Möbius orthogonality for automatic sequences and beyond

Clemens Müllner

May 24, 2018

Joint work with Michael Drmota and Lukas Spiegelhofer

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \text { if } n \text { is squarefree and } \\
k & k \text { is the number of prime factors } \\
0 & \text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

Old Heuristic - Mobius Randomness Law
Any "reasonably defined (easy)"bounded sequence independent of μ
is orthogonal to μ.

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
k \text { is the number of prime factors } \\
0
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\sum_{n \leq N} \mu(n) u_{n}=o\left(\sum_{n \leq N}\left|u_{n}\right|\right) \quad(N \rightarrow \infty) .
$$

Old Heuristic - Mobius Randomness Law
Any "reasonably defined (easy)"bounded sequence independent of μ
is orthogonal to μ

Möbius function

The Möbius function is defined by

$$
\mu(n)=\left\{\begin{array}{cl}
(-1)^{k} & \begin{array}{l}
\text { if } n \text { is squarefree and } \\
0
\end{array} \\
k \text { is the number of prime factors } \\
\text { otherwise }
\end{array}\right.
$$

A sequence \mathbf{u} is orthogonal to the Möbius function $\mu(n)$ if

$$
\sum_{n \leq N} \mu(n) u_{n}=o\left(\sum_{n \leq N}\left|u_{n}\right|\right) \quad(N \rightarrow \infty)
$$

Old Heuristic - Mobius Randomness Law

Any "reasonably defined (easy)"bounded sequence independent of μ is orthogonal to μ.

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Orthogonality to μ

Results

- Constant sequences \Leftrightarrow PNT
- Periodic sequences \Leftrightarrow PNT in arithmetic Progressions
- Quasiperiodic sequences $f(n)=F(\alpha n \bmod 1)$ - Davenport
- Nilsequences - Green and Tao
- Horocycle Flows - Bourgain, Sarnak and Ziegler
- Dynamical systems with discrete spectrum

Sarnak Conjecture

Definition
 A dynamical system is said to be deterministic, if its topological entropy is 0 .

Conjecture (Sarnak conjecture, 2010)
Every bounded complex sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$

Sarnak Conjecture

Definition

A dynamical system is said to be deterministic, if its topological entropy is 0 .

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence $\mathbf{u}=\left(u_{n}\right)_{n>0}$ that is obtained by a deterministic dynamical system is orthogonal to the Möbius function $\mu(n)$.

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if w is a fixed point of σ, i.e. $\sigma(w)=w$, then w is a k-automatic sequence.

Example (Thue-Morse)

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$
01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$
01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$
01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

$$
\begin{aligned}
& \text { Example (Thue-Morse) } \\
& E=\{0,1\} \\
& \sigma(0)=01 \\
& \sigma(1)=10
\end{aligned}
$$

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$

01101001100101101001011001101001

Automatic Sequences

Definition

Let E be a finite set and σ a k-uniform morphism such that $\sigma(E) \subseteq E^{k}$. Then if \mathbf{w} is a fixed point of σ, i.e. $\sigma(\mathbf{w})=\mathbf{w}$, then \mathbf{w} is a k-automatic sequence.

Example (Thue-Morse)

$E=\{0,1\}$
$\sigma(0)=01$
$\sigma(1)=10$

$01101001100101101001011001101001 \ldots$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$n=22=(10110)_{2}, \quad u_{22}=1$
$\mathrm{u}=\left(u_{n}\right)_{n>0}=01101001100101101001011001101001$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
n=22=(10110)_{2}, \quad u_{22}=1
$$

$$
\mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001
$$

Deterministic Finite Automata

Definition (Automaton - DFA)

$$
A=\left(Q, \Sigma=\{0, \ldots, k-1\}, \delta, q_{0}, \tau\right)
$$

Example (Thue-Morse sequence)

$$
\begin{aligned}
& n=22=(10110)_{2}, \quad u_{22}=1 \\
& \mathbf{u}=\left(u_{n}\right)_{n \geq 0}=01101001100101101001011001101001 \ldots
\end{aligned}
$$

Results I

Theorem (M., 2016)
 Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Under suitable (weak) conditions one also gets a Prime Number Theorem for automatic sequence.

Results I

Theorem (M., 2016)

Every automatic sequence $\left(a_{n}\right)_{n \geq 0}$ fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Under suitable (weak) conditions one also gets a Prime Number Theorem for automatic sequence.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)
 $\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

$\exists \mathbf{w}_{0}: \delta\left(q, \mathbf{w}_{0}\right)=a \quad \forall q$.

