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FPL configurations : Definition
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Start with the square grid Gn with n2 vertices and 4n external
edges.In the example, we have n = 7.
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FPL configurations : Definition

(1) containing every other external
edge,i.e. contains either all odd edges
or all even edges.
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A FPL configuration of size n is a sub-
graph of the grid Gn

Start with the square grid Gn with n2 vertices and 4n external
edges.In the example, we have n = 7.
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FPL configurations : Definition

(2) such that around each vertex of Gn,
2 edges out of 4 are selected.
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Start with the square grid Gn with n2 vertices and 4n external
edges.In the example, we have n = 7.

(1) containing every other external
edge ;

A FPL configuration of size n is a sub-
graph of the grid Gn
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FPL configurations : Enumeration
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...
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FPL configurations : Enumeration

[ ASM = matrix with coefficients in
{1, 0,−1} such that on each row or
column 1 and −1 alternate, and the
sum is 1.]

Here 1 and -1
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n
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FPL configurations : Enumeration

An =
n−1∏
i=0

(3i+ 1)!

(n+ i)!

[Zeilberger ’96, Kuperberg ’96]
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n
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FPL configurations : Refined enumeration
Every FPL configuration determines a link pattern on the odd or
even external edges of the grid Gn.
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FPL configurations : Refined enumeration

Now if we are given a pairing X of odd (or even) external edges,
our main question will be : how many FPL configurations respect
the link pattern X ?

Definition We note AX the number of FPL configurations which
induce the link pattern X.
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FPL configurations : Refined enumeration

If X =

Now if we are given a pairing X of odd (or even) external edges,
our main question will be : how many FPL configurations respect
the link pattern X ?
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Definition We note AX the number of FPL configurations which
induce the link pattern X.
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FPL configurations : Refined enumeration

AX = AX′

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

Theorem [Wieland ’00]

Now given a link pattern X, let X ′ be defined by

(i, j) ∈ X ′ ⇔ (i− 1, j − 1) ∈ X
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FPL configurations : Refined enumeration

AX = AX′

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

Theorem [Wieland ’00]

W

Now given a link pattern X, let X ′ be defined by

(i, j) ∈ X ′ ⇔ (i− 1, j − 1) ∈ X

The proof consists in the definition of a bijec-
tion W between both sets of configurations.
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FPL configurations : Refined enumeration

AX = AX′

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

Theorem [Wieland ’00]

W

Now given a link pattern X, let X ′ be defined by

(i, j) ∈ X ′ ⇔ (i− 1, j − 1) ∈ X

The proof consists in the definition of a bijec-
tion W between both sets of configurations.

For enumeration purposes, we can then use
unlabeled link patterns :



7-1

Outline of the talk

Known enumerations for the numbers AX are

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2

Complicated determinant formulas

+ certain variants of these.

a

b

c

These results are due to Zinn-Justin, Zuber, Di Francesco, Caselli,
Krattenthaler,...
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Outline of the talk
For a given link pattern X of size n, there exist numerous ins-
tances in [Zuber ’04] of conjectured identities of the form

AX =
∑

cXX′∈Z
cXX′AX′ where X ′ are link patterns of size n− 1.
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Outline of the talk
For a given link pattern X of size n, there exist numerous ins-
tances in [Zuber ’04] of conjectured identities of the form

AX =
∑

cXX′∈Z
cXX′AX′ where X ′ are link patterns of size n− 1.

Example =
∑
X

AX = An−1
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Outline of the talk
For a given link pattern X of size n, there exist numerous ins-
tances in [Zuber ’04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering
link patterns with nested arches. This is a continuation of the
work of [Thapper ’07].

AX =
∑

cXX′∈Z
cXX′AX′ where X ′ are link patterns of size n− 1.

Example =
∑
X

AX = An−1
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Outline of the talk
For a given link pattern X of size n, there exist numerous ins-
tances in [Zuber ’04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering
link patterns with nested arches. This is a continuation of the
work of [Thapper ’07].

These coefficients are defined with respect to certain FPL confi-
gurations in a triangle, and we will focus on enumerating these
configurations in certain special cases.

AX =
∑

cXX′∈Z
cXX′AX′ where X ′ are link patterns of size n− 1.

