Fully Packed Loop Configurations in a triangle

Philippe Nadeau

Faculty of Mathematics, University of Vienna

Paris, IHP, October 2009

FPL configurations : Definition

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges.In the example, we have $n=7$.

FPL configurations : Definition

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges.In the example, we have $n=7$.

A FPL configuration of size n is a subgraph of the grid G_{n}
(1) containing every other external edge,i.e. contains either all odd edges or all even edges.

FPL configurations: Definition

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges.In the example, we have $n=7$.

A FPL configuration of size n is a subgraph of the grid G_{n}
(1) containing every other external edge ;
(2) such that around each vertex of G_{n}, 2 edges out of 4 are selected.

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary \downarrow
Alternating sign matrices of size n
[ASM = matrix with coefficients in $\{1,0,-1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1.]

Here $1 \rightarrow 0$ and $-1 \longrightarrow 0$

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary \downarrow
Alternating sign matrices of size n

$$
A_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!}
$$

[Zeilberger '96, Kuperberg '96]

FPL configurations: Refined enumeration

Every FPL configuration determines a link pattern on the odd or even external edges of the grid G_{n}.

FPL configurations: Refined enumeration

Now if we are given a pairing X of odd (or even) external edges, our main question will be : how many FPL configurations respect the link pattern X ?

Definition We note A_{X} the number of FPL configurations which induce the link pattern X.

FPL configurations : Refined enumeration

Now if we are given a pairing X of odd (or even) external edges, our main question will be : how many FPL configurations respect the link pattern X ?

Definition We note A_{X} the number of FPL configurations which induce the link pattern X.

For this link pattern we have $A_{X}=2$.

FPL configurations: Refined enumeration

Now given a link pattern X, let X^{\prime} be defined by

$$
(i, j) \in X^{\prime} \Leftrightarrow(i-1, j-1) \in X
$$

Theorem [Wieland '00]

$$
A_{X}=A_{X^{\prime}}
$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

FPL configurations: Refined enumeration

Now given a link pattern X, let X^{\prime} be defined by

$$
(i, j) \in X^{\prime} \Leftrightarrow(i-1, j-1) \in X
$$

Theorem [Wieland '00]

$$
A_{X}=A_{X^{\prime}}
$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.
The proof consists in the definition of a bijec-
tion W between both sets of configurations.

FPL configurations: Refined enumeration

Now given a link pattern X, let X^{\prime} be defined by

$$
(i, j) \in X^{\prime} \Leftrightarrow(i-1, j-1) \in X
$$

Theorem [Wieland '00]

$$
A_{X}=A_{X^{\prime}}
$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

For enumeration purposes, we can then use unlabeled link patterns :

Outline of the talk

Known enumerations for the numbers A_{X} are

二 Complicated determinant formulas

+ certain variants of these.
These results are due to Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler,...

Outline of the talk

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form
$A_{X}=\sum_{c_{X X^{\prime}} \in \mathbb{Z}} c_{X X^{\prime}} A_{X^{\prime}}$ where X^{\prime} are link patterns of size $n-1$.

Outline of the talk

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form
$A_{X}=\sum c_{X X^{\prime}} A_{X^{\prime}}$ where X^{\prime} are link patterns of size $n-1$.
Example

Outline of the talk

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form
$A_{X}=\sum c_{X X^{\prime}} A_{X^{\prime}}$ where X^{\prime} are link patterns of size $n-1$. $c_{X X^{\prime}} \in \mathbb{Z}$

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].

Outline of the talk

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form
$A_{X}=\sum c_{X X^{\prime}} A_{X^{\prime}}$ where X^{\prime} are link patterns of size $n-1$.
Example

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].
These coefficients are defined with respect to certain FPL configurations in a triangle, and we will focus on enumerating these configurations in certain special cases.

Outline of the talk

For a given link pattern X of size n, there exist numerous instances in [Zuber '04] of conjectured identities of the form

We will exhibit such coefficients, which appear when considering link patterns with nested arches. This is a continuation of the work of [Thapper '07].
These coefficients are defined with respect to certain FPL configurations in a triangle, and we will focus on enumerating these configurations in certain special cases.
In one such case, we will show that the answer is given by the famous Littlewood-Richardson coefficients.

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

For instance if $n=3$, there are 5 possible π :

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

For instance if $n=3$, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed), so we write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

For instance if $n=3$, there are 5 possible π :

We consider such link patterns as functions of m (π being fixed), so we write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Theorem [Caselli,Krattenthaler,Lass, N. '05]
$A_{\pi}(m)$ is a polynomial function of m.

