values of $T\left(q_{0}, w\right)$ for $w \in \Sigma^{n}$, where n is large?

Example

All elements of Δ appear as values of $T\left(q_{0},.\right)$ for ,,good" naturally induced transducer.
Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?

Example

All elements of Δ appear as values of $T\left(q_{0},.\right)$ for ,,good" naturally induced transducer.
Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?

Example

All elements of Δ appear as values of $T\left(q_{0},.\right)$ for ,,good" naturally induced transducer.
Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?

Example

Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$,

 where n is large?
The key point is to avoid periodic behavior.

Example

Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?
The key point is to avoid periodic behavior.

Example

Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?
The key point is to avoid periodic behavior.

Example

$$
00,01,10,11 \quad 00,01,10,11
$$

Do all elements of Δ appear as values of $T\left(q_{0}, \mathbf{w}\right)$ for $\mathbf{w} \in \Sigma^{n}$, where n is large?
The key point is to avoid periodic behavior.

Example

$00 \mid$ id, $01 \mid$ id
$10 \mid$ id, $11 \mid$ id

Theorem 1

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the full Sarnak conjecture.

Theorem 2

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, \tau\right)$ be a strongly connected DFAO such that $\Sigma=\{0, \ldots, k-1\}$ and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$. Then the frequencies of the letters for the subsequence $\left(a_{p}\right)_{p \in \mathcal{P}}$ exist.

Remark: All block-additive (i.e. digital) functions are covered by

 Theorem 2 and they are equally distributed under reasonable conditions.
Theorem 1

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the full Sarnak conjecture.

Theorem 2

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, \tau\right)$ be a strongly connected DFAO such that $\Sigma=\{0, \ldots, k-1\}$ and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$. Then the frequencies of the letters for the subsequence $\left(a_{p}\right)_{p \in \mathcal{P}}$ exist.

Remark: All block-additive (i.e. digital) functions are covered by Theorem 2 and they are equally distributed under reasonable conditions.

Theorem 1

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the full Sarnak conjecture.

Theorem 2

Let $A=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, \tau\right)$ be a strongly connected DFAO such that $\Sigma=\{0, \ldots, k-1\}$ and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$. Then the frequencies of the letters for the subsequence $\left(a_{p}\right)_{p \in \mathcal{P}}$ exist.

Remark: All block-additive (i.e. digital) functions are covered by Theorem 2 and they are equally distributed under reasonable conditions.

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$ and proof only

$$
\sum_{n<N} \mu(n) a_{n}=o(N)
$$

Fix $\varepsilon>0$. We need to show

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$ and proof only

$$
\sum_{n<N} \mu(n) a_{n}=o(N) .
$$

Fix $\varepsilon>0$. We need to show

$$
\left|\sum_{n<N} \mu(n) a_{n}\right| \leq \varepsilon N .
$$

Ideas for the proof of Theorem 1

We assume that the automaton is strongly connected and $\delta^{\prime}\left(q_{0}^{\prime}, 0\right)=q_{0}^{\prime}$ and proof only

$$
\sum_{n<N} \mu(n) a_{n}=o(N)
$$

Fix $\varepsilon>0$. We need to show

$$
\begin{aligned}
& \left|\sum_{n<N} \mu(n) a_{n}\right| \leq \varepsilon N \\
& \sum_{n<N} \mu(n) a_{n}=\sum_{n<N} \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, n\right)\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\sum_{n<N} & \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, n\right)\right) \\
& =\sum_{m<k^{\lambda}} \sum_{n=m<N}^{n \equiv m \text { mod } k^{\lambda}}<
\end{array} \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, n\right)\right)\right)
$$

