Fully Packed Loop Configurations in a triangle

Philippe Nadeau

Faculty of Mathematics, University of Vienna

Paris, IHP, October 2009

FPL configurations : Definition

Start with the square grid G_n with n^2 vertices and 4n external edges. In the example, we have n = 7.

FPL configurations : Definition

Start with the square grid G_n with n^2 vertices and 4n external edges. In the example, we have n = 7.

A FPL configuration of size n is a subgraph of the grid G_n

(1) containing every other external edge, i.e. contains either all odd edges or all even edges.

FPL configurations : Definition

Start with the square grid G_n with n^2 vertices and 4n external edges. In the example, we have n = 7.

A FPL configuration of size n is a subgraph of the grid G_n

(1) containing every other external edge;

(2) such that around each vertex of G_n , 2 edges out of 4 are selected.

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size \boldsymbol{n}

[ASM = matrix with coefficients in $\{1, 0, -1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1.]

Here $1 \rightarrow \bullet$ and $-1 \rightarrow \bullet$

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n

$$A_n = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

[Zeilberger '96, Kuperberg '96]

Every FPL configuration determines a link pattern on the odd or even external edges of the grid G_n .

Now if we are given a pairing X of odd (or even) external edges, our main question will be : how many FPL configurations respect the link pattern X?

Definition We note A_X the number of FPL configurations which induce the link pattern X.

Now if we are given a pairing X of odd (or even) external edges, our main question will be : how many FPL configurations respect the link pattern X?

Definition We note A_X the number of FPL configurations which induce the link pattern X.

For this link pattern we have $A_X = 2$.

Now given a link pattern X, let X' be defined by

$$(i,j) \in X' \Leftrightarrow (i-1,j-1) \in X$$

Theorem [Wieland '00]

$$A_X = A_{X'}$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

Now given a link pattern X, let X' be defined by

$$(i,j) \in X' \Leftrightarrow (i-1,j-1) \in X$$

Theorem [Wieland '00]

$$A_X = A_{X'}$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

The proof consists in the definition of a bijection W between both sets of configurations.

Now given a link pattern X, let X' be defined by

$$(i,j) \in X' \Leftrightarrow (i-1,j-1) \in X$$

Theorem [Wieland '00]

$$A_X = A_{X'}$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

The proof consists in the definition of a bijection W between both sets of configurations.

For enumeration purposes, we can then use unlabeled link patterns :

Known enumerations for the numbers A_X are

+ certain variants of these.

These results are due to Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler,...

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

 $A_X = \sum_{c_{XX'} \in \mathbb{Z}} c_{XX'} A_{X'} \text{ where } X' \text{ are link patterns of size } n-1.$

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

$$A_X = \sum_{c_{XX'} \in \mathbb{Z}} c_{XX'} A_{X'} \text{ where } X' \text{ are link patterns of size } n-1.$$

Example
$$= \sum_X A_X = A_{n-1}$$

Example

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].

These coefficients are defined with respect to certain FPL configurations in a triangle, and we will focus on enumerating these configurations in certain special cases.

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].

These coefficients are defined with respect to certain FPL configurations in a triangle, and we will focus on enumerating these configurations in certain special cases.

In one such case, we will show that the answer is given by the famous Littlewood-Richardson coefficients.

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $\pi \cup m$

For instance if n = 3, there are 5 possible π :

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $\pi \cup m$

For instance if n = 3, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed), so we write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $\pi \cup m$

For instance if n = 3, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed), so we write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Theorem [Caselli, Krattenthaler, Lass, N. '05]

 $A_{\pi}(m)$ is a polynomial function of m.

We suppose $m \ge 3n - 1$, and choose k such that $0 \le k \le m - (3n - 1)$.

We suppose $m \ge 3n - 1$, and choose k such that $0 \le k \le m - (3n - 1)$.

By Wieland's theorem, the FPL configurations with the pictured link pattern are counted by $A_{\pi}(m)$.

 \Rightarrow " Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

 \Rightarrow " Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

 \Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

 \Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T} , and between \mathcal{R}_2 and \mathcal{T} .

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T} , and between \mathcal{R}_2 and \mathcal{T} .

Word $\sigma = \sigma_1 \dots \sigma_{2n}$ in $\{0,1\}^{2n}$, where $\sigma_i = 0 \Leftrightarrow$ a vertical edge is present

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T} , and between \mathcal{R}_2 and \mathcal{T} .

