The Rudin-Shapiro sequence and similar sequences are normal along squares

Clemens Müllner

Tuesday, October 2nd, 2018

Fix $q \ge 2$ a base. We denote the base q expansion of n as follows,

$$n=\sum_{j=0}^{r}\varepsilon_{j}^{(q)}(n)q^{j},$$

where $arepsilon_j^{(q)}(n)\in\{0,\ldots,q-1\}$ and $r=\lfloor \mathsf{log}_q(n)
floor$.

Definition (Pattern-counting function)

Fix $\ell \geq 1$ and a pattern $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$ Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\varepsilon_{j+\ell-1}^{(q)}(n),...,\varepsilon_j^{(q)}(n))=P]}.$$

Fix $q \ge 2$ a base. We denote the base q expansion of n as follows,

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$arepsilon_j^{(q)}(n) \in \{0,\ldots,q-1\}$$
 and $r = \lfloor \log_q(n)
floor$.

Definition (Pattern-counting function)

Fix $\ell \geq 1$ and a pattern $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$ Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\varepsilon_{j+\ell-1}^{(q)}(n),...,\varepsilon_j^{(q)}(n))=P]}.$$

Fix $q \ge 2$ a base. We denote the base q expansion of n as follows,

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$arepsilon_j^{(q)}(n) \in \{0,\ldots,q-1\}$$
 and $r = \lfloor \log_q(n)
floor$.

Definition (Pattern-counting function)

Fix
$$\ell \ge 1$$
 and a pattern
 $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^\ell, P \ne (0, \dots, 0).$
Then we define the pattern-counting function
 $f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\epsilon_{j+\ell-1}^{(q)}(n), \dots, \epsilon_j^{(q)}(n))=P]}.$

Fix $q \ge 2$ a base. We denote the base q expansion of n as follows,

$$n=\sum_{j=0}^r \varepsilon_j^{(q)}(n)q^j,$$

where
$$arepsilon_j^{(q)}(n) \in \{0,\ldots,q-1\}$$
 and $r = \lfloor \log_q(n)
floor$.

Definition (Pattern-counting function)

Fix
$$\ell \geq 1$$
 and a pattern
 $P = (p_0, \dots, p_{\ell-1}) \in \{0, \dots, q-1\}^{\ell}, P \neq (0, \dots, 0).$
Then we define the *pattern-counting function*

$$f_P(n) = \sum_{j=0}^{r-\ell+1} \mathbf{1}_{[(\varepsilon_{j+\ell-1}^{(q)}(n),...,\varepsilon_j^{(q)}(n))=P]}.$$

Definition (Block-additive function)

We say that $b : \mathbb{N} \to \mathbb{Z}$ is *block-additive* / *digital* if there exists $\ell \ge 1$ and $F : \{0, \ldots, q-1\}^{\ell} \to \mathbb{Z}$ such that $F(0, \ldots, 0) = 0$ and

$$b(n) = \sum_{j \in \mathbb{Z}} F(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)),$$

where $\varepsilon_j(n) = 0$ for $j \notin \{0, \ldots, r\}$.

A block-additive function is (almost) a linear combination of pattern-counting functions.

Definition (Block-additive function)

We say that $b : \mathbb{N} \to \mathbb{Z}$ is *block-additive* / *digital* if there exists $\ell \ge 1$ and $F : \{0, \ldots, q-1\}^{\ell} \to \mathbb{Z}$ such that $F(0, \ldots, 0) = 0$ and

$$b(n) = \sum_{j \in \mathbb{Z}} F(\varepsilon_{j+\ell-1}^{(q)}(n), \dots, \varepsilon_j^{(q)}(n)),$$

where $\varepsilon_j(n) = 0$ for $j \notin \{0, \ldots, r\}$.

A block-additive function is (almost) a linear combination of pattern-counting functions.

Theorem (M., 2017)

Let b be a block-additive function and $m \in \mathbb{N}$ with gcd(q-1,m) = 1 and $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$. Then $(b(n^2) \mod m)_{n \in \mathbb{N}}$ is normal in base m'.

This covers all pattern-counting functions mod m, where gcd(q-1,m) = 1, including the Thue-Morse sequence and the Rudin-Shapiro sequence.

Theorem (M., 2017)

Let b be a block-additive function and $m \in \mathbb{N}$ with gcd(q-1,m) = 1 and $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$. Then $(b(n^2) \mod m)_{n \in \mathbb{N}}$ is normal in base m'.

This covers all pattern-counting functions mod m, where gcd(q-1, m) = 1, including the Thue-Morse sequence and the Rudin-Shapiro sequence.

gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality.
 gcd(q − 1, m) = 1: s_q(n) ≡ n(mod q − 1) is periodic.
 F(0,...,0) = 0 : f_(0,...,0)(n) = ⌊log_q(n)⌋ − ∑_{P≠(0,...,0)} f_P(n).
 Index-range Z instead of N: f_(0,1) + f_(1,0) mod 2.

gcd(m, {b(n), n ∈ N}) = 1: necessary for simple normality. gcd(q − 1, m) = 1: s_q(n) ≡ n(mod q − 1) is periodic. F(0,...,0) = 0 : f_(0,...,0)(n) = ⌊log_q(n)⌋ − ∑_{P≠(0,...,0)} f_P(n). Index-range Z instead of N: f_(0,1) + f_(1,0) mod 2.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- **2** gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- $cd(q-1,m) = 1: s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 2 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- **5** $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- **2** gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$

• Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

- $gcd(m, \{b(n), n \in \mathbb{N}\}) = 1$: necessary for simple normality.
- 3 gcd(q-1,m) = 1: $s_q(n) \equiv n(mod q 1)$ is periodic.
- $F(0,...,0) = 0 : f_{(0,...,0)}(n) = \lfloor \log_q(n) \rfloor \sum_{P \neq (0,...,0)} f_P(n).$
- Index-range \mathbb{Z} instead of \mathbb{N} : $f_{(0,1)} + f_{(1,0)} \mod 2$.