Example

$\mathbf{w}_{0}=010$.

$$
M_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
11=(102)_{3}: & M_{2} \circ M_{0} \circ M_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

$$
M_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) ; M_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

$$
T(n):=M_{\varepsilon_{0}(n)} M_{\varepsilon_{1}(n)} \cdots M_{\varepsilon_{\ell-1}(n)}
$$

$$
u(n)=f\left(T(n) \mathbf{e}_{1}\right) \quad \mathbf{e}_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T}
$$

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the densities

exist.

Definition

An automaton is called invertible if all transition matrices M_{0}, \ldots, M_{k-1} are invertible and if $M=M_{0}+\ldots+M_{k-1}$ is primitive.

Remark:

If the matrix $M=M_{0}+\ldots+M_{k-1}$ is primitive then the densities

$$
\operatorname{dens}(\mathbf{u}, a)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N} \mathbf{1}_{\left[u_{n}=a\right]}
$$

exist.

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

$q_{0}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}$

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

$q_{0}^{\prime}, q_{3}^{\prime}, q_{4}^{\prime}$

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Theorem (M., 2016)

For every strongly connected automaton A, there exists a naturally induced transducer \mathcal{T}_{A}. All other naturally induced transducers can be obtained by changing the order on the elements of Q.

Example:

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is ",independent"
- Fourier Property:

We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is „independent".
- Fourier Property:

We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

Techniques

Use and adopt a framework of Mauduit and Rivat developed for the Rudin-Shapiro sequence.

- Carry Property: The contribution of high and low digits is „independent".
- Fourier Property:

We say that U has the Fourier property if there exists $\eta>0$ and c such that for all λ, α and t

$$
\left\|\frac{1}{k^{\lambda}} \sum_{m<k^{\lambda}} U\left(m k^{\alpha}\right) e(m t)\right\| \leq c k^{-\eta \lambda}
$$

Zeckendorf Representation

Fibonacci numbers

$$
F_{0}=0, F_{1}=1 \text { and } F_{k+2}=F_{k+1}+F_{k} \text { for } k \geq 0 .
$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Zeckendorf Representation

Fibonacci numbers

$$
F_{0}=0, F_{1}=1 \text { and } F_{k+2}=F_{k+1}+F_{k} \text { for } k \geq 0 .
$$

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Zeckendorf Representation

Fibonacci numbers

$$
F_{0}=0, F_{1}=1 \text { and } F_{k+2}=F_{k+1}+F_{k} \text { for } k \geq 0 .
$$

$$
F_{n}=\frac{\varphi^{n}-(-\varphi)^{-n}}{\sqrt{5}}
$$

where, φ is the golden ratio.

Zeckendorf Representation

Every positive integer n admits a unique representation

$$
n=\sum_{i \geq 2} \varepsilon_{i}(n) F_{i}
$$

where, $\varepsilon_{i}(n) \in\{0,1\}$ and $\varepsilon_{i}=1 \Rightarrow \varepsilon_{i+1}=0$.

Zeckendorf sum-of-digits Function

Definition

We denote by

$$
s_{\varphi}(n)=\sum_{i \geq 2} \varepsilon_{i}(n)
$$

the Zeckendorf sum-of-digits function.

We note that $s_{\varphi}(n)$ is the least k such that n is the sum of k

 Fibonacci numbers.
Zeckendorf sum-of-digits Function

Definition

We denote by

$$
s_{\varphi}(n)=\sum_{i \geq 2} \varepsilon_{i}(n)
$$

the Zeckendorf sum-of-digits function.
We note that $s_{\varphi}(n)$ is the least k such that n is the sum of k Fibonacci numbers.

Results II

Theorem (Drmota, M., Spiegelhofer, 2017)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and $m(n)$ a bounded multiplicative function. Then we have

$$
\sum_{n<N}(-1)^{s_{\varphi}(n)} m(n)=o(N) \quad(N \rightarrow \infty) .
$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Results II

Theorem (Drmota, M., Spiegelhofer, 2017)

Let $s_{\varphi}(n)$ be the Zeckendorf sum-of-digits function and $m(n)$ a bounded multiplicative function. Then we have

$$
\sum_{n<N}(-1)^{s_{\varphi}(n)} m(n)=o(N) \quad(N \rightarrow \infty) .
$$

This implies that the Zeckendorf sum-of-digits function is orthogonal to the Möbius function.