Example =
∑
X

AX = An−1
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Outline of the talk
For a given link pattern X of size n, there exist numerous ins-
tances in [Zuber ’04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering
link patterns with nested arches. This is a continuation of the
work of [Thapper ’07].

These coefficients are defined with respect to certain FPL confi-
gurations in a triangle, and we will focus on enumerating these
configurations in certain special cases.

In one such case, we will show that the answer is given by the
famous Littlewood-Richardson coefficients.

AX =
∑

cXX′∈Z
cXX′AX′ where X ′ are link patterns of size n− 1.

Example =
∑
X

AX = An−1
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

For instance if n = 3, there are 5 possible π :

m

π

Link patterns with nested arches

π ∪m
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

For instance if n = 3, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed),
so we write the number Aπ∪m as Aπ(m).

m

π

Link patterns with nested arches

π ∪m
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

For instance if n = 3, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed),
so we write the number Aπ∪m as Aπ(m).

Theorem [Caselli,Krattenthaler,Lass,N. ’05]

Aπ(m) is a polynomial function of m.

m

π

Link patterns with nested arches

π ∪m
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k 4n− 2 m− 3n− k + 1

π

m

π

We suppose m ≥ 3n− 1,
and choose k such that
0 ≤ k ≤ m− (3n− 1).
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k 4n− 2 m− 3n− k + 1

π

By Wieland’s theorem, the FPL
configurations with the pictured

link pattern are counted by
Aπ(m).

m

π

We suppose m ≥ 3n− 1,
and choose k such that
0 ≤ k ≤ m− (3n− 1).
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

R1

T

R2

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .

Word σ = σ1 . . . σ2n in {0, 1}2n, where
σi = 0⇔ a vertical edge is present

σ1

σ2

σ3

σ4

σ5

σ6
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .

Word τ = τ1 . . . τ2n in {0, 1}2n, where
τi = 1⇔ a vertical edge is present

τ6

τ5

τ4

τ3

τ2

τ1
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We can then write, for m ≥ 3n− 1 and 0 ≤ k ≤ m− (3n− 1)

Aπ(m) =
∑
σ,τ

|R1(σ, k)| × tπσ,τ × |R2(τ,m− 3n− k + 1)|

where

• R1(σ, .),R2(τ, .) are the sets of FPL confi-
gurations in the regionsR1 andR2 with boun-
daries σ, τ respectively ;

• σ, τ are words of length 2n on {0, 1} ;

• tπσ,τ is the number of FPL configurations in
the triangle T with boundary data {σ, π, τ}.

Putting things together

π

T
R1

R2
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Words and Shapes

We will identify words and Ferrers shapes in a box.

σ = 0101011110

σ

0 1

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6
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Words and Shapes

We will identify words and Ferrers shapes in a box.

σ = 0101011110

Length `(σ) := the number of boxes in the diagram σ.

`(σ) = 9σ

0 1

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6
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Words and Shapes

We will identify words and Ferrers shapes in a box.

σ = 0101011110

Length `(σ) := the number of boxes in the diagram σ.

`(σ) = 9

Transpose σ∗ :=(1− σp) · · · (1− σ2)(1− σ1)

σ

0 1

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6
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Words and Shapes

We will identify words and Ferrers shapes in a box.

σ = 0101011110

Length `(σ) := the number of boxes in the diagram σ.

`(σ) = 9

Transpose σ∗ :=(1− σp) · · · (1− σ2)(1− σ1)

σ

0 1

For two words σ, σ′ with |σ|0 = |σ′|0 and |σ|1 = |σ′|1 we define :
• σ ≤ σ′ if, as shapes, σ is included in σ′.
• σ → σ′ if σ ≤ σ′, and σ′ has at most one more box in each
column ; σ, σ′ form a horizontal strip.

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6
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σ ≤ σ′ σ → σ′

Words and Shapes
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σ ≤ σ′ σ → σ′

Definition
A semi standard Young tableau of shape σ and entries bounded
by N is a filling of the shape σ by integers in {1, . . . , N} such that
entries are strictly increasing in columns and weakly increasing in
rows.