We suppose $m \geq 3 n-1$, and choose k such that $0 \leq k \leq m-(3 n-1)$.

We suppose $m \geq 3 n-1$, and choose k such that $0 \leq k \leq m-(3 n-1)$.

Many edges of the grid belong to every FPL configuration respecting the link pattern.

\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow " Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

Word $\sigma=\sigma_{1} \ldots \sigma_{2 n}$ in $\{0,1\}^{2 n}$, where $\sigma_{i}=0 \Leftrightarrow$ a vertical edge is present

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

Word $\tau=\tau_{1} \ldots \tau_{2 n}$ in $\{0,1\}^{2 n}$, where

Putting things together

We can then write, for $m \geq 3 n-1$ and $0 \leq k \leq m-(3 n-1)$

$$
A_{\pi}(m)=\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, k)\right| \times t_{\sigma, \tau}^{\pi} \times\left|\mathcal{R}_{2}(\tau, m-3 n-k+1)\right|
$$

where

- σ, τ are words of length $2 n$ on $\{0,1\}$;
- $\mathcal{R}_{1}(\sigma,),. \mathcal{R}_{2}(\tau,$.$) are the sets of FPL confi-$ gurations in the regions \mathcal{R}_{1} and \mathcal{R}_{2} with boundaries σ, τ respectively;
- $t_{\sigma, \tau}^{\pi}$ is the number of FPL configurations in the triangle \mathcal{T} with boundary data $\{\sigma, \pi, \tau\}$.

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.
We will identify words and Ferrers shapes in a box.

$$
\begin{aligned}
& \sigma=0101011110 \\
& |\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
\end{aligned}
$$

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.
We will identify words and Ferrers shapes in a box.

$$
\begin{aligned}
& \sigma=0101011110 \\
& |\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
\end{aligned}
$$

Length $\ell(\sigma):=$ the number of boxes in the diagram σ.

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.
We will identify words and Ferrers shapes in a box.

$$
\begin{aligned}
& \sigma=0101011110 \\
& |\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
\end{aligned}
$$

Length $\ell(\sigma):=$ the number of boxes in the diagram σ.
Transpose $\sigma^{*}:=\left(1-\sigma_{p}\right) \cdots\left(1-\sigma_{2}\right)\left(1-\sigma_{1}\right)$

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.
We will identify words and Ferrers shapes in a box.

$$
\begin{aligned}
& \sigma=0101011110 \\
& |\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
\end{aligned}
$$

Length $\ell(\sigma):=$ the number of boxes in the diagram σ.
Transpose $\sigma^{*}:=\left(1-\sigma_{p}\right) \cdots\left(1-\sigma_{2}\right)\left(1-\sigma_{1}\right)$
For two words σ, σ^{\prime} with $|\sigma|_{0}=\left|\sigma^{\prime}\right|_{0}$ and $|\sigma|_{1}=\left|\sigma^{\prime}\right|_{1}$ we define:

- $\sigma \leq \sigma^{\prime}$ if, as shapes, σ is included in σ^{\prime}.
- $\sigma \rightarrow \sigma^{\prime}$ if $\sigma \leq \sigma^{\prime}$, and σ^{\prime} has at most one more box in each column ; σ, σ^{\prime} form a horizontal strip.

Words and Shapes

Words and Shapes

Definition

A semi standard Young tableau of shape σ and entries bounded by N is a filling of the shape σ by integers in $\{1, \ldots, N\}$ such that entries are strictly increasing in columns and weakly increasing in rows.

Such a tableau can be equivalently defined by a sequence of shapes

$$
\emptyset=\sigma_{0} \rightarrow \sigma_{1} \rightarrow \ldots \rightarrow \sigma_{N}=\sigma
$$

Words and Shapes

Given a box u in a Ferrers diagram, in the i th row from the top and j th column form the left, we define

- the content $c(u):=j-i$;

0	1	2
-1	0	

- the hook-length $h(u)$ as the number of boxes below it, or to its right, including the u itself.

Words and Shapes

Given a box u in a Ferrers diagram, in the i th row from the top and j th column form the left, we define

- the content $c(u):=j-i$;

0	1	2
-1	0	

- the hook-length $h(u)$ as the number of boxes below it, or to its right, including the u itself.

