Automatic sequences satisfy Sarnak's conjecture II

Clemens Müllner

4. Dec 2016

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)

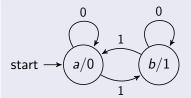
$$n = 22 = (10110)_2, \qquad u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



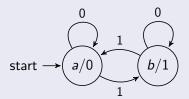
$$n = 22 = (10110)_2, \qquad u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



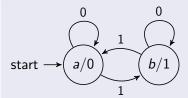
$$n=22=(10110)_2, u_{22}=1$$

 $\mathbf{u} = (u_n)_{n \ge 0} = 011010011001011010010110011101001...$

Definition (Automaton - DFA)

$$A = (Q, \Sigma = \{0, \ldots, k-1\}, \delta, q_0, \tau)$$

Example (Thue-Morse sequence)



$$n = 22 = (10110)_2, u_{22} = 1$$

$$\mathbf{u} = (u_n)_{n \ge 0} = 01101001100101101001011001101001\dots$$

$$\mathbf{u} = (u_n)_{n \geq 0} \dots$$
 bounded complex sequence

$$T\mathbf{u} = (u_{n+1})_{n\geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathbf{u}) : k \ge 0\}}$$

$$\mathbf{u} = (u_n)_{n \geq 0} \dots$$
 bounded complex sequence

$$T\mathbf{u} = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathbf{u}) : k \ge 0\}}$$

$$\mathbf{u} = (u_n)_{n \geq 0} \dots$$
 bounded complex sequence

$$T\mathbf{u} = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathbf{u}) : k \ge 0\}}$$

$$\mathbf{u} = (u_n)_{n \geq 0} \dots$$
 bounded complex sequence

$$T\mathbf{u} = (u_{n+1})_{n \geq 0} \dots$$
 shift operator

$$X = \overline{\{T^k(\mathbf{u}) : k \ge 0\}}$$

Results

Theorem 1 (M., 2016)

Every automatic sequence $(a_n)_{n\geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Let $A=(Q',\Sigma,\delta',q_0',\tau)$ be a strongly connected DFAO such that $\Sigma=\{0,\ldots,k-1\}$ and $\delta'(q_0',0)=q_0'$. Then the frequencies of the letters for the prime-subsequence $(a_p)_{p\in\mathcal{P}}$ exist, i.e.

$$dens_{\mathcal{P}}(\mathbf{u}, \alpha) = \lim_{N \to \infty} \frac{1}{\pi(N)} \sum_{1 \le p \le N} \mathbf{1}_{[u_p = \alpha]}.$$

Remark: All block-additive (i.e. digital) functions are covered by Theorem 2 and they are "usually" uniformly distributed.

Results

Theorem 1 (M., 2016)

Every automatic sequence $(a_n)_{n\geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Let $A=(Q',\Sigma,\delta',q_0',\tau)$ be a strongly connected DFAO such that $\Sigma=\{0,\ldots,k-1\}$ and $\delta'(q_0',0)=q_0'$. Then the frequencies of the letters for the prime-subsequence $(a_p)_{p\in\mathcal{P}}$ exist, i.e.

$$dens_{\mathcal{P}}(\mathbf{u}, \alpha) = \lim_{N \to \infty} \frac{1}{\pi(N)} \sum_{1 \le p \le N} \mathbf{1}_{[u_p = \alpha]}.$$

Remark: All block-additive (i.e. digital) functions are covered by Theorem 2 and they are "usually" uniformly distributed.

Results

Theorem 1 (M., 2016)

Every automatic sequence $(a_n)_{n\geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Let $A=(Q',\Sigma,\delta',q_0',\tau)$ be a strongly connected DFAO such that $\Sigma=\{0,\ldots,k-1\}$ and $\delta'(q_0',0)=q_0'$. Then the frequencies of the letters for the prime-subsequence $(a_p)_{p\in\mathcal{P}}$ exist, i.e.

$$dens_{\mathcal{P}}(\mathbf{u}, \alpha) = \lim_{N \to \infty} \frac{1}{\pi(N)} \sum_{1 \le p \le N} \mathbf{1}_{[u_p = \alpha]}.$$

Remark: All block-additive (i.e. digital) functions are covered by Theorem 2 and they are "usually" uniformly distributed.