Such a tableau can be equivalently defined by a sequence of shapes

∅ = σ0 → σ1 → . . .→ σN = σ

Words and Shapes
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Given a box u in a Ferrers diagram, in the ith row from the top
and jth column form the left, we define

• the content c(u) := j − i ;

• the hook-length h(u) as the number of boxes
below it, or to its right, including the u itself.

0

0

1 2

−1

4 3 1

2 1

Words and Shapes
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Given a box u in a Ferrers diagram, in the ith row from the top
and jth column form the left, we define

• the content c(u) := j − i ;

• the hook-length h(u) as the number of boxes
below it, or to its right, including the u itself.

0

0

1 2

−1

4 3 1

2 1

Theorem [Stanley]

The number of semistandard Young tableaux of shape λ and
entries bounded by N is given by

SSY T (λ,N) =
∏
u∈λ

N + c(u)

h(u)

Words and Shapes

Polynomial of with leading term 1
h(λ)N

`(λ)
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Regions R1 and R2

0
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0

Consider the regionR1 with border σ, and
extend it to make it rectangular.
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Regions R1 and R2

0
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0

1
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1
σ6 = σ

0

Consider the regionR1 with border σ, and
extend it to make it rectangular.

Given the restriction of a FPL confi-
guration in R1, encode each diago-
nal by a word σi on {0, 1}.

σ0

σ1

σ2

σ3

σ4

σ5
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Regions R1 and R2
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Consider the regionR1 with border σ, and
extend it to make it rectangular.

Given the restriction of a FPL confi-
guration in R1, encode each diago-
nal by a word σi on {0, 1}.
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Regions R1 and R2

0

0

0

1
1

1

1
σ6 = σ

0
0

0
0

0
0

0
0

0
0

0

0
0

0

0

0
0

0
0

0

0
0

0

1
1

1
1

1
1

1
1

1

0

1
1

1

1
1

1
1

1

1
1

1
1

1
1

1

0

Consider the regionR1 with border σ, and
extend it to make it rectangular.

Given the restriction of a FPL confi-
guration in R1, encode each diago-
nal by a word σi on {0, 1}.

All words σi verify |σi|0 = |σi|1 = n.

σ0

σ1

σ2

σ3

σ4

σ5
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Regions R1 and R2
Proposition [CKLN ’05]

For any FPL configuration in R1, the sequence of shapes
σ0, σ1, . . . , σn+k form a semistandard Young tableau.
This is a bijection between R1(σ, k) and tableaux of shape σ and
length n+ k.



20-2

Regions R1 and R2
Proposition [CKLN ’05]

For any FPL configuration in R1, the sequence of shapes
σ0, σ1, . . . , σn+k form a semistandard Young tableau.
This is a bijection between R1(σ, k) and tableaux of shape σ and
length n+ k.

Aπ(m) =
∑
σ,τ

|R1(σ, 0)| · tπσ,τ · |R2(τ,m− 3n+ 1)|

=
∑
σ,τ

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

So

This shows that if m ≥ 3n− 1, Aπ(m) is a polynomial in m.



20-3

Regions R1 and R2
Proposition [CKLN ’05]

For any FPL configuration in R1, the sequence of shapes
σ0, σ1, . . . , σn+k form a semistandard Young tableau.
This is a bijection between R1(σ, k) and tableaux of shape σ and
length n+ k.

Aπ(m) =
∑
σ,τ

|R1(σ, 0)| · tπσ,τ · |R2(τ,m− 3n+ 1)|

=
∑
σ,τ

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

So

This shows that if m ≥ 3n− 1, Aπ(m) is a polynomial in m.

In fact, Aπ(m) is given by the same polynomial for m < 3n − 1
[CKLN ’05].
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11
Definition We note Dn the words w such that |w|0 = |w|1 = n
and which are smaller than (01)n.

We write 0n = 0n1n, and 1n = (01)n.
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11
Definition We note Dn the words w such that |w|0 = |w|1 = n
and which are smaller than (01)n.

We write 0n = 0n1n, and 1n = (01)n.

Theorem [CKLN ’04]

tπσ,τ = 0 unless σ ≤ π. Moreover, tππ,0n = 1 and tππτ = 1 if τ 6= 0n.
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11
Definition We note Dn the words w such that |w|0 = |w|1 = n
and which are smaller than (01)n.