$$
\begin{aligned}
\sum_{n<N} & \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, n\right)\right) \\
& =\sum_{m<k^{\lambda}} \sum_{\substack{n<N \\
n \equiv m \text { mod } k^{\lambda}}} \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, n\right)\right) \\
& \approx \sum_{m<k^{\lambda}} \sum_{\substack{n<N \\
n \equiv m \text { mod } k^{\lambda}}} \mu(n) \cdot \pi_{1}\left(T\left(q_{0}, n\right) \cdot \delta\left(q_{0}, m\right)\right) \\
& =\sum_{m<k^{\lambda}} \sum_{\substack{n<N \\
n \equiv m \text { mod } k^{\lambda}}} \mu(n) \cdot f_{\delta\left(q_{0}, m\right)}\left(T\left(q_{0}, n\right)\right)
\end{aligned}
$$

$$
\left|\sum_{n<N} \mu(n) a_{n}\right| \lesssim k^{\lambda} \max _{m<k^{\lambda}} \max _{q \in Q}\left|\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) \cdot f_{q}\left(T\left(q_{0}, n\right)\right)\right|
$$

Continuous functions fron an a conpact oroup to e

Definition (Representation)

Let G be a compact group and $k \in \mathbb{N}$. A Representation of rank k is a continuous homomorphism $D: G \rightarrow \mathbb{C}^{k \times k}$.

Lemma

Let f be a continuous function from G to \mathbb{C} and $\varepsilon>0$. There exists $r \in \mathbb{N}$ and unitary, irreducible representations $D^{(\ell)}=\left(d_{i, j}^{(\ell)}\right)_{i, j<k}$ along with $c_{\ell} \in \mathbb{C}$ such that

holds for all $g \in G$

Continuous functions from a compact group to \mathbb{C}

Definition (Representation)

Let G be a compact group and $k \in \mathbb{N}$. A Representation of rank k is a continuous homomorphism $D: G \rightarrow \mathbb{C}^{k \times k}$.

Lemma

Let f be a continuous function from G to \mathbb{C} and $\varepsilon>0$. There exists $r \in \mathbb{N}$ and unitary, irreducible representations $D^{(\ell)}=\left(d_{i, j}^{(\ell)}\right)_{i, j<k_{\ell}}$ along with $c_{\ell} \in \mathbb{C}$ such that

$$
\left|f(g)-\sum_{\ell<r} c_{\ell} d_{i, j_{\ell}}^{(\ell)}(g)\right| \leq \varepsilon
$$

holds for all $g \in G$.

$$
\left|\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) f\left(T\left(q_{0}, n\right)\right)\right|
$$

$$
\left|\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) f\left(T\left(q_{0}, n\right)\right)\right|
$$

$$
\approx\left|\sum_{n<N} \mu(n) \sum_{\ell<r} c_{\ell} d_{i_{\ell}, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right)\right|
$$

$$
\leq \sum_{\ell<r}\left|c_{\ell}\right| \sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) d_{i \ell, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right) \mid
$$

$$
\begin{aligned}
& \sum_{\substack{n<N \\
n \equiv m \bmod k^{\lambda}}} \mu(n) f\left(T\left(q_{0}, n\right)\right) \mid \\
& \approx\left|\sum_{n<N} \mu(n) \sum_{\ell<r} c_{\ell} d_{i_{\ell}, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right)\right| \\
& \leq\left.\sum_{\ell<r}\left|c_{\ell}\right|\right|_{n \equiv m \bmod k^{\lambda}} \mu(n) d_{i_{\ell}, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right) \mid \\
& \leq \sum_{\ell<r}\left|c_{\ell}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \left|\sum_{\substack{n<N \\
n \equiv m \bmod k^{\lambda}}} \mu(n) f\left(T\left(q_{0}, n\right)\right)\right| \\
& \approx\left|\sum_{n<N} \mu(n) \sum_{\ell<r} c_{\ell} d_{i_{\ell}, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right)\right| \\
& \leq \sum_{\ell<r}\left|c_{\ell}\right|\left|\sum_{\substack{n<N \\
n \equiv m \bmod k^{\lambda}}} \mu(n) d_{i_{\ell}, j_{\ell}}^{(\ell)}\left(T\left(q_{0}, n\right)\right)\right|
\end{aligned}
$$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$$
\begin{aligned}
& T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2 \\
& D(i d)=1, D((12))=-1 \\
& \quad D\left(T\left(q_{0}, n\right)\right)=(-1)^{n} \quad D\left(T\left(q_{0}, n\right)\right)=\exp \left(2 \pi i \frac{j}{k-1}\right)
\end{aligned}
$$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$$
T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2
$$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2$
$D(i d)=1, D((12))=-1$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2$