Lemma

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence that takes values in Δ . Suppose that for every $j\geq 1$ and for every function $g:\Delta^j\to\mathbb{C}$ we have

$$\sum_{n\leq N}g(a_{n+\ell},\ldots,a_{n+\ell+j-1})\mu(n)=o(N),$$

uniformly for $\ell \in \mathbb{N}$. Then, $(a_n)_{n \in \mathbb{N}}$ fulfills the Sarnak Conjecture.

Lemma

Suppose that for every automatic sequence $(a_n)_{n\in\mathbb{N}}$ with values in $\mathbb C$

$$\sum_{n\leq N}\mu(n)a_{n+r}=o(N),$$

uniformly for $r \in \mathbb{N}$. Then Theorem 1 holds

Lemma

Let $(a_n)_{n\in\mathbb{N}}$ be a sequence that takes values in Δ . Suppose that for every $j\geq 1$ and for every function $g:\Delta^j\to\mathbb{C}$ we have

$$\sum_{n\leq N}g(a_{n+\ell},\ldots,a_{n+\ell+j-1})\mu(n)=o(N),$$

uniformly for $\ell \in \mathbb{N}$. Then, $(a_n)_{n \in \mathbb{N}}$ fulfills the Sarnak Conjecture.

Lemma

Suppose that for every automatic sequence $(a_n)_{n\in\mathbb{N}}$ with values in $\mathbb C$

$$\sum_{n\leq N}\mu(n)a_{n+r}=o(N),$$

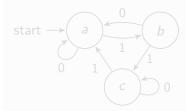
uniformly for $r \in \mathbb{N}$. Then Theorem 1 holds.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example



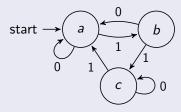
$$w_0 = 010.$$

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example



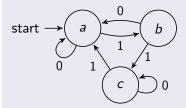
 $w_0 = 010.$

Synchronizing Automata

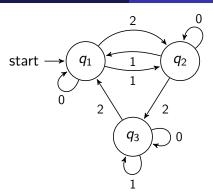
Definition (Synchronizing Automaton / Word)

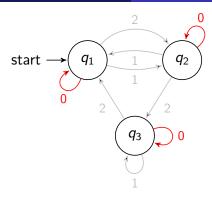
 $\exists \mathbf{w}_0 : \delta(q, \mathbf{w}_0) = a \quad \forall q.$

Example

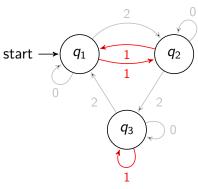


 $w_0 = 010.$

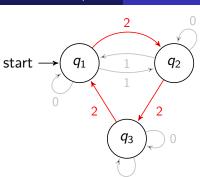




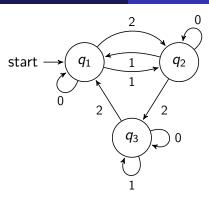
$$M_0 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$



$$M_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

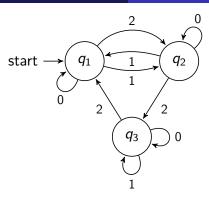


$$M_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
; $M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$; $M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$



$$M_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

11 =
$$(102)_3$$
: $M_2 \circ M_0 \circ M_1 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$



$$M_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}; M_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}; M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$T(n) := M_{\varepsilon_0(n)} M_{\varepsilon_1(n)} \cdots M_{\varepsilon_{\ell-1}(n)}$$

$$u(n) = f(T(n)\mathbf{e}_1)$$
 $\mathbf{e}_1 = (1 \ 0 \ 0)^T$

Definition

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

M is primitive iff there exists $m \ge 0$ such that for every $a, b \in Q$ exists $\mathbf{w} \in \Sigma^m$ such that $\delta(a, \mathbf{w}) = b$.

Remark:

If the matrix $M = M_0 + \ldots + M_{k-1}$ is primitive then the frequencies

$$freq(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = a]}$$

exist

Definition

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

M is primitive iff there exists $m \ge 0$ such that for every $a, b \in Q$ exists $\mathbf{w} \in \Sigma^m$ such that $\delta(a, \mathbf{w}) = b$.