 π

Word $\tau = \tau_1 \dots \tau_{2n}$ in $\{0,1\}^{2n}$, where $\tau_i = 1 \Leftrightarrow$ a vertical edge is present

 au_6

Putting things together

We can then write, for $m \geq 3n-1$ and $0 \leq k \leq m-(3n-1)$

$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_1(\sigma,k)| \times t_{\sigma,\tau}^{\pi} \times |\mathcal{R}_2(\tau,m-3n-k+1)|$$

where

- σ, τ are words of length 2n on $\{0, 1\}$;
- $\mathcal{R}_1(\sigma, .), \mathcal{R}_2(\tau, .)$ are the sets of FPL configurations in the regions \mathcal{R}_1 and \mathcal{R}_2 with boundaries σ, τ respectively;
- $t_{\sigma,\tau}^{\pi}$ is the number of FPL configurations in the triangle \mathcal{T} with boundary data $\{\sigma, \pi, \tau\}$.

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0, 1\}^p$; we write $|\sigma| := p$. We will identify words and Ferrers shapes in a box.

 $\sigma = 0101011110$ $|\sigma| = 10, |\sigma|_0 = 4, |\sigma|_1 = 6$

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0,1\}^p$; we write $|\sigma| := p$.

We will identify words and Ferrers shapes in a box.

Length $\ell(\sigma) :=$ the number of boxes in the diagram σ .

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0, 1\}^p$; we write $|\sigma| := p$. We will identify words and Ferrers shapes in a box.

Length $\ell(\sigma) :=$ the number of boxes in the diagram σ . Transpose $\sigma^* := (1 - \sigma_p) \cdots (1 - \sigma_2)(1 - \sigma_1)$

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0, 1\}^p$; we write $|\sigma| := p$. We will identify words and Ferrers shapes in a box.

Length $\ell(\sigma)$:= the number of boxes in the diagram σ .

Transpose $\sigma^* := (1 - \sigma_p) \cdots (1 - \sigma_2)(1 - \sigma_1)$

For two words σ, σ' with $|\sigma|_0 = |\sigma'|_0$ and $|\sigma|_1 = |\sigma'|_1$ we define : • $\sigma \leq \sigma'$ if, as shapes, σ is included in σ' .

• $\sigma \rightarrow \sigma'$ if $\sigma \leq \sigma'$, and σ' has at most one more box in each column; σ, σ' form a horizontal strip.
Words and Shapes

Words and Shapes

Definition

A semi standard Young tableau of shape σ and entries bounded by N is a filling of the shape σ by integers in $\{1, \ldots, N\}$ such that entries are strictly increasing in columns and weakly increasing in rows.

Such a tableau can be equivalently defined by a sequence of shapes

$$\emptyset = \sigma_0 \to \sigma_1 \to \ldots \to \sigma_N = \sigma$$

Words and Shapes

Given a box u in a Ferrers diagram, in the *i*th row from the top and *j*th column form the left, we define

• the content
$$c(u) := j - i$$
;

• the hook-length h(u) as the number of boxes below it, or to its right, including the u itself.

18-2

Words and Shapes

Given a box u in a Ferrers diagram, in the *i*th row from the top and *j*th column form the left, we define

- the content c(u) := j i;
- the hook-length h(u) as the number of boxes below it, or to its right, including the u itself.

Theorem [Stanley]

The number of semistandard Young tableaux of shape λ and entries bounded by N is given by

$$SSYT(\lambda, N) = \prod_{u \in \lambda} \frac{N + c(u)}{h(u)}$$

Polynomial of with leading term $\frac{1}{h(\lambda)}N^{\ell(\lambda)}$

Consider the region \mathcal{R}_1 with border σ , and extend it to make it rectangular.

Consider the region \mathcal{R}_1 with border σ , and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_1 , encode each diagonal by a word σ^i on $\{0, 1\}$.

Consider the region \mathcal{R}_1 with border σ , and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_1 , encode each diagonal by a word σ^i on $\{0, 1\}$.

Consider the region \mathcal{R}_1 with border σ , and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_1 , encode each diagonal by a word σ^i on $\{0, 1\}$.

All words σ^i verify $|\sigma^i|_0 = |\sigma^i|_1 = n$.