Theorem [Stanley]

The number of semistandard Young tableaux of shape λ and entries bounded by N is given by

$$
S S Y T(\lambda, N)=\prod_{u \in \lambda} \frac{N+c(u)}{h(u)}
$$

Polynomial of with leading term $\frac{1}{h(\lambda)} N^{\ell(\lambda)}$

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Consider the region \mathcal{R}_{1} with border σ, and extend it to make it rectangular.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Consider the region \mathcal{R}_{1} with border σ, and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_{1}, encode each diagonal by a word σ^{i} on $\{0,1\}$.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Consider the region \mathcal{R}_{1} with border σ, and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_{1}, encode each diagonal by a word σ^{i} on $\{0,1\}$.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Consider the region \mathcal{R}_{1} with border σ, and extend it to make it rectangular.

Given the restriction of a FPL configuration in \mathcal{R}_{1}, encode each diagonal by a word σ^{i} on $\{0,1\}$.

All words σ^{i} verify $\left|\sigma^{i}\right|_{0}=\left|\sigma^{i}\right|_{1}=n$.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^{1}, the sequence of shapes $\sigma^{0}, \sigma^{1}, \ldots, \sigma^{n+k}$ form a semistandard Young tableau.
This is a bijection between $\mathcal{R}_{1}(\sigma, k)$ and tableaux of shape σ and length $n+k$.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^{1}, the sequence of shapes $\sigma^{0}, \sigma^{1}, \ldots, \sigma^{n+k}$ form a semistandard Young tableau.
This is a bijection between $\mathcal{R}_{1}(\sigma, k)$ and tableaux of shape σ and length $n+k$.

So $\quad A_{\pi}(m)=\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, 0)\right| \cdot t_{\sigma, \tau}^{\pi} \cdot\left|\mathcal{R}_{2}(\tau, m-3 n+1)\right|$

$$
=\sum_{\sigma, \tau} S S Y T(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot S S Y T\left(\tau^{*}, m-2 n+1\right)
$$

This shows that if $m \geq 3 n-1, A_{\pi}(m)$ is a polynomial in m.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [CKLN '05]

For any FPL configuration in \mathcal{R}^{1}, the sequence of shapes $\sigma^{0}, \sigma^{1}, \ldots, \sigma^{n+k}$ form a semistandard Young tableau.
This is a bijection between $\mathcal{R}_{1}(\sigma, k)$ and tableaux of shape σ and length $n+k$.

So $\quad A_{\pi}(m)=\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, 0)\right| \cdot t_{\sigma, \tau}^{\pi} \cdot\left|\mathcal{R}_{2}(\tau, m-3 n+1)\right|$

$$
=\sum_{\sigma, \tau} S S Y T(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot S S Y T\left(\tau^{*}, m-2 n+1\right)
$$

This shows that if $m \geq 3 n-1, A_{\pi}(m)$ is a polynomial in m.
In fact, $A_{\pi}(m)$ is given by the same polynomial for $m<3 n-1$ [CKLN '05].

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Definition We note \mathcal{D}_{n} the words w such that $|w|_{0}=|w|_{1}=n$ and which are smaller than $(01)^{n}$.
We write $\mathbf{0}_{n}=0^{n} 1^{n}$, and $\mathbf{1}_{n}=(01)^{n}$.

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Definition We note \mathcal{D}_{n} the words w such that $|w|_{0}=|w|_{1}=n$ and which are smaller than $(01)^{n}$.
We write $\mathbf{0}_{n}=0^{n} 1^{n}$, and $\mathbf{1}_{n}=(01)^{n}$.

Theorem [CKLN '04]

$t_{\sigma, \tau}^{\pi}=0$ unless $\sigma \leq \pi$. Moreover, $t_{\pi, \mathbf{o}_{n}}^{\pi}=1$ and $t_{\pi \tau}^{\pi}=1$ if $\tau \neq \mathbf{0}_{n}$.

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Definition We note \mathcal{D}_{n} the words w such that $|w|_{0}=|w|_{1}=n$ and which are smaller than $(01)^{n}$.

We write $\mathbf{0}_{n}=0^{n} 1^{n}$, and $\mathbf{1}_{n}=(01)^{n}$.