Remark:

If the matrix $M=M_0+\ldots+M_{k-1}$ is primitive then the frequencies

$$freq(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = a]}$$

exist.

Definition

An automaton is called invertible if all transition matrices M_0, \ldots, M_{k-1} are invertible and if $M = M_0 + \ldots + M_{k-1}$ is primitive.

M is primitive iff there exists $m \ge 0$ such that for every $a, b \in Q$ exists $\mathbf{w} \in \Sigma^m$ such that $\delta(a, \mathbf{w}) = b$.

Remark:

If the matrix $M=M_0+\ldots+M_{k-1}$ is primitive then the frequencies

$$freq(\mathbf{u}, a) = \lim_{N \to \infty} \frac{1}{N} \sum_{1 \le n \le N} \mathbf{1}_{[u_n = a]}$$

exist.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \geq 0}$ is generated by an invertible automaton.

```
Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Maudui
```

u is orthogonal to $\mu(n)$.

$\mathsf{Theorem}[\mathsf{Drmota}]$

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \geq 0}$ is generated by an invertible automaton.

```
Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit]
```

u is orthogonal to $\mu(n)$.

Theorem[Drmota]

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Results for Invertible Automata

Suppose that an automatic sequence $\mathbf{u} = (u_n)_{n \geq 0}$ is generated by an invertible automaton.

Theorem [Drmota, Ferenczi + Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to $\mu(n)$.

$\mathsf{Theorem}[\mathsf{Drmota}]$

The frequency of each letter of the subsequence $(u_p)_{p\in\mathcal{P}}$ exists.

Digital Sequences

We call a sequence $(a_n)_{n\geq 0}$ digital if there exists $m\geq 1$ and $F:\{0,\ldots,k-1\}^m\to\mathbb{C}$ such that

$$a_n = \sum_{i>0} F(\varepsilon_{i+m-1}(n), \ldots, \varepsilon_i(n)).$$

Lemma

Let $(a_n)_{n\geq 0}$ be a digital sequence. Then $(a_n \mod m')_{n\geq 0}$ is an automatic sequence for every $m'\in \mathbb{N}$.

Example

The sum of digits function in base $k, s_k(n)$ is digital where m = 1 and F(x) = x.

Digital Sequences

We call a sequence $(a_n)_{n\geq 0}$ digital if there exists $m\geq 1$ and $F:\{0,\ldots,k-1\}^m\to\mathbb{C}$ such that

$$a_n = \sum_{i>0} F(\varepsilon_{i+m-1}(n), \ldots, \varepsilon_i(n)).$$

Lemma

Let $(a_n)_{n\geq 0}$ be a digital sequence. Then $(a_n \mod m')_{n\geq 0}$ is an automatic sequence for every $m'\in \mathbb{N}$.

Example

The sum of digits function in base $k, s_k(n)$ is digital where m = 1 and F(x) = x.

Digital Sequences

We call a sequence $(a_n)_{n\geq 0}$ digital if there exists $m\geq 1$ and $F:\{0,\ldots,k-1\}^m\to\mathbb{C}$ such that

$$a_n = \sum_{i>0} F(\varepsilon_{i+m-1}(n), \ldots, \varepsilon_i(n)).$$

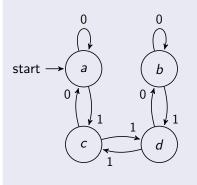
Lemma

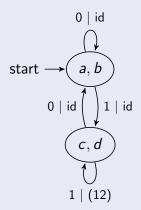
Let $(a_n)_{n\geq 0}$ be a digital sequence. Then $(a_n \mod m')_{n\geq 0}$ is an automatic sequence for every $m'\in \mathbb{N}$.

Example

The sum of digits function in base $k, s_k(n)$ is digital where m = 1 and F(x) = x.

Example (Rudin-Shapiro)

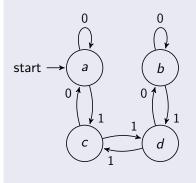


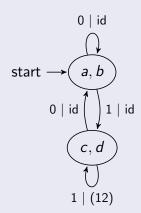


 $\mathsf{Theorem}\;[\mathsf{Mauduit}\;+\;\mathsf{Rivat},\;\mathsf{Tao}]$

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.