Regions \mathcal{R}_1 and \mathcal{R}_2 Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^1 , the sequence of shapes $\sigma^0, \sigma^1, \ldots, \sigma^{n+k}$ form a semistandard Young tableau. This is a bijection between $\mathcal{R}_1(\sigma, k)$ and tableaux of shape σ and length n + k.

Regions \mathcal{R}_1 and \mathcal{R}_2 Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^1 , the sequence of shapes $\sigma^0, \sigma^1, \ldots, \sigma^{n+k}$ form a semistandard Young tableau. This is a bijection between $\mathcal{R}_1(\sigma, k)$ and tableaux of shape σ and length n+k.

So
$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_1(\sigma,0)| \cdot t^{\pi}_{\sigma,\tau} \cdot |\mathcal{R}_2(\tau,m-3n+1)|$$

$$= \sum_{\sigma,\tau} SSYT(\sigma,n) \cdot t^{\pi}_{\sigma,\tau} \cdot SSYT(\tau^*,m-2n+1)$$

This shows that if $m \geq 3n-1$, $A_{\pi}(m)$ is a polynomial in m.

Regions \mathcal{R}_1 and \mathcal{R}_2 Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^1 , the sequence of shapes $\sigma^0, \sigma^1, \ldots, \sigma^{n+k}$ form a semistandard Young tableau. This is a bijection between $\mathcal{R}_1(\sigma, k)$ and tableaux of shape σ and length n + k.

So
$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_1(\sigma,0)| \cdot t^{\pi}_{\sigma,\tau} \cdot |\mathcal{R}_2(\tau,m-3n+1)|$$

$$= \sum_{\sigma,\tau} SSYT(\sigma,n) \cdot t^{\pi}_{\sigma,\tau} \cdot SSYT(\tau^*,m-2n+1)$$

This shows that if $m \geq 3n-1$, $A_{\pi}(m)$ is a polynomial in m.

In fact, $A_{\pi}(m)$ is given by the same polynomial for m < 3n - 1 [CKLN '05].

Definition We note \mathcal{D}_n the words w such that $|w|_0 = |w|_1 = n$ and which are smaller than $(01)^n$.

We write $\mathbf{0}_n = 0^n 1^n$, and $\mathbf{1}_n = (01)^n$.

Definition We note \mathcal{D}_n the words w such that $|w|_0 = |w|_1 = n$ and which are smaller than $(01)^n$.

We write $\mathbf{0}_n = 0^n 1^n$, and $\mathbf{1}_n = (01)^n$.

Theorem [CKLN '04]

 $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$. Moreover, $t_{\pi,\mathbf{0}_n}^{\pi} = 1$ and $t_{\pi\tau}^{\pi} = 1$ if $\tau \neq \mathbf{0}_n$.

Definition We note \mathcal{D}_n the words w such that $|w|_0 = |w|_1 = n$ and which are smaller than $(01)^n$.

We write $\mathbf{0}_n = 0^n 1^n$, and $\mathbf{1}_n = (01)^n$.

Theorem [CKLN '04]

 $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$. Moreover, $t_{\pi,\mathbf{0}_n}^{\pi} = 1$ and $t_{\pi\tau}^{\pi} = 1$ if $\tau \neq \mathbf{0}_n$.

Corollary

- The formula for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_n$,
- The polynomial $A_{\pi}(m)$ has leading term $\frac{1}{h(\pi)}t^{\ell(\pi)}$.

We want to write $A_{\pi}(m)$ as a \mathbb{Z} -linear combination of polynomials $A_{\alpha}(m-1)$, where α, π are in \mathcal{D}_n .

We want to write $A_{\pi}(m)$ as a \mathbb{Z} -linear combination of polynomials $A_{\alpha}(m-1)$, where α, π are in \mathcal{D}_n .

Theorem [N. '09] (conjectured in [Thapper '07]).

Let σ, τ, π be elements of \mathcal{D}_n . Then we have the equality :

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

In terms of diagrams, this means precisely that

The proof is an application of Wieland's rotation.

We now define certain matrices endomorphisms $\mathbf{b}, \mathbf{\tilde{b}}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_n .

 $\mathbf{b}_{\sigma\sigma'} := 1$ if $\sigma \to \sigma'$ and 0 otherwise.