Theorem [CKLN '04]

$$
t_{\sigma, \tau}^{\pi}=0 \text { unless } \sigma \leq \pi . \text { Moreover, } t_{\pi, \mathbf{o}_{n}}^{\pi}=1 \text { and } t_{\pi \tau}^{\pi}=1 \text { if } \tau \neq \mathbf{0}_{n}
$$

Corollary

- The formula for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_{n}$,
- The polynomial $A_{\pi}(m)$ has leading term $\frac{1}{h(\pi)} t^{\ell(\pi)}$.

The decomposition formula

We want to write $A_{\pi}(m)$ as a \mathbb{Z}-linear combination of polynomials $A_{\alpha}(m-1)$, where α, π are in \mathcal{D}_{n}.

The decomposition formula

We want to write $A_{\pi}(m)$ as a \mathbb{Z}-linear combination of polynomials $A_{\alpha}(m-1)$, where α, π are in \mathcal{D}_{n}.

Theorem [N. '09] (conjectured in [Thapper '07]).
Let σ, τ, π be elements of \mathcal{D}_{n}. Then we have the equality :

$$
\sum_{\substack{\sigma_{1} \in \mathcal{D}_{n} \\ \sigma \rightarrow \sigma_{1}}} t_{\sigma_{1}, \tau}^{\pi}=\sum_{\substack{\tau_{1} \in \mathcal{D}_{n} \\ \tau^{*} \rightarrow \tau_{1}^{*}}} t_{\sigma, \tau_{1}}^{\pi}
$$

In terms of diagrams, this means precisely that

The proof is an application of Wieland's rotation.

The decomposition formula

We now define certain matrices endomorphisms $\mathbf{b}, \widetilde{\mathbf{b}}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_{n}.
$\mathbf{b}_{\sigma \sigma^{\prime}}:=1$ if $\sigma \rightarrow \sigma^{\prime}$ and 0 otherwise.

The decomposition formula

We now define certain matrices endomorphisms $\mathbf{b}, \widetilde{\mathbf{b}}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_{n}.
$\mathbf{b}_{\sigma \sigma^{\prime}}:=1$ if $\sigma \rightarrow \sigma^{\prime}$ and 0 otherwise.
$\widetilde{\mathbf{b}}_{\tau \tau^{\prime}}:=1$ if $\tau^{* *} \rightarrow \tau^{*}$ and 0 otherwise.

The decomposition formula

We now define certain matrices endomorphisms $\mathbf{b}, \widetilde{\mathbf{b}}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_{n}.
$\mathbf{b}_{\sigma \sigma^{\prime}}:=1$ if $\sigma \rightarrow \sigma^{\prime}$ and 0 otherwise.
$\widetilde{\mathbf{b}}_{\tau \tau^{\prime}}:=1$ if $\tau^{\prime *} \rightarrow \tau^{*}$ and 0 otherwise.
$\left(\mathbf{t}^{\pi}\right)_{\sigma \tau}:=t_{\sigma, \tau}^{\pi}$

The decomposition formula
We now define certain matrices endomorphisms $\mathbf{b}, \widetilde{\mathbf{b}}, \mathbf{t}^{\pi}$ acting on the complex vector space with distinguished basis \mathcal{D}_{n}.
$\mathbf{b}_{\sigma \sigma^{\prime}}:=1$ if $\sigma \rightarrow \sigma^{\prime}$ and 0 otherwise.
$\widetilde{\mathbf{b}}_{\tau \tau^{\prime}}:=1$ if $\tau^{\prime *} \rightarrow \tau^{*}$ and 0 otherwise.

$$
\left(\mathbf{t}^{\pi}\right)_{\sigma \tau}:=t_{\sigma, \tau}^{\pi}
$$

Putting these pieces together we get

$$
A_{\pi}(m)=\left(\mathbf{b}^{n} \mathbf{t}^{\pi} \widetilde{\mathbf{b}}^{m-2 n+1}\right)_{\mathbf{0}_{n} \mathbf{0}_{n}}
$$

The decomposition formula

Now, the relation

can be written $\mathbf{b t}^{\pi}=\mathbf{t}^{\pi} \widetilde{\mathbf{b}}$ for all $\pi \in \mathcal{D}_{n}$.