Fixpoint of a Substitution

A Morphism

$$
\begin{aligned}
& a \mapsto a b \\
& b \mapsto c \\
& c \mapsto c d \\
& d \mapsto a .
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

Fixpoint of a Substitution

A Morphism

$$
\begin{aligned}
& a \mapsto a b \\
& b \mapsto c \\
& c \mapsto c d \\
& d \mapsto a .
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

> This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function

Fixpoint of a Substitution

A Morphism

$$
\begin{aligned}
& a \mapsto a b \\
& b \mapsto c \\
& c \mapsto c d \\
& d \mapsto a .
\end{aligned}
$$

This gives the sequence $(-1)^{s_{\varphi}(n)}$ under the coding $\tau(a)=\tau(d)=1, \tau(b)=\tau(c)=-1$.

This is one of the first examples of a substitution with non-constant length to be orthogonal to the Möbius function.

A DFAO

We use as input the Zeckendorf representation of n, i.e. $\varepsilon_{k}(n), \ldots, \varepsilon_{0}(n):$

Sketch of the Proof

- Use the Kátai Criterion to reduce the problem to

$$
\sum_{n \leq N}(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}=o(N)
$$

for all different primes p, q.

- Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}$ to reduce this to:

$$
s_{\varphi}\left(p n_{0}\right) \not \equiv s_{\varphi}\left(q n_{0}\right) \bmod 2
$$

for some n_{0}.

- Show (1)

Sketch of the Proof

- Use the Kátai Criterion to reduce the problem to

$$
\sum_{n \leq N}(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}=o(N)
$$

for all different primes p, q.

- Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}$ to reduce this to:

$$
s_{\varphi}\left(p n_{0}\right) \not \equiv s_{\varphi}\left(q n_{0}\right) \bmod 2
$$

for some n_{0}.

- Show (1)

Sketch of the Proof

- Use the Kátai Criterion to reduce the problem to

$$
\sum_{n \leq N}(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}=o(N)
$$

for all different primes p, q.

- Use a generating function approach and "quasi-additivity" of $(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}$ to reduce this to:

$$
\begin{equation*}
s_{\varphi}\left(p n_{0}\right) \not \equiv s_{\varphi}\left(q n_{0}\right) \bmod 2 \tag{1}
\end{equation*}
$$

for some n_{0}.

- Show (1).

Kátai Criterion

Suppose that $\left(x_{n}\right)$ is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$
\sum_{n \leq N} x_{p n} \overline{x_{q n}}=o(N)
$$

Then for all bounded multiplicative functions $m(n)$ it follows that

Kátai Criterion

Suppose that $\left(x_{n}\right)$ is a bounded complex valued sequence with values in a finite set and that for every pair (p, q) of different prime numbers we have

$$
\sum_{n \leq N} x_{p n} \overline{x_{q n}}=o(N)
$$

Then for all bounded multiplicative functions $m(n)$ it follows that

$$
\sum_{n \leq N} x_{n} m(n)=o(N)
$$

Quasi Additivity

Definition

We say that n_{1} and n_{2} are r-separated at position k if $\varepsilon_{i}\left(n_{1}\right)=0$ for $i \geq k-r$ and $\varepsilon_{i}\left(n_{2}\right)=0$ for $i \leq k+r$.

Quasi Additivity

Definition

We say that n_{1} and n_{2} are r-separated at position k if $\varepsilon_{i}\left(n_{1}\right)=0$ for $i \geq k-r$ and $\varepsilon_{i}\left(n_{2}\right)=0$ for $i \leq k+r$.

Example:

$$
\begin{aligned}
n_{1}=4 & \Rightarrow 0000101 \\
n_{2}=29 & \Rightarrow 1010000
\end{aligned}
$$

Quasi Additivity

Definition (for integer base by Kropf, Wagner)

We call a function $f(n)$ quasi-additive (with respect to the Zeckendorf expansion) if there exists $r \geq 0$ such that

$$
f\left(n_{1}+n_{2}\right)=f\left(n_{1}\right)+f\left(n_{2}\right)
$$

for all integers n_{1}, n_{2} that are r separated.

- $f\left(n_{1}\right)=f\left(n_{2}\right)$ if the Zeckendorf expansion of n_{1} and n_{2} coincide up to ",shifts"

Quasi Additivity

Definition (for integer base by Kropf, Wagner)

We call a function $f(n)$ quasi-additive (with respect to the Zeckendorf expansion) if there exists $r \geq 0$ such that
-

$$
f\left(n_{1}+n_{2}\right)=f\left(n_{1}\right)+f\left(n_{2}\right)
$$

for all integers n_{1}, n_{2} that are r separated.

- $f\left(n_{1}\right)=f\left(n_{2}\right)$ if the Zeckendorf expansion of n_{1} and n_{2} coincide up to "shifts".