We now define certain matrices endomorphisms $\mathbf{b}, \mathbf{b}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_n .

 $\mathbf{b}_{\sigma\sigma'} := 1$ if $\sigma \to \sigma'$ and 0 otherwise.

 $\widetilde{\mathbf{b}}_{\tau\tau'} := 1 \text{ if } \tau'^* \to \tau^* \text{ and } 0 \text{ otherwise.}$

We now define certain matrices endomorphisms $\mathbf{b}, \mathbf{b}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_n .

 $\mathbf{b}_{\sigma\sigma'} := 1 \text{ if } \sigma \to \sigma' \text{ and } 0 \text{ otherwise.}$

 $\widetilde{\mathbf{b}}_{\tau\tau'} := 1 \text{ if } \tau'^* \to \tau^* \text{ and } 0 \text{ otherwise.}$

 t^{π}

 $(\mathbf{t}^{\pi})_{\sigma\tau} := t^{\pi}_{\sigma,\tau}$

We now define certain matrices endomorphisms $\mathbf{b}, \mathbf{b}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_n .

 $\mathbf{b}_{\sigma\sigma'} := 1$ if $\sigma \to \sigma'$ and 0 otherwise.

 $\widetilde{\mathbf{b}}_{\tau\tau'} := 1 \text{ if } \tau'^* \to \tau^* \text{ and } 0 \text{ otherwise.}$

 $(\mathbf{t}^{\pi})_{\sigma\tau} := t^{\pi}_{\sigma,\tau}$

Putting these pieces together we get

$$A_{\pi}(m) = \left(\mathbf{b}^{n}\mathbf{t}^{\pi}\widetilde{\mathbf{b}}^{m-2n+1}\right)_{\mathbf{0}_{n}\mathbf{0}_{n}}$$

Now, the relation

can be written $\mathbf{b}\mathbf{t}^{\pi} = \mathbf{t}^{\pi}\widetilde{\mathbf{b}}$ for all $\pi \in \mathcal{D}_n$.

Now, the relation

can be written $\mathbf{b}\mathbf{t}^{\pi} = \mathbf{t}^{\pi}\mathbf{\widetilde{b}}$ for all $\pi \in \mathcal{D}_n$.

By repeatedly applying this relation in the expression for $A_{\pi}(m)$, we obtain that for all m,

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}^{\pi}\right)_{\mathbf{0}_{n}\mathbf{0}_{n}}$$

Now, the relation

can be written $\mathbf{b}\mathbf{t}^{\pi} = \mathbf{t}^{\pi} \mathbf{\tilde{b}}$ for all $\pi \in \mathcal{D}_n$.

By repeatedly applying this relation in the expression for $A_{\pi}(m)$, we obtain that for all m,

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}^{\pi}\right)_{\mathbf{0}_{n}\mathbf{0}_{n}}$$

Defining $(\mathbf{t})_{\sigma\pi} := t_{\sigma,\mathbf{0}_{n}}^{\pi}$
$$\mathbf{t}$$

we can rewrite this as $A_{\pi}(m) = (\mathbf{b}^{m-n+1}\mathbf{t})_{\mathbf{0}_n\pi}$

Proposition [N. '09]

For $\pi \in \mathcal{D}_n$, and m an integer

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}\right)_{\mathbf{0}_n\pi}$$

Proposition [N. '09]

For $\pi \in \mathcal{D}_n$, and m an integer

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}\right)_{\mathbf{0}_n\pi}$$

Now the key fact is that $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_n}^{\pi} = 1$

 \Rightarrow if \mathcal{D}_n is ordered with respect to any linear order extending \leq , then **t** is a triangular matrix with 1s on its diagonal : **t** is invertible.

Proposition [N. '09]

For $\pi \in \mathcal{D}_n$, and m an integer

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}\right)_{\mathbf{0}_n\pi}$$

Now the key fact is that $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_n}^{\pi} = 1$

 \Rightarrow if \mathcal{D}_n is ordered with respect to any linear order extending \leq , then **t** is a triangular matrix with 1s on its diagonal : **t** is invertible.

Definition [Thapper]

$$\mathbf{c} := \mathbf{t}^{-1} \mathbf{b} \mathbf{t}$$

Proposition [N. '09]

For $\pi \in \mathcal{D}_n$, and m an integer

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}\right)_{\mathbf{0}_n\pi}$$

Now the key fact is that $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_n}^{\pi} = 1$

 \Rightarrow if \mathcal{D}_n is ordered with respect to any linear order extending \leq , then **t** is a triangular matrix with 1s on its diagonal : **t** is invertible.