The decomposition formula

Now, the relation

can be written $\mathbf{b t}^{\pi}=\mathbf{t}^{\pi} \widetilde{\mathbf{b}}$ for all $\pi \in \mathcal{D}_{n}$.
By repeatedly applying this relation in the expression for $A_{\pi}(m)$, we obtain that for all m,

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}^{\pi}\right)_{\mathbf{0}_{n} \mathbf{0}_{n}}
$$

The decomposition formula

Now, the relation

can be written $\mathbf{b t}^{\pi}=\mathbf{t}^{\pi} \widetilde{\mathbf{b}}$ for all $\pi \in \mathcal{D}_{n}$.
By repeatedly applying this relation in the expression for $A_{\pi}(m)$, we obtain that for all m,

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}^{\pi}\right)_{\mathbf{o}_{n} \mathbf{0}_{n}}
$$

Defining $(\mathbf{t})_{\sigma \pi}:=t_{\sigma, \mathbf{0}_{n}}^{\pi}$

we can rewrite this as $A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{0}_{n} \pi}$

The decomposition formula

Proposition [N. '09]

For $\pi \in \mathcal{D}_{n}$, and m an integer

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{0}_{n} \pi}
$$

The decomposition formula

Proposition [N. '09]
For $\pi \in \mathcal{D}_{n}$, and m an integer

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{0}_{n} \pi}
$$

Now the key fact is that $t_{\sigma, \tau}^{\pi}=0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_{n}}^{\pi}=1$
\Rightarrow if \mathcal{D}_{n} is ordered with respect to any linear order extending \leq, then \mathbf{t} is a triangular matrix with 1s on its diagonal : \mathbf{t} is invertible.

The decomposition formula

Proposition [N. '09]

For $\pi \in \mathcal{D}_{n}$, and m an integer

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{0}_{n} \pi}
$$

Now the key fact is that $t_{\sigma, \tau}^{\pi}=0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_{n}}^{\pi}=1$
\Rightarrow if \mathcal{D}_{n} is ordered with respect to any linear order extending \leq, then \mathbf{t} is a triangular matrix with 1s on its diagonal : \mathbf{t} is invertible.

Definition [Thapper]

$$
\mathbf{c}:=\mathbf{t}^{-1} \mathbf{b t}
$$

The decomposition formula

Proposition [N. '09]

For $\pi \in \mathcal{D}_{n}$, and m an integer

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{o}_{n} \pi}
$$

Now the key fact is that $t_{\sigma, \tau}^{\pi}=0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{o}_{n}}^{\pi}=1$
\Rightarrow if \mathcal{D}_{n} is ordered with respect to any linear order extending \leq, then \mathbf{t} is a triangular matrix with 1 s on its diagonal : \mathbf{t} is invertible. Definition [Thapper]

$$
\mathbf{c}:=\mathbf{t}^{-1} \mathbf{b t}
$$

\mathbf{c} is characterized by $\mathbf{b t}=\mathbf{t c}$, and so

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n} \mathbf{b} \mathbf{t}\right)_{\mathbf{o}_{n} \pi}=\left(\mathbf{b}^{m-n} \mathbf{t c}\right)_{\mathbf{o}_{n} \pi}=\sum_{\alpha \in \mathcal{D}_{n}}\left(\mathbf{b}^{m-n} \mathbf{t}\right)_{\mathbf{o}_{n} \alpha} \mathbf{c}_{\alpha \pi}
$$

The decomposition formula

Proposition [N. '09]

For $\pi \in \mathcal{D}_{n}$, and m an integer

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n+1} \mathbf{t}\right)_{\mathbf{o}_{n} \pi}
$$

Now the key fact is that $t_{\sigma, \tau}^{\pi}=0$ unless $\sigma \leq \pi$, and $t_{\pi \mathbf{0}_{n}}^{\pi}=1$
\Rightarrow if \mathcal{D}_{n} is ordered with respect to any linear order extending \leq, then \mathbf{t} is a triangular matrix with 1 s on its diagonal : \mathbf{t} is invertible. Definition [Thapper]

$$
\mathbf{c}:=\mathbf{t}^{-1} \mathbf{b t}
$$

\mathbf{c} is characterized by $\mathbf{b t}=\mathbf{t c}$, and so

$$
\begin{aligned}
& A_{\alpha}(m-1) \\
& \quad / /
\end{aligned}
$$

$$
A_{\pi}(m)=\left(\mathbf{b}^{m-n} \mathbf{b} \mathbf{t}\right)_{\mathbf{o}_{n} \pi}=\left(\mathbf{b}^{m-n} \mathbf{t c}\right)_{\mathbf{o}_{n} \pi}=\sum_{\alpha \in \mathcal{D}_{n}}\left(\mathbf{b}^{m-n} \mathbf{t}\right)_{\mathbf{o}_{n} \alpha} \mathbf{c}_{\alpha \pi}
$$