Lemma

Let $q>p \geq 2$ and $f(n)=s_{\varphi}(p n)+s_{\varphi}(q n)$. Then $f(n)$ is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch)

It suffices to work with $s_{\varphi}(m n)$ as the sum of quasi-additive functions is again quasi-additive. Choose r such that $\varphi^{r-1}<m$.

Lemma

Let $q>p \geq 2$ and $f(n)=s_{\varphi}(p n)+s_{\varphi}(q n)$. Then $f(n)$ is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(m n)$ as the sum of quasi-additive functions is again quasi-additive.

Lemma

Let $q>p \geq 2$ and $f(n)=s_{\varphi}(p n)+s_{\varphi}(q n)$. Then $f(n)$ is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(m n)$ as the sum of quasi-additive functions is again quasi-additive.
Choose r such that $\varphi^{r-1}<m$.

Lemma

Let $q>p \geq 2$ and $f(n)=s_{\varphi}(p n)+s_{\varphi}(q n)$. Then $f(n)$ is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(m n)$ as the sum of quasi-additive functions is again quasi-additive.
Choose r such that $\varphi^{r-1}<m$. $n_{1}<F_{k-r} \Rightarrow m n_{1}<F_{k}$.

Lemma

Let $q>p \geq 2$ and $f(n)=s_{\varphi}(p n)+s_{\varphi}(q n)$. Then $f(n)$ is quasi-additive with respect to the Zeckendorf expansion.

Proof (Sketch):

It suffices to work with $s_{\varphi}(m n)$ as the sum of quasi-additive functions is again quasi-additive.
Choose r such that $\varphi^{r-1}<m$.
$n_{1}<F_{k-r} \Rightarrow m n_{1}<F_{k}$.
$\varepsilon_{i}\left(n_{2}\right)=0 \forall i<k+r \Rightarrow \varepsilon_{i}\left(m n_{2}\right)=0 \forall i<k$.

Generating Functions Approach

Let f be a quasi-additive function and

$$
H(x, z):=\sum_{k \geq 3} x^{k} \sum_{F_{k-1} \leq n<F_{k}} z^{f(n)}
$$

Note that

$$
\left[x^{k}\right] H(x,-1)=\sum(-1)^{s_{p}(p n)+s_{p}(q n)}
$$

Let \mathcal{B} be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

where $\ell(n)=k$ if $F_{k-1} \leq n<F_{k}$

Generating Functions Approach

Let f be a quasi-additive function and

$$
H(x, z):=\sum_{k \geq 3} x^{k} \sum_{F_{k-1} \leq n<F_{k}} z^{f(n)}
$$

Note that

$$
\left[x^{k}\right] H(x,-1)=\sum_{F_{k-1} \leq n<F_{k}}(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}
$$

Let \mathcal{B} be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

where $\ell(n)=k$ if $F_{k-1} \leq n<F_{k}$

Generating Functions Approach

Let f be a quasi-additive function and

$$
H(x, z):=\sum_{k \geq 3} x^{k} \sum_{F_{k-1} \leq n<F_{k}} z^{f(n)}
$$

Note that

$$
\left[x^{k}\right] H(x,-1)=\sum_{F_{k-1} \leq n<F_{k}}(-1)^{s_{\varphi}(p n)+s_{\varphi}(q n)}
$$

Let \mathcal{B} be the set of integers n whose Zeckendorf expansion ends with exactly r zeros and that can not be decomposed into positive, r-separated summands. Let

$$
B(x, z)=\sum_{n \in \mathcal{B}} x^{\ell(n)} z^{f(n)}
$$

where $\ell(n)=k$ if $F_{k-1} \leq n<F_{k}$.

Thus by decomposing n into parts belonging to \mathcal{B}, we find

$$
\begin{aligned}
H(x, z) & =\frac{1}{1-x} \frac{1}{1-B(x, z) \frac{x^{2 r+1}}{1-x}} B^{\prime}(x, z) \\
& =\frac{B^{\prime}(x, z)}{1-x-x^{2 r+1} B(x, z)} .
\end{aligned}
$$

The dominant singularity of $H(x, 1)$ is at $x_{0}=\frac{1}{\varphi}$.
This is due to the fact that $x=x_{0}$ is a solution for $x+x^{2 r+1} B(x, 1)=1$.