Example (Rudin-Shapiro)





Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.

Definition (Naturally Induced Transducer)

Let $A = (Q', \Sigma, \delta', q'_0)$ be a strongly connected automata. We call $\mathcal{T}_A = (Q, \Sigma, \delta, q_0, \Delta, \lambda)$ a **naturally induced transducer** iff

- \mathcal{O} \mathcal{T}_A is synchronizing
- \odot "attach to each transition $\delta(q,a)$ a permutation $\lambda(q,a)$ ".
- some minimality/technical conditions

Definition (Naturally Induced Transducer)

Let $A = (Q', \Sigma, \delta', q'_0)$ be a strongly connected automata. We call $\mathcal{T}_A = (Q, \Sigma, \delta, q_0, \Delta, \lambda)$ a **naturally induced transducer** iff

- \circ \mathcal{T}_A is synchronizing
- \odot "attach to each transition $\delta(q,a)$ a permutation $\lambda(q,a)$ ".
- some minimality/technical conditions

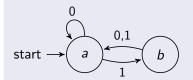
- \circ \mathcal{T}_A is synchronizing
- ① "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a)$ ".
- some minimality/technical conditions

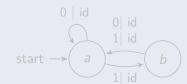
- \circ \mathcal{T}_A is synchronizing
- **3** "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a)$ ".
- some minimality/technical conditions

- \circ \mathcal{T}_A is synchronizing
- **3** "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a)$ ".
- some minimality/technical conditions

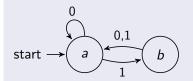
- \circ \mathcal{T}_A is synchronizing
- **3** "attach to each transition $\delta(q, a)$ a permutation $\lambda(q, a)$ ".
- some minimality/technical conditions

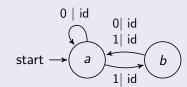
Example (Synchronizing Automaton)

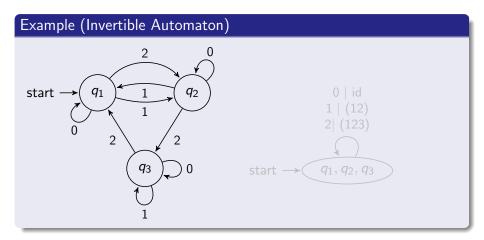




Example (Synchronizing Automaton)

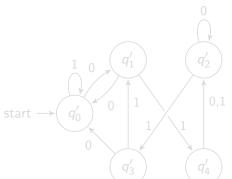




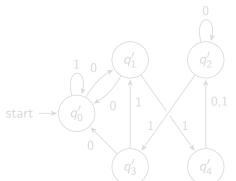


Example (Invertible Automaton) start q_1 q_2 1 | (12) 2 (123) **q**3 q_1, q_2, q_3 start -

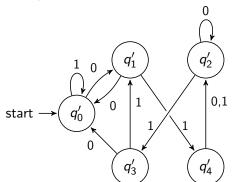
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



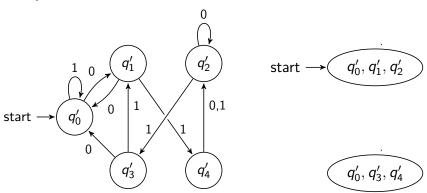
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



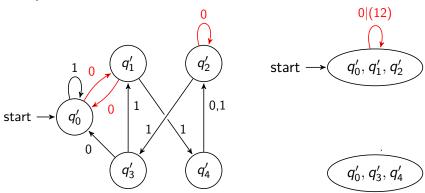
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



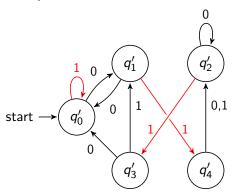
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

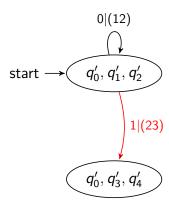


For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.

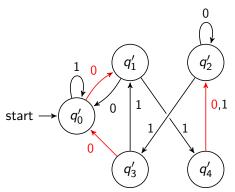


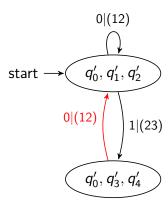
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.