$$
D(i d)=1, D((12))=-1
$$

$$
D\left(T\left(q_{0}, n\right)\right)=(-1)^{n}
$$

Special Representations

There exist representations that correspond to arithmetic properties of the automatic sequence.

Example

$T\left(q_{0}, n\right)=i d \Leftrightarrow s_{3}(n) \equiv 0 \bmod 2 \Leftrightarrow n \equiv 0 \bmod 2$

$$
D(i d)=1, D((12))=-1
$$

$$
D\left(T\left(q_{0}, n\right)\right)=(-1)^{n}
$$

$$
D\left(T\left(q_{0}, n\right)\right)=\exp \left(2 \pi i \frac{j}{k-1}\right)
$$

Special Representations

$$
\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) D\left(T\left(q_{0}, n\right)\right)=\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) \exp \left(2 \pi i \frac{j}{k-1}\right)
$$

Möbius function in arithmetic progressions.

Lemma

Special Representations

$$
\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) D\left(T\left(q_{0}, n\right)\right)=\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) \exp \left(2 \pi i \frac{j}{k-1}\right)
$$

Möbius function in arithmetic progressions.

Lemma

Special Representations

$$
\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) D\left(T\left(q_{0}, n\right)\right)=\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) \exp \left(2 \pi i \frac{j}{k-1}\right)
$$

Möbius function in arithmetic progressions.

Lemma

$$
\sum_{h<k^{\lambda}} \exp \left(2 \pi i \frac{n}{k^{\lambda}}\right)=\mathbf{1}_{\left[n \equiv 0 \bmod k^{\lambda}\right]}
$$

Special Representations

$$
\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) D\left(T\left(q_{0}, n\right)\right)=\sum_{\substack{n<N \\ n \equiv m \bmod k^{\lambda}}} \mu(n) \exp \left(2 \pi i \frac{j}{k-1}\right)
$$

Möbius function in arithmetic progressions.

Lemma

$$
\sum_{h<k^{\lambda}} \exp \left(2 \pi i \frac{n}{k^{\lambda}}\right)=\mathbf{1}_{\left[n \equiv 0 \bmod k^{\lambda}\right]}
$$

$$
\begin{aligned}
& \sum_{\substack{n<N \\
n \equiv m \bmod k^{\lambda}}} \mu(n) D\left(T\left(q_{0}, n\right)\right) \\
& \quad=\frac{1}{k^{\lambda}} \sum_{h<k^{\lambda}} \sum_{n<N} \exp \left(2 \pi i \frac{h(n-m)}{k^{\lambda}}\right) \mu(n) D\left(T\left(q_{0}, n\right)\right)
\end{aligned}
$$

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence. $f(n)$... complex sequence with $|f(n)|=1$. $f_{\lambda}(n)=f\left(n \bmod k^{\lambda}\right) \ldots$ periodic with period k^{λ}

Definition
 We say that f has the carry property if, uniformly for $\lambda, \kappa, \rho>0$ with $\rho<\lambda$, the number of integers $0 \leq \ell<k^{\lambda}$ such that there exists $k_{1}, k_{2} \in\left\{0,1, \ldots, k^{n}-1\right\}$ with $f\left(l k^{\kappa}+k_{1}+k_{2}\right) \overline{f\left(l k^{\kappa}+k_{1}\right)} \neq f_{k+\rho}\left(l k^{\kappa}+k_{1}+k_{2}\right) \overline{f_{k+\rho}\left(l k^{\kappa}+k_{1}\right)}$

is at most $O\left(k^{\lambda-\rho}\right)$where the implied constant may depend on k