The decomposition formula

Theorem [$\mathrm{N} .{ }^{\text {' } 09]}$
For $\pi \in \mathcal{D}_{n}, A_{\pi}(m)=\sum_{\alpha \leq \pi \in \mathcal{D}_{n}} \mathbf{c}_{\alpha \pi} A_{\alpha}(m-1)$

The decomposition formula
Theorem [$\mathrm{N} .{ }^{\text {' } 09]}$
For $\pi \in \mathcal{D}_{n}, A_{\pi}(m)=\sum_{\alpha \leq \pi \in \mathcal{D}_{n}} \mathbf{c}_{\alpha \pi} A_{\alpha}(m-1)$

Conjecture [Thapper]
If $\pi=\mathbf{1}_{n}$, then $\mathbf{c}_{\alpha 1_{n}}=1$ for any $\alpha \in \mathcal{D}_{n}$.

This implies

The decomposition formula

Some remarks on the coefficients $c_{\alpha \pi}$: there are of course not the unique numbers such that the previous theorem holds. But, based on data for small n, these numbers conjecturally :

- give nice decomposition formulas, for instance :

- verify $c_{\alpha \pi}=c_{\alpha^{*} \pi^{*}}$ and $c_{0 \alpha 1,0 \pi 1}=c_{\alpha \pi}$.

The decomposition formula

Some remarks on the coefficients $c_{\alpha \pi}$: there are of course not the unique numbers such that the previous theorem holds. But, based on data for small n, these numbers conjecturally :

- give nice decomposition formulas, for instance :

- verify $c_{\alpha \pi}=c_{\alpha^{*} \pi^{*}}$ and $c_{0 \alpha 1,0 \pi 1}=c_{\alpha \pi}$.

Challenge : conjecture a direct combinatorial description of these coefficients.

The triangle \mathcal{T}_{n}

We now study the FPL configurations in the triangle, in short TFPL configurations. Given the boundary data σ, π, τ, we want to compute $t_{\sigma, \tau}^{\pi}$ which is the number of TFPL configurations with these boundaries.

The numbers $t_{\sigma, \tau}^{\pi}$

Proposition

$$
t_{\sigma, \tau}^{\pi}=t_{\tau^{*}, \sigma^{*}}^{\pi^{*}}
$$

Proposition

$$
\sum_{\substack{\sigma_{1} \in \mathcal{D}_{n} \\ \sigma \rightarrow \sigma_{1}}} t_{\sigma_{1}, \tau}^{\pi}=\sum_{\substack{\tau_{1} \in \mathcal{D}_{n} \\ \tau^{*} \rightarrow \tau_{1}^{*}}} t_{\sigma, \tau_{1}}^{\pi}
$$

The numbers $t_{\sigma, \tau}^{\pi}$

Proposition

$$
t_{\sigma, \tau}^{\pi}=t_{\tau^{*}, \sigma^{*}}^{\pi^{*}}
$$

Proposition

$$
\sum_{\substack{\sigma_{1} \in \mathcal{D}_{n} \\ \sigma \rightarrow \sigma_{1}}} t_{\sigma_{1}, \tau}^{\pi}=\sum_{\substack{\tau_{1} \in \mathcal{D}_{n} \\ \tau^{*} \rightarrow \tau_{1}^{*}}} t_{\sigma, \tau_{1}}^{\pi}
$$

Theorem [CKLN '04]

$$
t_{\sigma, \tau}^{\pi}=0 \text { unless } \sigma \leq \pi
$$

Sketch of the proof: the idea is to show that there exist integers $N_{i}(f) \geq 0$ (with $N_{0}(f)=0$) attached to a TFPL configuration f, such that if f has boundary data σ, π, τ, then $\sigma_{i}-\pi_{i}=N_{i}(f)-$ $N_{i-1}(f)$ for all i.

Common prefixes and suffixes

Now we study the case where σ and π have common prefixes and suffixes.

Proposition

Let $\pi, \sigma, \tau \in \mathcal{D}_{n}$, and suppose that there exist words $u, \sigma^{\prime}, \pi^{\prime}, v$ such that $\sigma=u \sigma^{\prime} v$ and $\pi=u \pi^{\prime} v$. Define a, b by $n-a=|u|_{0}+|v|_{0}$ and $n-b=|u|_{1}+|v|_{1}$. Then $t_{\sigma, \tau}^{\pi}=0$ unless $\tau=0^{n-a} \tau^{\prime} 1^{n-b}$ for a certain τ^{\prime}.