It suffices to show that there exists no solution in $|x|<x_{0}+\varepsilon$ for

Thus by decomposing n into parts belonging to \mathcal{B}, we find

$$
\begin{aligned}
H(x, z) & =\frac{1}{1-x} \frac{1}{1-B(x, z) \frac{x^{2 r+1}}{1-x}} B^{\prime}(x, z) \\
& =\frac{B^{\prime}(x, z)}{1-x-x^{2 r+1} B(x, z)} .
\end{aligned}
$$

The dominant singularity of $H(x, 1)$ is at $x_{0}=\frac{1}{\varphi}$.
This is due to the fact that $x=x_{0}$ is a solution for

$$
x+x^{2 r+1} B(x, 1)=1 .
$$

It suffices to show that there exists no solution in $|x|<x_{0}+\varepsilon$ for

$$
x+x^{2 r+1} B(x,-1)=1 .
$$

Thus by decomposing n into parts belonging to \mathcal{B}, we find

$$
\begin{aligned}
H(x, z) & =\frac{1}{1-x} \frac{1}{1-B(x, z) \frac{x^{2 r+1}}{1-x}} B^{\prime}(x, z) \\
& =\frac{B^{\prime}(x, z)}{1-x-x^{2 r+1} B(x, z)} .
\end{aligned}
$$

The dominant singularity of $H(x, 1)$ is at $x_{0}=\frac{1}{\varphi}$. This is due to the fact that $x=x_{0}$ is a solution for

$$
x+x^{2 r+1} B(x, 1)=1 .
$$

It suffices to show that there exists no solution in $|x|<x_{0}+\varepsilon$ for

$$
x+x^{2 r+1} B(x,-1)=1 .
$$

Thus by decomposing n into parts belonging to \mathcal{B}, we find

$$
\begin{aligned}
H(x, z) & =\frac{1}{1-x} \frac{1}{1-B(x, z) \frac{x^{2 r+1}}{1-x}} B^{\prime}(x, z) \\
& =\frac{B^{\prime}(x, z)}{1-x-x^{2 r+1} B(x, z)} .
\end{aligned}
$$

The dominant singularity of $H(x, 1)$ is at $x_{0}=\frac{1}{\varphi}$.
This is due to the fact that $x=x_{0}$ is a solution for

$$
x+x^{2 r+1} B(x, 1)=1 .
$$

It suffices to show that there exists no solution in $|x|<x_{0}+\varepsilon$ for

$$
x+x^{2 r+1} B(x,-1)=1 .
$$

It remains to find n such that

$$
s_{\varphi}(p n)+s_{\varphi}(q n) \equiv 1 \bmod 2
$$

The key point is to find n_{1}, n_{2} such that

$$
\begin{aligned}
s_{\varphi}\left(p n_{1}\right)+s_{\varphi}\left(p n_{2}\right) & \equiv s_{\varphi}\left(p\left(n_{1}+n_{2}\right)\right) \bmod 2 \\
s_{\varphi}\left(q n_{1}\right)+s_{\varphi}\left(q n_{2}\right) & \equiv s_{\varphi}\left(q\left(n_{1}+n_{2}\right)\right)+1 \bmod 2 .
\end{aligned}
$$

It remains to find n such that

$$
s_{\varphi}(p n)+s_{\varphi}(q n) \equiv 1 \bmod 2
$$

The key point is to find n_{1}, n_{2} such that

$$
\begin{aligned}
& s_{\varphi}\left(p n_{1}\right)+s_{\varphi}\left(p n_{2}\right) \equiv s_{\varphi}\left(p\left(n_{1}+n_{2}\right)\right) \bmod 2 \\
& s_{\varphi}\left(q n_{1}\right)+s_{\varphi}\left(q n_{2}\right) \equiv s_{\varphi}\left(q\left(n_{1}+n_{2}\right)\right)+1 \bmod 2
\end{aligned}
$$

Open Questions

(1) Other base: $G_{0}=0, G_{1}=1, G_{k+1}=a G_{k}+G_{k-1}$.
(3) More general bases: Ostrowski numeration.

- Replace the sum-of-digits function by a block-additive function.
- Automatic sequences with respect to the Zeckendorf numeration.

Open Questions

(1) Other base: $G_{0}=0, G_{1}=1, G_{k+1}=a G_{k}+G_{k-1}$.
(2) More general bases: Ostrowski numeration.

- Replace the sum-of-digits function by a block-additive function.
- Automatic sequences with respect to the Zeckendorf
numeration.

Open Questions

(1) Other base: $G_{0}=0, G_{1}=1, G_{k+1}=a G_{k}+G_{k-1}$.
(2) More general bases: Ostrowski numeration.
(Replace the sum-of-digits function by a block-additive function.
O Automatic sequences with respect to the Zeckendorf numeration.

Open Questions

(1) Other base: $G_{0}=0, G_{1}=1, G_{k+1}=a G_{k}+G_{k-1}$.
(2) More general bases: Ostrowski numeration.
(Replace the sum-of-digits function by a block-additive function.
(- Automatic sequences with respect to the Zeckendorf numeration.