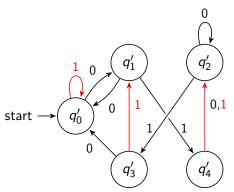


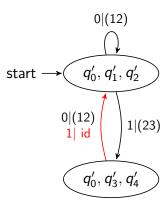
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





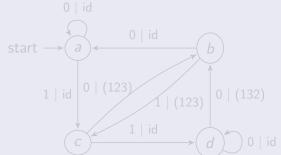
For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_A . All other naturally induced transducers can be obtained by changing the order on the elements of Q.





"Generic Example":
$$k = 2, m = 3, m' = 3$$

 $F(010) = 1, F(110) = 2, F(101) = 1$



- Every word of length m-1 is synchronizing.
- The group generated by the permutations is cyclic.

"Generic Example":
$$k = 2, m = 3, m' = 3$$
 $F(010) = 1, F(110) = 2, F(101) = 1$
 $0 \mid id$
 $1 \mid id$
 $0 \mid (123)$
 $1 \mid id$
 $0 \mid (132)$

- Every word of length m-1 is synchronizing.
- The group generated by the permutations is cyclic.

"Generic Example":
$$k = 2, m = 3, m' = 3$$
 $F(010) = 1, F(110) = 2, F(101) = 1$
 $0 \mid id$
 $1 \mid id$
 $0 \mid (123)$
 $1 \mid id$
 $0 \mid (132)$

- Every word of length m-1 is synchronizing.
- The group generated by the permutations is cyclic.

"Generic Example":
$$k = 2, m = 3, m' = 3$$
 $F(010) = 1, F(110) = 2, F(101) = 1$
 $0 \mid id$
 $0 \mid id$
 $1 \mid id$
 $0 \mid (123)$
 $1 \mid id$
 $0 \mid (132)$

- Every word of length m-1 is synchronizing.
- The group generated by the permutations is cyclic.

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q_0',\mathbf{w}) = \pi_1(T(q_0,\mathbf{w}) \cdot \delta(q_0,\mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

Definition

Denote by

$$T(q, w_1 \dots w_r) := \lambda(q, w_1) \circ \lambda(\delta(q, w_1), w_2) \circ \dots \circ \lambda(\delta(q, w_1 \dots w_{r-1}), w_r).$$

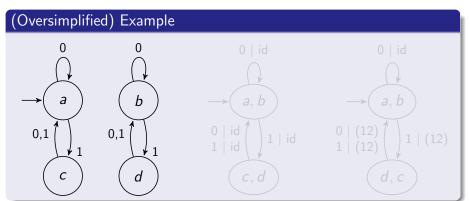
Lemma

Let A be a strongly connected automaton and \mathcal{T}_A a naturally induced transducer. Then,

$$\delta'(q_0',\mathbf{w}) = \pi_1(T(q_0,\mathbf{w}) \cdot \delta(q_0,\mathbf{w}))$$

holds for all $\mathbf{w} \in \Sigma^*$.

a, b a, b

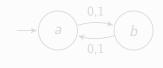


(Oversimplified) Example id b a, bid 0,1 0,1 1 | id id d c, d

(Oversimplified) Example id id b a, ba, bid (12)0,1 0,1 1 | id 1 | (12) id (12)c, dd

All elements of Δ appear as values of $T(q_0,.)$ for "good" naturally induced transducer.

Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large?



All elements of Δ appear as values of $T(q_0, .)$ for "good" naturally induced transducer.

Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large?

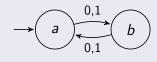
$$0 \mid (12)$$

$$1 \mid (12)$$

$$\rightarrow (a, b)$$

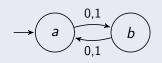
All elements of Δ appear as values of $\mathcal{T}(q_0,.)$ for "good" naturally induced transducer.

Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large?



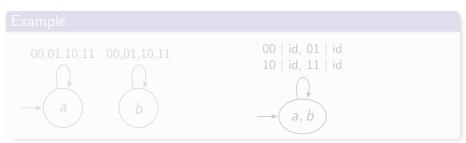
All elements of Δ appear as values of $T(q_0, .)$ for "good" naturally induced transducer.

Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large?

