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Pattern-counting function

Fix q ≥ 2 a base. We denote the base q expansion of n as follows,

n =
r∑

j=0

ε
(q)
j (n)qj ,

where ε
(q)
j (n) ∈ {0, . . . , q − 1} and r = blogq(n)c.

Definition (Pattern-counting function)

Fix ` ≥ 1 and a pattern
P = (p0, . . . , p`−1) ∈ {0, . . . , q − 1}`,P 6= (0, . . . , 0).
Then we define the pattern-counting function

fP(n) =
r−`+1∑
j=0

1
[(ε

(q)
j+`−1(n),...,ε

(q)
j (n))=P]

.
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Block-additive function

Definition (Block-additive function)

We say that b : N→ Z is block-additive / digital if there exists
` ≥ 1 and F : {0, . . . , q − 1}` → Z such that F (0, . . . , 0) = 0 and

b(n) =
∑
j∈Z

F (ε
(q)
j+`−1(n), . . . , ε

(q)
j (n)),

where εj(n) = 0 for j /∈ {0, . . . , r}.

A block-additive function is (almost) a linear combination of
pattern-counting functions.
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Main Result

Theorem (M., 2017)

Let b be a block-additive function and m ∈ N with
gcd(q − 1,m) = 1 and gcd(m, {b(n), n ∈ N}) = 1. Then
(b(n2) mod m)n∈N is normal in base m′.

This covers all pattern-counting functions mod m, where
gcd(q − 1,m) = 1, including the Thue-Morse sequence and the
Rudin-Shapiro sequence.
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Conditions

1 gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality.

2 gcd(q − 1,m) = 1: sq(n) ≡ n(modq − 1) is periodic.

3 F (0, . . . , 0) = 0 : f(0,...,0)(n) = blogq(n)c −
∑

P 6=(0,...,0) fP(n).

4 Index-range Z instead of N: f(0,1) + f(1,0) mod 2.

The technical conditions (3) and (4) are necessary to get very
natural restrictions (1) and (2).
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Automatic Sequences

Definition (Automaton - DFA)

A = (Q,Σ = {0, . . . , k − 1}, δ, q0, τ)

Example (Thue-Morse sequence)

a/0start b/1

0 0

1

1

n = 22 = (10110)2, t22 = 1

t = (tn)n≥0 = 01101001100101101001011001101001 . . .
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Automatic Sequences

Blockadditive functions modulo m are automatic sequences.

The subword complexity pk of an automatic sequence is (at
most) linear in k .

Every subsequence (uan+b)n≥0 along an arithmetic progression
of an automatic sequence (un)n≥0 is again automatic.
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Thue-Morse sequence along squares

Theorem (Moshe, 2007)

The subword-complexity of (tn2)n∈N is maximal.

Theorem (Mauduit and Rivat, 2009)

(tn2)n∈N is simply normal in base 2

Theorem (Drmota, Mauduit and Rivat, 2017)

The sequence (tn2) is normal in base 2.
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General Strategy

Rewrite the statement in terms of exponential sums.
E.g. dens(tn2 , 0) = 1/2 holds if∣∣∣∣∣∑

n≤N

e

(
s2(n2)

2

)∣∣∣∣∣ = o(N),

where e(x) = exp(2πix).
Use a variation of the Van-der-Corput inequality,∣∣∣∣∣ ∑

0<n<N

zn

∣∣∣∣∣
2

≤ N + QR − Q

R

∑
|r |<R

(
1− |r |

R

)
∑

0<n,n+Qr<N

zn+Qrzn.

This cuts off ”highänd ”low”digits.
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General Strategy

We end up with somithing like∑
r ,s

∑
n<N

e

(∑
j

αj

(
bλ,µ((n + j)2)− bλ,µ((n + j + r)2)

− bλ,µ((n + j + sqµ)2) + bλ,µ((n + j + sqµ + r)2)

))
.

Treat all of these independently, where they have the common
form

Hλ(h, d) =
∑
u<qλ

e

(∑
j

αjbλ(u + jd)− huq−λ

)
.
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