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence. $f(n)$... complex sequence with $|f(n)|=1$. $f_{\lambda}(n)=f\left(n \bmod k^{\lambda}\right) \ldots$ periodic with period k^{λ}

Definition

We say that f has the carry property if, uniformly for $\lambda, \kappa, \rho>0$ with $\rho<\lambda$, the number of integers $0 \leq \ell<\boldsymbol{k}^{\lambda}$ such that there exists $k_{1}, k_{2} \in\left\{0,1, \ldots, k^{\kappa}-1\right\}$ with

$$
f\left(\ell k^{\kappa}+k_{1}+k_{2}\right) \overline{f\left(\ell k^{\kappa}+k_{1}\right)} \neq f_{\kappa+\rho}\left(\ell k^{\kappa}+k_{1}+k_{2}\right) \overline{f_{\kappa+\rho}\left(\ell k^{\kappa}+k_{1}\right)}
$$

is at most $O\left(k^{\lambda-\rho}\right)$, where the implied constant may depend on k and f.

Definition

We say that f has the Fourier property if there exists a non-decreasing real function γ with $\lim _{\lambda \rightarrow \infty} \gamma(\lambda)=+\infty$ and a constant c such that for all non-negativ integers $\lambda, \alpha \geq 0$ with $\alpha \leq c \lambda$ and real t

$$
\left|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} f\left(m k^{\alpha}\right) e(m t)\right| \leq k^{-\gamma(\lambda)}
$$

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left|\sum_{n<N} \mu(n) f(n) e(\theta n)\right| \ll c_{1}(k)(\log N)^{c_{2}(k)} N k^{-\gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some $c \geq 10$). Then we have for any real θ

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left|\sum_{n<N} \mu(n) f(n) e(\theta n)\right| \ll c_{1}(k)(\log N)^{c_{2}(k)} N k^{-\gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

Theorem (Mauduit + Rivat)

Suppose that f has the carry and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left|\sum_{n<N} \Lambda(n) f(n) e(\theta n)\right| \ll c_{1}(k)(\log N)^{c_{3}(k)} N k^{-\gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

Remark: If $\gamma(\lambda)$ grows faster than $\log \log \lambda$ then the right hand side is $o(N)$.

$U(n)$... sequence of unitary matrices $U_{\lambda}(n)=U\left(n \bmod k^{\lambda}\right) \ldots$ periodic with period k^{λ}

Adopted) Definition

We say that U has the carry property if, uniformly for $\lambda, \kappa, \rho \geq 0$ with $\rho<\lambda$, the number of integers $0 \leq \ell<k^{\lambda}$ such that there exists $k_{1}, k_{2} \in\left\{0,1, \ldots, k^{k}-1\right\}$ with

is at most $O\left(k^{\lambda-\eta \rho}\right)$ for some $\eta>0$, where the implied constants may depend on k and U.

Remark: If $\gamma(\lambda)$ grows faster than $\log \log \lambda$ then the right hand side is $o(N)$.
$U(n) \ldots$ sequence of unitary matrices
$U_{\lambda}(n)=U\left(n \bmod k^{\lambda}\right) \ldots$ periodic with period k^{λ}

Remark: If $\gamma(\lambda)$ grows faster than $\log \log \lambda$ then the right hand side is $o(N)$.
$U(n) \ldots$ sequence of unitary matrices $U_{\lambda}(n)=U\left(n \bmod k^{\lambda}\right) \ldots$ periodic with period k^{λ}

(Adopted) Definition

We say that U has the carry property if, uniformly for $\lambda, \kappa, \rho \geq 0$ with $\rho<\lambda$, the number of integers $0 \leq \ell<\boldsymbol{k}^{\lambda}$ such that there exists $k_{1}, k_{2} \in\left\{0,1, \ldots, k^{\kappa}-1\right\}$ with

$$
U\left(\ell k^{\kappa}+k_{1}+k_{2}\right) U\left(\ell k^{\kappa}+k_{1}\right)^{H} \neq U_{\kappa+\rho}\left(\ell k^{\kappa}+k_{1}+k_{2}\right) U_{\kappa+\rho}\left(\ell k^{\kappa}+k_{1}\right)^{H}
$$

is at most $O\left(k^{\lambda-\eta \rho}\right)$ for some $\eta>0$, where the implied constants may depend on k and U.