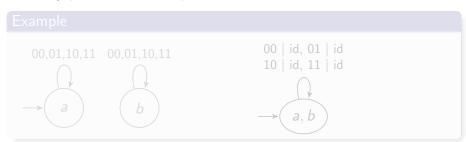


Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large?

The key point is to avoid periodic behavior.



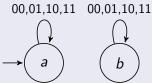
Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large? The key point is to avoid periodic behavior.



Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large? The key point is to avoid periodic behavior.



Do all elements of Δ appear simultaneously as values of $T(q_0, \mathbf{w})$ for $\mathbf{w} \in \Sigma^n$ for a single n, where n is large? The key point is to avoid periodic behavior.



Continuous functions from a compact group to $\mathbb C$

Definition (Representation)

Let G be a finite group and $k \in \mathbb{N}$. A **Representation** of rank k is a continuous homomorphism $D: G \to \mathbb{C}^{k \times k}$.

$$f(g) = \sum_{\ell < r} c_\ell d^{(\ell)}_{i_\ell, j_\ell}(g)$$



Continuous functions from a compact group to $\mathbb C$

Definition (Representation)

Let G be a finite group and $k \in \mathbb{N}$. A **Representation** of rank k is a continuous homomorphism $D: G \to \mathbb{C}^{k \times k}$.

Lemma

Let f be a continuous function from G to \mathbb{C} . There exists $r \in \mathbb{N}$ and unitary, irreducible representations $D^{(\ell)} = (d_{i,i}^{(\ell)})_{i,j < k_\ell}$ along with $c_{\ell} \in \mathbb{C}$ such that

$$f(g) = \sum_{\ell < r} c_\ell d_{i_\ell, j_\ell}^{(\ell)}(g)$$

holds for all $g \in G$.

Lemma

Suppose that

$$\sum_{\substack{n < N \\ \dots}} D(T(n))\mu(n) = o(N)$$

holds for all irreducible unitary representations of G. Then $\mathbf{u} = (u_n)_{n \geq 0}$ is orthogonal to $\mu(n)$.

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let U(n) be a sequence of unitary matrices. We say that U has the **Fourier property** if there exists $\eta>0$ and c such that for all λ,α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Carry Property: the contribution of high digits and the contribution of low digits are "independent".

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let U(n) be a sequence of unitary matrices. We say that U has the **Fourier property** if there exists $\eta>0$ and c such that for all λ,α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Carry Property: the contribution of high digits and the contribution of low digits are "independent".

We follow the method of Mauduit and Rivat that they use for studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let U(n) be a sequence of unitary matrices. We say that U has the **Fourier property** if there exists $\eta>0$ and c such that for all λ,α and t

$$\left\|\frac{1}{k^{\lambda}}\sum_{m< k^{\lambda}}U(mk^{\alpha})e(mt)\right\|\leq ck^{-\eta\lambda}.$$

Carry Property: the contribution of high digits and the contribution of low digits are "independent".

Let D be a unitary and irreducible representation of G.

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$\left\| \sum_{n < N} \mu(n) D(T(n)) e(\theta n) \right\| \ll c_1(k) (\log N)^{c_2(k)} N^{1-\eta'}$$

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$\left\| \sum_{n \leq N} \Lambda(n) D(T(n)) e(\theta n) \right\| \ll c_1(k) (\log N)^{c_3(k)} N^{1-\eta'}$$

Let D be a unitary and irreducible representation of G.

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$\left\|\sum_{n< N} \mu(n) D(T(n)) e(\theta n)\right\| \ll c_1(k) (\log N)^{c_2(k)} N^{1-\eta'}$$

(Adopted) Theorem

Suppose that $D \circ T$ has the Fourier property. Then we have for any real θ

$$\left\| \sum_{n < N} \Lambda(n) D(T(n)) e(\theta n) \right\| \ll c_1(k) (\log N)^{c_3(k)} N^{1-\eta'}$$

Ideas for the proof

Vaughan method:

Estimating

$$S_{I}(\theta) = \sum_{m} \left| \sum_{\substack{n \\ mn \in I}} f(mn) e(\theta mn) \right|$$
$$S_{II}(\theta) = \sum_{m} \sum_{\substack{n \\ mn \in I}} a_{m} b_{n} f(mn) e(\theta mn)$$

provides estimates for

$$\sum_{n < N} \mu(n) f(n), \qquad \sum_{n < N} \Lambda(n) f(n)$$

Use variants of the Van-der-Corput inequality and the carry property to remove the contribution of low digits.