Definition [Thapper]

$$\mathbf{c} := \mathbf{t}^{-1} \mathbf{b} \mathbf{t}$$

 ${\bf c}$ is characterized by ${\bf bt}={\bf tc},$ and so

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n}\mathbf{b}\mathbf{t}\right)_{\mathbf{0}_{n}\pi} = \left(\mathbf{b}^{m-n}\mathbf{t}\mathbf{c}\right)_{\mathbf{0}_{n}\pi} = \sum_{\alpha\in\mathcal{D}_{n}}\left(\mathbf{b}^{m-n}\mathbf{t}\right)_{\mathbf{0}_{n}\alpha}\mathbf{c}_{\alpha\pi},$$

Proposition [N. '09]

For $\pi \in \mathcal{D}_n$, and m an integer

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n+1}\mathbf{t}\right)_{\mathbf{0}_n\pi}$$

Now the key fact is that $t_{\sigma,\tau}^{\pi} = 0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_n}^{\pi} = 1$

 \Rightarrow if \mathcal{D}_n is ordered with respect to any linear order extending \leq , then **t** is a triangular matrix with 1s on its diagonal : **t** is invertible.

Definition [Thapper]

$$\mathbf{c} := \mathbf{t}^{-1} \mathbf{b} \mathbf{t}$$

$$A_{\alpha}(m-1)$$

 ${\bf c}$ is characterized by ${\bf bt}={\bf tc},$ and so

$$A_{\pi}(m) = \left(\mathbf{b}^{m-n}\mathbf{b}\mathbf{t}\right)_{\mathbf{0}_{n}\pi} = \left(\mathbf{b}^{m-n}\mathbf{t}\mathbf{c}\right)_{\mathbf{0}_{n}\pi} = \sum_{\alpha\in\mathcal{D}_{n}}\left(\mathbf{b}^{m-n}\mathbf{t}\right)_{\mathbf{0}_{n}\alpha}\mathbf{c}_{\alpha\pi},$$

Conjecture [Thapper] If $\pi = \mathbf{1}_n$, then $\mathbf{c}_{\alpha \mathbf{1}_n} = 1$ for any $\alpha \in \mathcal{D}_n$.

This implies

Some remarks on the coefficients $c_{\alpha\pi}$: there are of course not the unique numbers such that the previous theorem holds. But, based on data for small n, these numbers conjecturally :

• give nice decomposition formulas, for instance :

• verify $c_{\alpha\pi} = c_{\alpha^*\pi^*}$ and $c_{0\alpha 1,0\pi 1} = c_{\alpha\pi}$.

Some remarks on the coefficients $c_{\alpha\pi}$: there are of course not the unique numbers such that the previous theorem holds. But, based on data for small n, these numbers conjecturally :

• give nice decomposition formulas, for instance :

• verify $c_{\alpha\pi} = c_{\alpha^*\pi^*}$ and $c_{0\alpha 1,0\pi 1} = c_{\alpha\pi}$.

Challenge : conjecture a direct combinatorial description of these coefficients.

The triangle \mathcal{T}_n

We now study the FPL configurations in the triangle, in short TFPL configurations. Given the boundary data σ, π, τ , we want to compute $t^{\pi}_{\sigma,\tau}$ which is the number of TFPL configurations with these boundaries.

The numbers $t_{\sigma,\tau}^{\pi}$

Proposition

$$t_{\sigma,\tau}^{\pi} = t_{\tau^*,\sigma^*}^{\pi^*}.$$

Proposition

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

The numbers $t_{\sigma,\tau}^{\pi}$

Proposition

$$t_{\sigma,\tau}^{\pi} = t_{\tau^*,\sigma^*}^{\pi^*}.$$

Proposition

$$\sum_{\substack{\sigma_1 \in \mathcal{D}_n \\ \sigma \to \sigma_1}} t_{\sigma_1,\tau}^{\pi} = \sum_{\substack{\tau_1 \in \mathcal{D}_n \\ \tau^* \to \tau_1^*}} t_{\sigma,\tau_1}^{\pi}.$$

Theorem [CKLN '04]

$$t_{\sigma,\tau}^{\pi} = 0$$
 unless $\sigma \leq \pi$.