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

$$n = 22 = (10110)_2, \qquad t_{22} = 1$$

 $\mathbf{t} = (t_n)_{n \ge 0} = 01101001100101101001011001001\dots$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

Clemens Müllner

Digital sequences along squares are normal

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

 $n = 22 = (10110)_2, \quad t_{22} = 1$

 $\mathbf{t} = (t_n)_{n>0} = 011010011001011001011001011001\dots$

Clemens Müllner

Digital sequences along squares are normal

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

$$n = 22 = (10110)_2, \qquad t_{22} = 1$$

 $\mathbf{t} = (t_n)_{n \ge 0} = 011010011001011001011001011001001\dots$

Clemens Müllner

Digital sequences along squares are normal

• Blockadditive functions modulo *m* are automatic sequences.

- The subword complexity p_k of an automatic sequence is (at most) linear in k.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.

- Blockadditive functions modulo *m* are automatic sequences.
- The subword complexity p_k of an automatic sequence is (at most) linear in k.
- Every subsequence (u_{an+b})_{n≥0} along an arithmetic progression of an automatic sequence (u_n)_{n≥0} is again automatic.

- Blockadditive functions modulo *m* are automatic sequences.
- The subword complexity p_k of an automatic sequence is (at most) linear in k.
- Every subsequence $(u_{an+b})_{n\geq 0}$ along an arithmetic progression of an automatic sequence $(u_n)_{n\geq 0}$ is again automatic.

Theorem (Moshe, 2007)

The subword-complexity of $(t_{n^2})_{n \in \mathbb{N}}$ is maximal.

Theorem (Mauduit and Rivat, 2009)

 $(t_{n^2})_{n\in\mathbb{N}}$ is simply normal in base 2

Theorem (Drmota, Mauduit and Rivat, 2017)

The sequence (t_{n^2}) is normal in base 2.

Theorem (Moshe, 2007)

The subword-complexity of $(t_{n^2})_{n \in \mathbb{N}}$ is maximal.

Theorem (Mauduit and Rivat, 2009)

 $(t_{n^2})_{n\in\mathbb{N}}$ is simply normal in base 2

Theorem (Drmota, Mauduit and Rivat, 2017)

The sequence (t_{n^2}) is normal in base 2.

Theorem (Moshe, 2007)

The subword-complexity of $(t_{n^2})_{n \in \mathbb{N}}$ is maximal.

Theorem (Mauduit and Rivat, 2009)

 $(t_{n^2})_{n\in\mathbb{N}}$ is simply normal in base 2

Theorem (Drmota, Mauduit and Rivat, 2017)

The sequence (t_{n^2}) is normal in base 2.

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

• Use a variation of the Van-der-Corput inequality,

$$\left|\sum_{0 < n < N} z_n\right|^2 \le \frac{N + QR - Q}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R}\right)$$
$$\sum_{0 < n, n + Qr < N} z_{n + Qr} \overline{z_n}.$$

• This cuts off "highänd "low" digits.

Clemens Müllner

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} e\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi ix)$.

Use a variation of the Van-der-Corput inequality,

$$\left|\sum_{0 < n < N} z_n\right|^2 \le \frac{N + QR - Q}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R}\right)$$
$$\sum_{0 < n, n + Qr < N} z_{n + Qr} \overline{z_n}.$$

• This cuts off "highänd "low" digits.

Clemens Müllner

• Rewrite the statement in terms of exponential sums. E.g. $dens(t_{n^2}, 0) = 1/2$ holds if

$$\left|\sum_{n\leq N} \operatorname{e}\left(\frac{s_2(n^2)}{2}\right)\right| = o(N),$$

where $e(x) = exp(2\pi i x)$.

• Use a variation of the Van-der-Corput inequality,

$$\left|\sum_{0 < n < N} z_n\right|^2 \le \frac{N + QR - Q}{R} \sum_{|r| < R} \left(1 - \frac{|r|}{R}\right)$$
$$\sum_{0 < n, n + Qr < N} z_{n + Qr} \overline{z_n}.$$

• This cuts off "highänd "low" digits.

• We end up with somithing like

$$\sum_{r,s} \sum_{n < N} e \left(\sum_{j} \alpha_j \left(b_{\lambda,\mu} ((n+j)^2) - b_{\lambda,\mu} ((n+j+r)^2) - b_{\lambda,\mu} ((n+j+r)^2) - b_{\lambda,\mu} ((n+j+sq^{\mu}+r)^2) \right) \right).$$

• Treat all of these independently, where they have the common form

$$H_{\lambda}(h,d) = \sum_{u < q^{\lambda}} \operatorname{e} \left(\sum_{j} lpha_{j} b_{\lambda}(u+jd) - huq^{-\lambda}
ight).$$

• We end up with somithing like

$$\sum_{r,s} \sum_{n < N} e\left(\sum_{j} \alpha_{j} \left(b_{\lambda,\mu} ((n+j)^{2}) - b_{\lambda,\mu} ((n+j+r)^{2}) - b_{\lambda,\mu} ((n+j+sq^{\mu})^{2}) + b_{\lambda,\mu} ((n+j+sq^{\mu}+r)^{2}) \right) \right).$$

Treat all of these independently, where they have the common form

$$H_{\lambda}(h,d) = \sum_{u < q^{\lambda}} e\left(\sum_{j} \alpha_{j} b_{\lambda}(u+jd) - huq^{-\lambda}\right).$$