Ideas for the proof

Vaughan method:

Estimating

$$S_{I}(\theta) = \sum_{m} \left| \sum_{\substack{n \\ mn \in I}} f(mn) e(\theta mn) \right|$$
$$S_{II}(\theta) = \sum_{m} \sum_{\substack{n \\ mn \in I}} a_{m} b_{n} f(mn) e(\theta mn)$$

provides estimates for

$$\sum_{n < N} \mu(n) f(n), \qquad \sum_{n < N} \Lambda(n) f(n)$$

Use variants of the Van-der-Corput inequality and the carry property to remove the contribution of low digits.

Jse the Fourier property.

Ideas for the proof

Vaughan method:

Estimating

$$S_{I}(\theta) = \sum_{m} \left| \sum_{\substack{n \\ mn \in I}} f(mn) e(\theta mn) \right|$$
$$S_{II}(\theta) = \sum_{m} \sum_{\substack{n \\ mn \in I}} a_{m} b_{n} f(mn) e(\theta mn)$$

provides estimates for

$$\sum_{n < N} \mu(n) f(n), \qquad \sum_{n < N} \Lambda(n) f(n)$$

Use variants of the Van-der-Corput inequality and the carry property to remove the contribution of low digits.

Use the Fourier property.

37 / 39

Problem: Distinguish representations *D* that fulfill the Fourier Property.

Lemma

Let A be a DFA and \mathcal{T}_A a naturally induced inducer. There exists d' and representations $D_0, \ldots, D_{d'-1}$ such that

$$D_{\ell}(T(q,(n)_k)) = \mathrm{e}\left(rac{n\ell}{d'}
ight).$$

Theorem

Let D be a unitary and irreducible representation different from $D_0, \ldots, D_{d'-1}$. Then D(T(.)) has the Fourier Property.

Problem: Distinguish representations D that fulfill the Fourier Property.

Lemma

Let A be a DFA and \mathcal{T}_A a naturally induced inducer. There exists d' and representations $D_0, \ldots, D_{d'-1}$ such that

$$D_{\ell}(T(q,(n)_k)) = \mathrm{e}\left(\frac{n\ell}{d'}\right).$$

$\mathsf{Theorem}$

Let D be a unitary and irreducible representation different from $D_0, \ldots, D_{d'-1}$. Then D(T(.)) has the Fourier Property.

Problem: Distinguish representations *D* that fulfill the Fourier Property.

Lemma

Let A be a DFA and \mathcal{T}_A a naturally induced inducer. There exists d' and representations $D_0, \ldots, D_{d'-1}$ such that

$$D_{\ell}(T(q,(n)_k)) = \mathrm{e}\left(\frac{n\ell}{d'}\right).$$

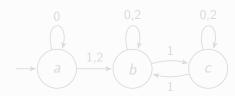
Theorem

Let D be a unitary and irreducible representation different from $D_0, \ldots, D_{d'-1}$. Then D(T(.)) has the Fourier Property.

The treatment is very similar to the orthogonality to the Möbius function.

One has to work more carefully to extract the main term.

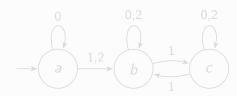
The actual frequencies can be made explicit and are determined by the behavior of the automatic sequence along arithmetic progressions.



The treatment is very similar to the orthogonality to the Möbius function.

One has to work more carefully to extract the main term.

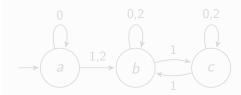
The actual frequencies can be made explicit and are determined by the behavior of the automatic sequence along arithmetic progressions.



The treatment is very similar to the orthogonality to the Möbius function.

One has to work more carefully to extract the main term.

The actual frequencies can be made explicit and are determined by the behavior of the automatic sequence along arithmetic progressions.



The treatment is very similar to the orthogonality to the Möbius function.

One has to work more carefully to extract the main term.

The actual frequencies can be made explicit and are determined by the behavior of the automatic sequence along arithmetic progressions.