We write 0n = 0n1n, and 1n = (01)n.

Theorem [CKLN ’04]

tπσ,τ = 0 unless σ ≤ π. Moreover, tππ,0n = 1 and tππτ = 1 if τ 6= 0n.

• The formula for Aπ(m) can be restricted to words σ, τ ∈ Dn,
• The polynomial Aπ(m) has leading term 1

h(π) t
`(π).

Corollary
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The decomposition formula

We want to write Aπ(m) as a Z-linear combination of polynomials
Aα(m− 1), where α, π are in Dn.
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Let σ, τ, π be elements of Dn. Then we have the equality :∑
σ1∈Dn
σ→σ1

tπσ1,τ =
∑
τ1∈Dn
τ∗→τ∗1

tπσ,τ1 .

σ τ

π

σ τ

π

In terms of diagrams, this means precisely that

The proof is an application of Wieland’s rotation.

Theorem [N. ’09] (conjectured in [Thapper ’07]).

σ1 τ1

The decomposition formula

We want to write Aπ(m) as a Z-linear combination of polynomials
Aα(m− 1), where α, π are in Dn.
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The decomposition formula

bσσ′ := 1 if σ → σ′ and 0 otherwise.

We now define certain matrices endomorphisms b, b̃, tπ acting on
the complex vector space with distinguished basis Dn.

b
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The decomposition formula

bσσ′ := 1 if σ → σ′ and 0 otherwise.

b̃ττ ′ := 1 if τ ′∗ → τ∗ and 0 otherwise.

We now define certain matrices endomorphisms b, b̃, tπ acting on
the complex vector space with distinguished basis Dn.

b

b̃
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The decomposition formula

bσσ′ := 1 if σ → σ′ and 0 otherwise.

b̃ττ ′ := 1 if τ ′∗ → τ∗ and 0 otherwise.

(tπ)στ := tπσ,τ

We now define certain matrices endomorphisms b, b̃, tπ acting on
the complex vector space with distinguished basis Dn.

tπ

π

b

b̃
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The decomposition formula

bσσ′ := 1 if σ → σ′ and 0 otherwise.

b̃ττ ′ := 1 if τ ′∗ → τ∗ and 0 otherwise.

(tπ)στ := tπσ,τ

We now define certain matrices endomorphisms b, b̃, tπ acting on
the complex vector space with distinguished basis Dn.

tπ

π

b

Aπ(m) =
(
bntπb̃m−2n+1

)
0n0n

0n

0n

π

n

m
−
2n

+
1

Putting these pieces together we get

b̃
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Now, the relation

can be written btπ = tπb̃ for all π ∈ Dn.

σ τ

π

σ τ

π

The decomposition formula
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Now, the relation

can be written btπ = tπb̃ for all π ∈ Dn.

σ τ

π

σ τ

π

Aπ(m) =
(
bm−n+1tπ

)
0n0n

By repeatedly applying this relation in the expression for Aπ(m),
we obtain that for all m,

0n

0n

π

m
−
n
+
1

The decomposition formula



24-3

Now, the relation

can be written btπ = tπb̃ for all π ∈ Dn.

σ τ

π

σ τ

π

Defining (t)σπ := tπσ,0n t
0n

Aπ(m) =
(
bm−n+1tπ

)
0n0n

By repeatedly applying this relation in the expression for Aπ(m),
we obtain that for all m,

0n

0n

π

m
−
n
+
1

we can rewrite this as Aπ(m) =
(
bm−n+1t

)
0nπ

The decomposition formula
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Aπ(m) =
(
bm−n+1t

)
0nπ

For π ∈ Dn, and m an integer

Proposition [N. ’09] 0n

0n

π
m
−
n
+
1

0n

0n

π
m
−
n
+
1

The decomposition formula
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Aπ(m) =
(
bm−n+1t

)
0nπ

For π ∈ Dn, and m an integer

Proposition [N. ’09] 0n

0n

π
m
−
n
+
1

0n

0n

π
m
−
n
+
1

Now the key fact is that tπσ,τ = 0 unless σ ≤ π, and tππ0n = 1

⇒ if Dn is ordered with respect to any linear order extending ≤, then
t is a triangular matrix with 1s on its diagonal : t is invertible.