Sketch of the proof : the idea is to show that there exist integers $N_i(f) \ge 0$ (with $N_0(f) = 0$) attached to a TFPL configuration f, such that if f has boundary data σ, π, τ , then $\sigma_i - \pi_i = N_i(f) - N_{i-1}(f)$ for all i.
Now we study the case where σ and π have common prefixes and suffixes.

Proposition

Let $\pi, \sigma, \tau \in \mathcal{D}_n$, and suppose that there exist words u, σ', π', v such that $\sigma = u\sigma'v$ and $\pi = u\pi'v$. Define a, b by $n-a = |u|_0 + |v|_0$ and $n-b = |u|_1 + |v|_1$. Then $t_{\sigma,\tau}^{\pi} = 0$ unless $\tau = 0^{n-a}\tau' 1^{n-b}$ for a certain τ' .

Now we study the case where σ and π have common prefixes and suffixes.

Proposition

Let $\pi, \sigma, \tau \in \mathcal{D}_n$, and suppose that there exist words u, σ', π', v such that $\sigma = u\sigma'v$ and $\pi = u\pi'v$. Define a, b by $n-a = |u|_0 + |v|_0$ and $n-b = |u|_1 + |v|_1$. Then $t_{\sigma,\tau}^{\pi} = 0$ unless $\tau = 0^{n-a}\tau' 1^{n-b}$ for a certain τ' .

Proposition

If in addition $\pi' = 1^{b}0^{a}$, then $t^{\pi}_{\sigma,\tau}$ is given by the determinant of a matrix of size a (or b) with entries given by certain binomial coefficients.

Proof : lots of fixed edges.

Case where σ and π have common prefix and suffix.

Proof : lots of fixed edges.

Case where σ and π have common prefix and suffix.

And π' is equal to $1^a 0^b$.

Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

 $t_{\sigma,\tau}^{\pi} = 0$ unless $\ell(\sigma) + \ell(\tau) \leq \ell(\pi)$.

Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

$$t^{\pi}_{\sigma,\tau} = 0$$
 unless $\ell(\sigma) + \ell(\tau) \le \ell(\pi)$.

Following his idea, we can say something about the case of equality :

Proposition For every $\pi \in \mathcal{D}_n$

$$\frac{1}{h(\pi)} = \sum_{\substack{\sigma,\tau\in\mathcal{D}_n\\\ell(\sigma)+\ell(\tau)=\ell(\pi)}} t^{\pi}_{\sigma,\tau} \cdot \frac{1}{2^{\ell(\sigma)}h(\sigma)} \cdot \frac{1}{2^{\ell(\tau)}h(\tau)}$$

Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

$$t^{\pi}_{\sigma,\tau} = 0$$
 unless $\ell(\sigma) + \ell(\tau) \le \ell(\pi)$.

Following his idea, we can say something about the case of equality :

Proposition For every $\pi \in \mathcal{D}_n$

$$\frac{1}{h(\pi)} = \sum_{\substack{\sigma,\tau\in\mathcal{D}_n\\\ell(\sigma)+\ell(\tau)=\ell(\pi)}} t^{\pi}_{\sigma,\tau} \cdot \frac{1}{2^{\ell(\sigma)}h(\sigma)} \cdot \frac{1}{2^{\ell(\tau)}h(\tau)}$$

Sketch of the proof : remember that $A_{\pi}(m)$ is a polynomial of degree $\ell(\pi)$ and leading coefficient $1/h(\pi)$. It can be written as

$$\sum t_{\sigma,\tau}^{\pi} \cdot SSYT(\sigma, n+k) \cdot SSYT(\tau^*, m+1-k-2n).$$

Choose ${}^{\sigma}\!\!k^{\tau}\!\!=m/2$, and compare the coefficients in degrees $\ell(\pi)$ and higher to get the formula.

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_1, x_2, \ldots . The Schur functions $s_{\lambda}(x)$ can be defined as

$$s_{\lambda}(x) = \sum_{T} x_i^{T_i},$$

where T goes through all semistandard Young tableaux of shape λ , and T_i is the number of cells labeled i.