Common prefixes and suffixes

Now we study the case where σ and π have common prefixes and suffixes.

Proposition

Let $\pi, \sigma, \tau \in \mathcal{D}_{n}$, and suppose that there exist words $u, \sigma^{\prime}, \pi^{\prime}, v$ such that $\sigma=u \sigma^{\prime} v$ and $\pi=u \pi^{\prime} v$. Define a, b by $n-a=|u|_{0}+|v|_{0}$ and $n-b=|u|_{1}+|v|_{1}$. Then $t_{\sigma, \tau}^{\pi}=0$ unless $\tau=0^{n-a} \tau^{\prime} 1^{n-b}$ for a certain τ^{\prime}.

Proposition

If in addition $\pi^{\prime}=1^{b} 0^{a}$, then $t_{\sigma, \tau}^{\pi}$ is given by the determinant of a matrix of size a (or b) with entries given by certain binomial coefficients.

Common prefixes and suffixes

Proof: lots of fixed edges.
Case where σ and π have common prefix and suffix.

Common prefixes and suffixes

Proof: lots of fixed edges.
Case where σ and π have common prefix and suffix.
And π^{\prime} is equal to $1^{a} 0^{b}$.

Triangles and Littlewood-Richardson coefficients
Thapper proved the following :

$$
t_{\sigma, \tau}^{\pi}=0 \text { unless } \ell(\sigma)+\ell(\tau) \leq \ell(\pi)
$$

Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

$$
t_{\sigma, \tau}^{\pi}=0 \text { unless } \ell(\sigma)+\ell(\tau) \leq \ell(\pi)
$$

Following his idea, we can say something about the case of equality :
Proposition For every $\pi \in \mathcal{D}_{n}$

$$
\frac{1}{h(\pi)}=\sum_{\substack{\sigma, \tau \in \mathcal{D}_{n} \\ \ell(\sigma)+\ell(\tau)=\ell(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{\ell(\sigma)} h(\sigma)} \cdot \frac{1}{2^{\ell(\tau)} h(\tau)}
$$

Triangles and Littlewood-Richardson coefficients

Thapper proved the following :

$$
t_{\sigma, \tau}^{\pi}=0 \text { unless } \ell(\sigma)+\ell(\tau) \leq \ell(\pi)
$$

Following his idea, we can say something about the case of equality :
Proposition For every $\pi \in \mathcal{D}_{n}$

$$
\frac{1}{h(\pi)}=\sum_{\substack{\sigma, \tau \in \mathcal{D}_{n} \\ \ell(\sigma)+\ell(\tau)=\ell(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{\ell(\sigma)} h(\sigma)} \cdot \frac{1}{2^{\ell(\tau)} h(\tau)}
$$

Sketch of the proof: remember that $A_{\pi}(m)$ is a polynomial of degree $\ell(\pi)$ and leading coefficient $1 / h(\pi)$. It can be written as

$$
\sum t_{\sigma, \tau}^{\pi} \cdot S S Y T(\sigma, n+k) \cdot S S Y T\left(\tau^{*}, m+1-k-2 n\right)
$$

Choose ${ }^{\sigma}{ }_{k} \tau=m / 2$, and compare the coefficients in degrees $\ell(\pi)$ and higher to get the formula.

Littlewood Richardson coefficients

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_{1}, x_{2}, \ldots The Schur functions $s_{\lambda}(x)$ can be defined as

$$
s_{\lambda}(x)=\sum_{T} x_{i}^{T_{i}}
$$

where T goes through all semistandard Young tableaux of shape λ, and T_{i} is the number of cells labeled i.

Littlewood Richardson coefficients

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_{1}, x_{2}, \ldots The Schur functions $s_{\lambda}(x)$ can be defined as

$$
s_{\lambda}(x)=\sum_{T} x_{i}^{T_{i}}
$$

where T goes through all semistandard Young tableaux of shape λ, and T_{i} is the number of cells labeled i.

Schur functions form a basis of $\Lambda(x)$. We can expand $s_{\mu}(x) s_{\nu}(x)$ on this basis, where the coefficients $c_{\mu, \nu}^{\lambda}$ are often called the Littlewood-Richardson (LR) coefficients.

