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Sarnak Conjecture

Möbius function

The Möbius function is defined by

µ(n) =

 (−1)k
if n is squarefree and
k is the number of prime factors

0 otherwise

A sequence u is orthogonal to the Möbius function µ(n) if∑
n≤N

µ(n)un = o(
∑
n≤N

|un|) (N →∞).

Old Heuristic - Mobius Randomness Law

Any ”reasonably defined”bounded sequence independent of µ is
orthogonal to µ.
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The Möbius function is defined by

µ(n) =

 (−1)k
if n is squarefree and
k is the number of prime factors

0 otherwise

A sequence u is orthogonal to the Möbius function µ(n) if∑
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Sarnak Conjecture

Orthogonality to µ

Results

Constant sequences ⇔ PNT

Periodic sequences ⇔ PNT in arithmetic Progressions

Quasiperiodic sequences f (n) = F (αn mod 1) - Davenport

Nilsequences - Green and Tao

Horocycle Flows - Bourgain, Sarnak and Ziegler

Bounded depth circuits - Green

Some special examples/classes of automatic sequences
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Sarnak Conjecture

Sarnak Conjecture

Definition

A dynamical system is said to be determinist, if its topological
entropy is 0.

Conjecture (Sarnak conjecture, 2010)

Every bounded complex sequence u = (un)n>0 that is obtained by a
deterministic dynamical system is orthogonal to the Möbius function
µ(n).
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Sarnak Conjecture

Chowla Conjecture

Conjecture (Chowla)

Let 0 ≤ a1 < a2 < . . . < at and k1, k2, . . . , kt in {1, 2} not all even,
then as N →∞∑

n≤N

µk1(n + a1)µk2(n + a2) · · ·µkt (n + at) = o(N).

Theorem (Sarnak)

The Chowla Conjecture implies the Sarnak Conjecture.
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Sarnak Conjecture Orthogonality to µ(n) vs. Sarnak conjecture

Sarnak Conjecture

Dynamical System (X ,T ) related to u

u = (un)n≥0 . . . bounded complex sequence

Tu = (un+1)n≥0 . . . shift operator

X = {T k(u) : k ≥ 0}

We say that u satisfies the Sarnak conjecture if all sequences
a = (an)n≥0 ∈ X are orthogonal to µ(n).
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Sarnak Conjecture Orthogonality to µ(n) vs. Sarnak conjecture

Results

Theorem 1 (M., 2016)

Every automatic sequence (an)n≥0 fulfills the Sarnak Conjecture

Theorem 2 (M., 2016)

Let A = (Q ′,Σ, δ′, q′0, τ) be a strongly connected DFAO such that
Σ = {0, . . . , k − 1} and δ′(q′0, 0) = q′0. Then the frequencies of the
letters for the prime-subsequence (ap)p∈P exist, i.e.

densP(u, α) = lim
N→∞

1

π(N)

∑
1≤p≤N

1[up=α].

Remark: All block-additive (i.e. digital) functions are covered by
Theorem 2 and they are ”usually” uniformly distributed.
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Sarnak Conjecture Synchronizing Automata

Synchronizing Automata

Definition (Synchronizing Automaton / Word)

∃w0 : δ(q,w0) = a ∀q.

Example

astart b

c
0

0

0

1
1

1

w0 = 010.
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Sarnak Conjecture Synchronizing Automata

Synchronizing Automata

Theorem (Deshouillers + Drmota + M.)

Let u = (un)n > 0 be generated by a synchronizing automaton.
Then for every α the density

dens(u, α) = lim
N→∞

1

N

∑
1≤n≤N

1[un=α]

exists. Furthermore, the densities for the following subsequences exist

(up)p∈P

(uP(n))n∈N

Theorem (Deshouillers + Drmota + M.)

Let u = (un)n > 0 be generated by a synchronizing automaton. Then
u = (un)n>0 is orthogonal to the Möbius function µ(n).
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Clemens Müllner Automatic sequence/Sarnak conjecture 3. May 2017 9 / 42



Sarnak Conjecture Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22
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Sarnak Conjecture Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1
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Sarnak Conjecture Transition Matrix
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Sarnak Conjecture Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ;M1 =

 0 1 0
1 0 0
0 0 1

 ;M2 =

 0 0 1
1 0 0
0 1 0



11 = (102)3 : M2 ◦M0 ◦M1

 1
0
0

 =

 0
0
1
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Sarnak Conjecture Transition Matrix

q1start q2

q3

0

0

0

1

1

1

2

22

M0 =

 1 0 0
0 1 0
0 0 1

 ;M1 =

 0 1 0
1 0 0
0 0 1

 ;M2 =

 0 0 1
1 0 0
0 1 0


T (n) := Mε0(n)Mε1(n) · · ·Mε`−1(n)

u(n) = f (T (n)e1) e1 = (1 0 0)T
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Sarnak Conjecture Invertible Automata

Definition

An automaton is called invertible if all transition matrices
M0, . . . ,Mk−1 are invertible and if M = M0 + . . . + Mk−1 is
primitive.