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_1, x_2, \ldots . The Schur functions $s_{\lambda}(x)$ can be defined as

$$s_{\lambda}(x) = \sum_{T} x_i^{T_i},$$

where T goes through all semistandard Young tableaux of shape λ , and T_i is the number of cells labeled i.

Schur functions form a basis of $\Lambda(x)$. We can expand $s_{\mu}(x)s_{\nu}(x)$ on this basis, where the coefficients $c_{\mu,\nu}^{\lambda}$ are often called the Littlewood-Richardson (LR) coefficients.

$$s_{\mu}(x)s_{\nu}(x) = \sum_{\lambda} c_{\mu,\nu}^{\lambda} s_{\lambda}(x)$$

Since all terms in s_{λ} have degree $\ell(\lambda)$, we get

$$e_{\mu,\nu}^{\lambda} = 0$$
 unless $\ell(\lambda) = \ell(\mu) + \ell(\nu)$

These coefficients appear in other places in the theory of symmetric functions; we have for instance :

$$s_{\lambda/\mu}(x) = \sum_{\nu} c_{\mu,\nu}^{\lambda} s_{\nu}(x)$$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_1, x_2, \ldots, y_1, y_2, \ldots$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)$$

If we evaluate this at $x_i = y_i = 1$ for i = 1, ..., m/2, $x_i = y_i = 0$ for i > m/2, we obtain polynomials in m which give the following identity in top degree $\ell(\lambda)$:

$$\frac{1}{h(\lambda)} = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} \cdot \frac{1}{2^{\ell(\mu)}h(\mu)} \cdot \frac{1}{2^{\ell(\nu)}h(\nu)}$$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $\ell(\sigma) + \ell(\tau) = \ell(\pi)$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $\ell(\sigma) + \ell(\tau) = \ell(\pi)$

Theorem [N. '09]

For all words $\pi, \sigma, \tau \in \mathcal{D}_n$ verifying $\ell(\sigma) + \ell(\tau) = \ell(\pi)$, we have $t^{\pi} - c^{\pi}$

$$t_{\sigma,\tau}^{\pi} = c_{\sigma,\tau}^{\pi}$$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $\ell(\sigma) + \ell(\tau) = \ell(\pi)$

Theorem [N. '09]

For all words $\pi, \sigma, \tau \in \mathcal{D}_n$ verifying $\ell(\sigma) + \ell(\tau) = \ell(\pi)$, we have $t^{\pi} = \sigma^{\pi}$

$$t_{\sigma,\tau}^{\pi} = c_{\sigma,\tau}^{\pi}$$

Thanks to equation (E), we need only prove that $c_{\sigma,\tau}^{\pi} \leq t_{\sigma,\tau}^{\pi}$ for all valid σ, τ, π .

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Fix $\sigma, \pi, \tau \in \mathcal{D}_n$, and label the boundary edges of the triangle.

 $\pi = 00110101$ $\sigma = 00011011$ $\tau = 00011011$

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0, 1 or 2, such that :

- the labels on the boundary is given by σ, π, τ ;
- on each triangle, the induced labeling must be among :

Definition

- A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0, 1 or 2, such that :
- the labels on the boundary is given by σ, π, τ ;
- on each triangle, the induced labeling must be among :

 label 0
 label 1
 label 2

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_n$. Then the number of KT-puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma,\tau}^{\pi}$.

For example, it is easy to see that there is only one puzzle with the boundary data of the example.

We fix $\sigma, \pi, \tau \in \mathcal{D}_n$, such that $\ell(\sigma) + \ell(\tau) = \ell(\pi)$. We will define a map Φ .

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, τ, π The map is local : it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

We fix $\sigma, \pi, \tau \in \mathcal{D}_n$, such that $\ell(\sigma) + \ell(\tau) = \ell(\pi)$. We will define a map Φ .

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, τ, π

The map is local : it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

The result is a TFPL configuration, with boundary data σ, π, τ .

The result is a TFPL configuration, with boundary data σ, π, τ .

To finish the proof, one checks that this map Φ is :

- well defined, i.e. $\Phi(puzzle)$ is fully packed, and verifies the boundary data σ,π,τ
- injective;

Conclusion

This diagram shows the possible indices for the numbers $t_{\sigma,\tau}^{\pi}$ when π is fixed; in blue are coefficients we managed to compute, and in red are those involved in the definition of the $c_{\alpha\pi}$.