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}(x)
$$

Since all terms in s_{λ} have degree $\ell(\lambda)$, we get

$$
c_{\mu, \nu}^{\lambda}=0 \text { unless } \ell(\lambda)=\ell(\mu)+\ell(\nu)
$$

Littlewood Richardson coefficients

These coefficients appear in other places in the theory of symmetric functions; we have for instance :

$$
s_{\lambda / \mu}(x)=\sum_{\nu} c_{\mu, \nu}^{\lambda} s_{\nu}(x)
$$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$

$$
s_{\lambda}(x, y)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)
$$

If we evaluate this at $x_{i}=y_{i}=1$ for $i=1, \ldots, m / 2, x_{i}=y_{i}=0$ for $i>m / 2$, we obtain polynomials in m which give the following identity in top degree $\ell(\lambda)$:

$$
\frac{1}{h(\lambda)}=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} \cdot \frac{1}{2^{\ell(\mu)} h(\mu)} \cdot \frac{1}{2^{\ell(\nu)} h(\nu)}
$$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $\ell(\sigma)+\ell(\tau)=\ell(\pi)$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $\ell(\sigma)+\ell(\tau)=\ell(\pi)$
Theorem [N. '09]
For all words $\pi, \sigma, \tau \in \mathcal{D}_{n}$ verifying $\ell(\sigma)+\ell(\tau)=\ell(\pi)$, we have

$$
t_{\sigma, \tau}^{\pi}=c_{\sigma, \tau}^{\pi}
$$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $\ell(\sigma)+\ell(\tau)=\ell(\pi)$
Theorem [N. '09]
For all words $\pi, \sigma, \tau \in \mathcal{D}_{n}$ verifying $\ell(\sigma)+\ell(\tau)=\ell(\pi)$, we have

$$
t_{\sigma, \tau}^{\pi}=c_{\sigma, \tau}^{\pi}
$$

Thanks to equation (E), we need only prove that $c_{\sigma, \tau}^{\pi} \leq t_{\sigma, \tau}^{\pi}$ for all valid σ, τ, π.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size $2 n$ on the triangular lattice.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size $2 n$ on the triangular lattice.
Fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, and label the boundary edges of the triangle.

$$
\begin{aligned}
& \pi=00110101 \\
& \sigma=00011011 \\
& \tau=00011011
\end{aligned}
$$

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0,1 or 2 , such that :

- the labels on the boundary is given by σ, π, τ;
- on each triangle, the induced labeling must be among :

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0,1 or 2 , such that :

- the labels on the boundary is given by σ, π, τ;
- on each triangle, the induced labeling must be among :

We will picture the labeling of edges as follows :
$\begin{array}{cc}\text { - } & \text { label } 0 \\ \text {-.-.- } & \text { label } 1 \\ \text { label } 2\end{array}$

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_{n}$. Then the number of KT-puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma, \tau}^{\pi}$.

For example, it is easy to see that there is only one puzzle with the boundary data of the example.
so $c_{\mu, \nu}^{\lambda}=1$ where

$$
\begin{aligned}
& \lambda=\square \square \\
& \mu=\square \square \\
& \nu=\square
\end{aligned}
$$

From KT puzzles to TFPL configurations.
We fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, such that $\ell(\sigma)+\ell(\tau)=\ell(\pi)$. We will define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, τ, π
The map is local : it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

From KT puzzles to TFPL configurations.
We fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, such that $\ell(\sigma)+\ell(\tau)=\ell(\pi)$. We will define a map Φ.

KT puzzles with boundary data σ, π, τ Φ
TFPL configurations with boundaries σ, τ, π
The map is local: it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

From KT puzzles to TFPL configurations.

From KT puzzles to TFPL configurations.

From KT puzzles to TFPL configurations.

From KT puzzles to TFPL configurations.
The result is a TFPL configuration, with boundary data σ, π, τ.

From KT puzzles to TFPL configurations.
The result is a TFPL configuration, with boundary data σ, π, τ.

To finish the proof, one checks that this map Φ is :

- well defined, i.e. $\Phi($ puzzle) is fully packed, and verifies the boundary data σ, π, τ
- injective;

Conclusion

This diagram shows the possible indices for the numbers $t_{\sigma, \tau}^{\pi}$ when π is fixed ; in blue are coefficients we managed to compute, and in red are those involved in the definition of the $c_{\alpha \pi}$.
$t_{\sigma, \tau}^{\pi}$ for fixed π.

$$
\begin{gathered}
\ell(\tau \\
\\
\pi
\end{gathered}
$$