M is primitive iff there exists m ≥ 0 such that for every a, b ∈ Q
exists w ∈ Σm such that δ(a,w) = b.
Remark:
If the matrix M = M0 + . . .+ Mk−1 is primitive then the frequencies

freq(u, a) = lim
N→∞

1

N

∑
1≤n≤N

1[un=a]

exist.
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Sarnak Conjecture Invertible Automata

Results for Invertible Automata

Suppose that an automatic sequence u = (un)n≥0 is generated by an
invertible automaton.

Theorem [Drmota, Ferenczi +
Kulaga-Przymus+Lemanczyk+Mauduit]

u is orthogonal to µ(n).

Theorem[Drmota]

The frequency of each letter of the subsequence (up)p∈P exists.
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Sarnak Conjecture Digital Sequences

Digital Sequences

We call a sequence (an)n≥0 digital if there exists m ≥ 1 and
F : {0, . . . , k − 1}m → C such that

an =
∑
i≥0

F (εi+m−1(n), . . . , εi(n)).

Lemma

Let (an)n≥0 be a digital sequence. Then (an mod m′)n≥0 is an
automatic sequence for every m′ ∈ N.

Example

The sum of digits function in base k , sk(n) is digital where m = 1
and F (x) = x .
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Sarnak Conjecture Digital Sequences

Example (Rudin-Shapiro)

astart b

c d

1

0

1

0

0

1

0

1

a, bstart

c , d

0 | id

1 | id0 | id

1 | (12)

Theorem [Mauduit + Rivat, Tao]

The Rudin-Shapiro Sequence is orthogonal to the Möbius function.
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Naturally Induced Transducer

Definition (Naturally Induced Transducer)

Let A = (Q ′,Σ, δ′, q′0) be a strongly connected automata. We call
TA = (Q,Σ, δ, q0,∆, λ) a naturally induced transducer iff

1 ∃n0 ∈ N : Q ⊆ (Q ′)n0

2 TA is synchronizing

3 “attach to each transition δ(q, a) a permutation λ(q, a)“.

4 δ′(q, a) = λ(q, a) · δ(q, a)

5 some minimality/technical conditions
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Naturally Induced Transducer

Examples

Example (Synchronizing Automaton)

astart b

0

0,1

1
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0 | id
0| id
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Naturally Induced Transducer

Examples

Example (Invertible Automaton)

q1start q2

q3

0

0

0

1

1

1

2

22

q1, q2, q3start

0 | id
1 | (12)
2| (123)
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Naturally Induced Transducer

Theorem

For every strongly connected automaton A, there exists a naturally
induced transducer TA. All other naturally induced transducers can
be obtained by changing the order on the elements of Q.

Example:

q′0start

q′1 q′2

q′3 q′4

01

0

1

0

1

0

1 0,1
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Naturally Induced Transducer

Motivation

Example (Digital Sequence)

”
Generic Example“: k = 2,m = 3,m′ = 3
F (010) = 1,F (110) = 2,F (101) = 1

astart b

c d

0 | id

1 | id

0 | id

1 | (123)
0 | (123)

1 | id

0 | (132)

0 | id

Every word of length m − 1 is synchronizing.

The group generated by the permutations is cyclic.
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Naturally Induced Transducer

Definition

Denote by

T (q,w1 . . .wr ) := λ(q,w1) ◦ λ(δ(q,w1),w2) ◦ . . .
◦ λ(δ(q,w1 . . .wr−1),wr ).

Lemma

Let A be a strongly connected automaton and TA a naturally
induced transducer. Then,

δ′(q′0,w) = π1(T (q0,w) · δ(q0,w))

holds for all w ∈ Σ∗.
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Naturally Induced Transducer Properties of naturally induced transducers

Are some naturally induced transducers better than others?

(Oversimplified) Example

a b

c d

1

0

1

0

0,1 0,1

a, b

c , d

0 | id

1 | id0 | id
1 | id

a, b

d , c

0 | id

1 | (12)0 | (12)
1 | (12)
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Naturally Induced Transducer Properties of naturally induced transducers

Let ∆ be the group generated by im(λ).
All elements of ∆ appear as values of T (q0, .) for

”
good“ naturally

induced transducer.
Do all elements of ∆ appear simultaneously as values of T (q0,w)
for w ∈ Σn for a single n, where n is large?