The decomposition formula
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Definition [Thapper]

c := t−1bt

Aπ(m) =
(
bm−n+1t

)
0nπ

For π ∈ Dn, and m an integer

Proposition [N. ’09] 0n

0n

π
m
−
n
+
1

0n

0n

π
m
−
n
+
1

Now the key fact is that tπσ,τ = 0 unless σ ≤ π, and tππ0n = 1

⇒ if Dn is ordered with respect to any linear order extending ≤, then
t is a triangular matrix with 1s on its diagonal : t is invertible.

The decomposition formula
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Definition [Thapper]

c := t−1bt

Aπ(m) =
(
bm−nbt

)
0nπ

=
(
bm−ntc

)
0nπ

=
∑
α∈Dn

(
bm−nt

)
0nα

cαπ,

Aπ(m) =
(
bm−n+1t

)
0nπ

For π ∈ Dn, and m an integer

Proposition [N. ’09] 0n

0n

π
m
−
n
+
1

0n

0n

π
m
−
n
+
1

Now the key fact is that tπσ,τ = 0 unless σ ≤ π, and tππ0n = 1

⇒ if Dn is ordered with respect to any linear order extending ≤, then
t is a triangular matrix with 1s on its diagonal : t is invertible.

The decomposition formula

c is characterized by bt = tc, and so
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Definition [Thapper]

c := t−1bt

Aπ(m) =
(
bm−nbt

)
0nπ

=
(
bm−ntc

)
0nπ

=
∑
α∈Dn

(
bm−nt

)
0nα

cαπ,

Aπ(m) =
(
bm−n+1t

)
0nπ

For π ∈ Dn, and m an integer

Proposition [N. ’09] 0n

0n

π
m
−
n
+
1

0n

0n

π
m
−
n
+
1

Now the key fact is that tπσ,τ = 0 unless σ ≤ π, and tππ0n = 1

⇒ if Dn is ordered with respect to any linear order extending ≤, then
t is a triangular matrix with 1s on its diagonal : t is invertible.

Aα(m− 1)

The decomposition formula

c is characterized by bt = tc, and so
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For π ∈ Dn, Aπ(m) =
∑

α≤π∈Dn

cαπAα(m− 1)

m

π

m− 1

α

∑
α≤π∈Dn

cαπ

Theorem [N. ’09]

The decomposition formula
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For π ∈ Dn, Aπ(m) =
∑

α≤π∈Dn

cαπAα(m− 1)

m

π

m− 1

α

∑
α≤π∈Dn

cαπ

Theorem [N. ’09]

If π = 1n, then cα1n = 1 for any α ∈ Dn.

Conjecture [Thapper]

m
m− 1

This implies

The decomposition formula
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m m− 1

`

2i

2j
2i+ 1

2j + 1

`− 1

Some remarks on the coefficients cαπ : there are of course not the
unique numbers such that the previous theorem holds. But, based
on data for small n, these numbers conjecturally :

• give nice decomposition formulas, for instance :

• verify cαπ = cα∗π∗ and c0α1,0π1 = cαπ.

The decomposition formula
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m m− 1

`

2i

2j
2i+ 1

2j + 1

`− 1

Some remarks on the coefficients cαπ : there are of course not the
unique numbers such that the previous theorem holds. But, based
on data for small n, these numbers conjecturally :

• give nice decomposition formulas, for instance :

• verify cαπ = cα∗π∗ and c0α1,0π1 = cαπ.

Challenge : conjecture a direct combinatorial description of these
coefficients.

The decomposition formula
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The triangle Tn

π

σ τ

0

0

0

0

0 0
0

0

1 1

11 1
1

1
1

1

0
σ1

σ2

σ3

σ4

σ5

σ6 τ1
τ2
τ3
τ4
τ5
τ6

We now study the FPL configurations in the triangle, in short
TFPL configurations. Given the boundary data σ, π, τ , we want
to compute tπσ,τ which is the number of TFPL configurations with
these boundaries.

π1 π2 π3 π4 π5 π6
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The numbers tπσ,τ

Proposition

Proposition

tπσ,τ = tπ
∗

τ∗,σ∗ .

Proposition

tπσ,τ = tπ
∗

τ∗,σ∗ .