(Adopted) Definition

We say that U has the Fourier property if there exists a non-decreasing real function γ with $\lim _{\lambda \rightarrow \infty} \gamma(\lambda)=+\infty$ and a constant c such that for all non-negativ integers $\lambda, \alpha \geq 0$ with $\alpha \leq c \lambda$ and real t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq k^{-\gamma(\lambda)}
$$

Remark: The Fourier property is very hard to prove (compared to the carry property)
 Remark: The carry property holds for all $U(n)=D(T(n))$ where D is a unitary representation, but the fourier property holds only for

 unitary, irreducible (and non-special) representations.
(Adopted) Definition

We say that U has the Fourier property if there exists a non-decreasing real function γ with $\lim _{\lambda \rightarrow \infty} \gamma(\lambda)=+\infty$ and a constant c such that for all non-negativ integers $\lambda, \alpha \geq 0$ with $\alpha \leq c \lambda$ and real t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq k^{-\gamma(\lambda)}
$$

Remark: The Fourier property is very hard to prove (compared to the carry property).
Remark: The carry property holds for all $U(n)=D(T(n))$ where D is a unitary representation, but the fourier property holds only for unitary, irreducible (and non-special) representations.

(Adopted) Definition

We say that U has the Fourier property if there exists a non-decreasing real function γ with $\lim _{\lambda \rightarrow \infty} \gamma(\lambda)=+\infty$ and a constant c such that for all non-negativ integers $\lambda, \alpha \geq 0$ with $\alpha \leq c \lambda$ and real t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq k^{-\gamma(\lambda)} .
$$

Remark: The Fourier property is very hard to prove (compared to the carry property).
Remark: The carry property holds for all $U(n)=D(T(n))$ where D is a unitary representation, but the fourier property holds only for unitary, irreducible (and non-special) representations.

(Adopted) Theorem

Suppose that U has the carry property for some $\eta>0$ and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left\|\sum_{n<N} \mu(n) U(n) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{2}(k)} N k^{-\eta \gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

(Adopted) Theorem

Suppose that U has the carry property for some $\eta>$ and the Fourier property (for some $c \geq 10$). Then we have for any real θ

(Adopted) Theorem

Suppose that U has the carry property for some $\eta>0$ and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left\|\sum_{n<N} \mu(n) U(n) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{2}(k)} N k^{-\eta \gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

(Adopted) Theorem

Suppose that U has the carry property for some $\eta>$ and the Fourier property (for some $c \geq 10$). Then we have for any real θ

$$
\left\|\sum_{n<N} \Lambda(n) U(n) e(\theta n)\right\| \ll c_{1}(k)(\log N)^{c_{3}(k)} N k^{-\eta \gamma(2\lfloor\log N /(80 \log k)\rfloor) / 20}
$$

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius function.
One has to work more carefully to extract the main term. The actual frequencies can be made explicit.

Primes vs all natural Numbers

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius function.
One has to work more carefully to extract the main term. The actual frequencies can be made explicit.

Primes vs all natural Numbers

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius function.
One has to work more carefully to extract the main term. The actual frequencies can be made explicit.

Primes vs all natural Numbers

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit.
Primes vs all natural Numbers

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit.
Primes vs all natural Numbers

[^0]: Conjecture (Sarnak conjecture)
 Every deterministic bounded complex valued sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ is orthogonal to the Möbius function $\mu(n)$.