Example

a b

0,1

0,1
a, b

0 | (12)
1 | (12)
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Naturally Induced Transducer Properties of naturally induced transducers

Do all elements of ∆ appear simultaneously as values of T (q0,w)
for w ∈ Σn for a single n, where n is large?
The key point is to avoid periodic behavior.

Example

a b

00,01,10,11 00,01,10,11

a, b

00 | id, 01 | id
10 | id, 11 | id
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Naturally Induced Transducer Properties of naturally induced transducers

Continuous functions from a compact group to C

Definition (Representation)

Let G be a finite group and k ∈ N. A Representation of rank k is
a continuous homomorphism D : G → Ck×k .

Lemma

Let f be a continuous function from G to C. There exists r ∈ N
and unitary, irreducible representations D(`) = (d

(`)
i ,j )i ,j<k` along with

c` ∈ C such that

f (g) =
∑
`<r

c`d
(`)
i`,j`

(g)

holds for all g ∈ G .
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Automatic Sequences fulfill Sarnak’s Conjecture

Lemma

Suppose that∑
n<N
...

D(T (n))µ(n) = o(N)

holds for all irreducible unitary representations of G . Then
u = (un)n≥0 is orthogonal to µ(n).
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Automatic Sequences fulfill Sarnak’s Conjecture

We follow the method of Mauduit and Rivat that they use for
studying the Rudin-Shapiro sequence.

(Adopted) Definition

Let U(n) be a sequence of unitary matrices. We say that U has the
Fourier property if there exists η > 0 and c such that for all λ, α
and t∥∥∥∥∥ 1

kλ

∑
m<kλ

U(mkα)e(mt)

∥∥∥∥∥ ≤ ck−ηλ.

Carry Property: the contribution of high digits and the contribution
of low digits are

”
independent“.

Clemens Müllner Automatic sequence/Sarnak conjecture 3. May 2017 38 / 42
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Automatic Sequences fulfill Sarnak’s Conjecture

Let D be a unitary and irreducible representation of G .

(Adopted) Theorem

Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

µ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c2(k)N1−η′

(Adopted) Theorem

Suppose that D ◦ T has the Fourier property. Then we have for any
real θ∥∥∥∥∥∑

n<N

Λ(n)D(T (n))e(θn)

∥∥∥∥∥� c1(k)(logN)c3(k)N1−η′
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Automatic Sequences fulfill Sarnak’s Conjecture

Ideas for the proof

Vaughan method:
Estimating

SI (θ) =
∑
m

∣∣∣∣∣∣
∑
n

mn∈I

f (mn) e(θmn)

∣∣∣∣∣∣
SII (θ) =

∑
m

∑
n

ambnf (mn) e(θmn)

provides estimates for∑
n<N

µ(n)f (n),
∑
n<N

Λ(n)f (n)

Use variants of the Van-der-Corput inequality and the carry property
to remove the contribution of low and high digits.
Use the Fourier property.
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Clemens Müllner Automatic sequence/Sarnak conjecture 3. May 2017 40 / 42



Automatic Sequences fulfill Sarnak’s Conjecture

Ideas for the proof

Vaughan method:
Estimating

SI (θ) =
∑
m

∣∣∣∣∣∣
∑
n

mn∈I

f (mn) e(θmn)

∣∣∣∣∣∣
SII (θ) =

∑
m

∑
n

ambnf (mn) e(θmn)

provides estimates for∑
n<N

µ(n)f (n),
∑
n<N

Λ(n)f (n)

Use variants of the Van-der-Corput inequality and the carry property
to remove the contribution of low and high digits.
Use the Fourier property.
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Automatic Sequences fulfill Sarnak’s Conjecture

Problem: Distinguish representations D that fulfill the Fourier
Property.

Lemma

Let A be a DFA and TA a naturally induced transducer. There exists
d ′ and representations D0, . . . ,Dd ′−1 such that

D`(T (q, (n)k)) = e

(
n`

d ′

)
.

Theorem

Let D be a unitary and irreducible representation different from
D0, . . . ,Dd ′−1. Then D(T (.)) has the Fourier Property.
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Automatic Sequences fulfill Sarnak’s Conjecture

Automatic Sequences along Primes

The treatment is very similar to the orthogonality to the Möbius
function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit and are determined by
the behavior of the automatic sequence along arithmetic
progressions.

Primes vs all natural Numbers

a b c

0

1,2

0,2

1

0,2

1
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function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit and are determined by
the behavior of the automatic sequence along arithmetic
progressions.

Primes vs all natural Numbers

a b c

0

1,2

0,2

1

0,2

1
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function.
One has to work more carefully to extract the main term.
The actual frequencies can be made explicit and are determined by
the behavior of the automatic sequence along arithmetic
progressions.

Primes vs all natural Numbers

a b c

0

1,2

0,2

1

0,2

1
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