∑
σ1∈Dn
σ→σ1

tπσ1,τ =
∑
τ1∈Dn
τ∗→τ∗1

tπσ,τ1 .
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The numbers tπσ,τ

Theorem [CKLN ’04]

tπσ,τ = 0 unless σ ≤ π.

Proposition

Sketch of the proof : the idea is to show that there exist integers
Ni(f) ≥ 0 (with N0(f) = 0) attached to a TFPL configuration f ,
such that if f has boundary data σ, π, τ , then σi − πi = Ni(f) −
Ni−1(f) for all i.

Proposition

tπσ,τ = tπ
∗

τ∗,σ∗ .

Proposition

tπσ,τ = tπ
∗

τ∗,σ∗ .

∑
σ1∈Dn
σ→σ1

tπσ1,τ =
∑
τ1∈Dn
τ∗→τ∗1

tπσ,τ1 .
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Common prefixes and suffixes

Proposition
Let π, σ, τ ∈ Dn, and suppose that there exist words u, σ′, π′, v
such that σ = uσ′v and π = uπ′v. Define a, b by n−a = |u|0+|v|0
and n− b = |u|1 + |v|1.
Then tπσ,τ = 0 unless τ = 0n−aτ ′1n−b for a certain τ ′.

Now we study the case where σ and π have common prefixes and
suffixes.
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Common prefixes and suffixes

Proposition
Let π, σ, τ ∈ Dn, and suppose that there exist words u, σ′, π′, v
such that σ = uσ′v and π = uπ′v. Define a, b by n−a = |u|0+|v|0
and n− b = |u|1 + |v|1.
Then tπσ,τ = 0 unless τ = 0n−aτ ′1n−b for a certain τ ′.

Now we study the case where σ and π have common prefixes and
suffixes.

If in addition π′ = 1b0a, then tπσ,τ is given by the determinant of
a matrix of size a (or b) with entries given by certain binomial
coefficients.

Proposition
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Case where σ and π have common prefix and suffix.

Common prefixes and suffixes
Proof : lots of fixed edges.
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Common prefixes and suffixes
Proof : lots of fixed edges.

And π′ is equal to 1a0b.

Case where σ and π have common prefix and suffix.
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Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

tπσ,τ = 0 unless `(σ) + `(τ) ≤ `(π).
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Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

tπσ,τ = 0 unless `(σ) + `(τ) ≤ `(π).

1

h(π)
=

∑
σ,τ∈Dn

`(σ)+`(τ)=`(π)

tπσ,τ ·
1

2`(σ)h(σ)
· 1

2`(τ)h(τ)

Following his idea, we can say something about the case of
equality :

Proposition For every π ∈ Dn
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Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

tπσ,τ = 0 unless `(σ) + `(τ) ≤ `(π).

1

h(π)
=

∑
σ,τ∈Dn

`(σ)+`(τ)=`(π)

tπσ,τ ·
1

2`(σ)h(σ)
· 1

2`(τ)h(τ)

Following his idea, we can say something about the case of
equality :

Proposition For every π ∈ Dn

Sketch of the proof : remember that Aπ(m) is a polynomial of degree
`(π) and leading coefficient 1/h(π). It can be written as

Choose k = m/2, and compare the coefficients in degrees `(π) and higher
to get the formula.

∑
σ,τ

tπσ,τ · SSY T (σ, n+ k) · SSY T (τ∗,m+ 1− k − 2n).
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Littlewood Richardson coefficients

Let λ, µ, ν be partitions, and Λ(x) be the ring of symmetric func-
tions of the variables x1, x2, . . .. The Schur functions sλ(x) can
be defined as

sλ(x) =
∑
T

xTii ,

where T goes through all semistandard Young tableaux of shape
λ, and Ti is the number of cells labeled i.
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Littlewood Richardson coefficients

Let λ, µ, ν be partitions, and Λ(x) be the ring of symmetric func-
tions of the variables x1, x2, . . .. The Schur functions sλ(x) can
be defined as

sλ(x) =
∑
T

xTii ,

where T goes through all semistandard Young tableaux of shape
λ, and Ti is the number of cells labeled i.

Schur functions form a basis of Λ(x). We can expand sµ(x)sν(x)
on this basis, where the coefficients cλµ,ν are often called the
Littlewood-Richardson (LR) coefficients.

sµ(x)sν(x) =
∑
λ

cλµ,νsλ(x)

Since all terms in sλ have degree `(λ), we get

cλµ,ν = 0 unless `(λ) = `(µ) + `(ν).
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Littlewood Richardson coefficients
These coefficients appear in other places in the theory of symme-
tric functions ; we have for instance :

sλ/µ(x) =
∑
ν

cλµ,νsν(x)

We have also, if sλ(x, y) is the symmetric function sλ in the
variables x1, x2, . . . , y1, y2, . . .

sλ(x, y) =
∑
µ,ν

cλµ,νsµ(x)sν(y)

If we evaluate this at xi = yi = 1 for i = 1, . . . ,m/2, xi = yi = 0
for i > m/2, we obtain polynomials in m which give the following
identity in top degree `(λ) :

1

h(λ)
=
∑
µ,ν

cλµ,ν ·
1

2`(µ)h(µ)
· 1

2`(ν)h(ν)
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Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,

∑
σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that `(σ) + `(τ) = `(π)
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Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,

∑
σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that `(σ) + `(τ) = `(π)

Theorem [N. ’09]

For all words π, σ, τ ∈ Dn verifying `(σ) + `(τ) = `(π),
we have

tπσ,τ = cπσ,τ
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Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,

∑
σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that `(σ) + `(τ) = `(π)

Theorem [N. ’09]

For all words π, σ, τ ∈ Dn verifying `(σ) + `(τ) = `(π),
we have

tπσ,τ = cπσ,τ

Thanks to equation (E), we need only prove that cπσ,τ ≤ tπσ,τ
for all valid σ, τ, π.
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Fix σ, π, τ ∈ Dn, and label the boundary
edges of the triangle.

π = 00110101
σ = 00011011
τ = 00011011

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

σ τ

π
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Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling
of each edge of the triangle by 0, 1 or 2, such that :
• the labels on the boundary is given by σ, π, τ ;
• on each triangle, the induced labeling must be among :

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02

0

0

0

0

1

1

1

1 0

0

0

1

1

1

0 1 1 1 10 0 0

1
0

1
0
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Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling
of each edge of the triangle by 0, 1 or 2, such that :
• the labels on the boundary is given by σ, π, τ ;
• on each triangle, the induced labeling must be among :

We will picture the labeling of
edges as follows :

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02

label 0
label 1
label 2

0

0

0

0

1

1

1

1 0

0

0

1

1

1

0 1 1 1 10 0 0

1
0

1
0
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Theorem [Knutson, Tao ’03][K., T. and Woodward ’03]

Let σ, τ, π ∈ Dn. Then the number of KT-puzzles with boun-
dary data σ, π, τ is equal to the LR coefficient cπσ,τ .

For example, it is easy to see that there is
only one puzzle with the boundary data of
the example.

so cλµ,ν = 1 where

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

λ =

µ =

ν =
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From KT puzzles to TFPL configurations.

We fix σ, π, τ ∈ Dn, such that `(σ) + `(τ) = `(π). We will
define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, τ, π

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02
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From KT puzzles to TFPL configurations.

We fix σ, π, τ ∈ Dn, such that `(σ) + `(τ) = `(π). We will
define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, τ, π

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02
Φ

Φ
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0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

From KT puzzles to TFPL configurations.



40-2

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

From KT puzzles to TFPL configurations.From KT puzzles to TFPL configurations.
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From KT puzzles to TFPL configurations.
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From KT puzzles to TFPL configurations.

The result is a TFPL configuration, with boundary data σ, π, τ .
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From KT puzzles to TFPL configurations.

To finish the proof, one checks that this map Φ is :
– well defined, i.e. Φ(puzzle) is fully packed, and verifies the

boundary data σ, π, τ
– injective ;

The result is a TFPL configuration, with boundary data σ, π, τ .
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`(σ)

`(τ)

Conclusion

`(σ) + `(τ) = `(π)

tπσ,τ for fixed π.

This diagram shows the possible indices for the numbers tπσ,τ when
π is fixed ; in blue are coefficients we managed to compute, and in
red are those involved in the definition of the cαπ.
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