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associated to a Coxeter system, namely

Most of the talk will be focused on type A for simplicity.

... and also because I cannot yet prove the main results in all
generality.
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the dual braid monoid”
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So W = Sn generated by S = {(i, i+ 1)} for i = 1, . . . , n− 1.

Length `S(w) = minimal k such that w = si1 · · · sik .

• Standard theory

Bruhat order: w ≤S w
′ if `S(w) + `S(w

−1w′) = `S(w
′)
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Usual noncrossing partitions.

Let (W,S) the Coxeter system of type An−1.

So W = Sn generated by S = {(i, i+ 1)} for i = 1, . . . , n− 1.

Length `S(w) = minimal k such that w = si1 · · · sik .

W with all transpositions T = {(i, j)} as generators.

Absolute length `T (w) = minimal k with w = ti1 · · · tik .

Absolute order: w ≤T w′ if `T (w) + `T (w
−1w′) = `T (w

′).

• Dual presentation

= n− |{ cycles of w}|

NC(n) = NC(An−1) = [id, (12 · · ·n)]≤T

• Standard theory

Bruhat order: w ≤S w
′ if `S(w) + `S(w

−1w′) = `S(w
′)



NC(4) and its Möbius function
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NC(4) and its Möbius function
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2 1 22 21

−5 (−1)n−1Cn−1µ(w) = µ≤T
(id, w)
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Braids

aij

Braids on n strings = Strings go down, 2
of them can cross in two ways.

'

Consider the monoid BKLn generated by
the braids aij in this braid group.

(Usual generators of the braid group/monoid are aii+1.)

They verify certain relations, eg aijajk = ajkaik.
One can characterize all such relations.

aij

ajk

ajk

aik

i j

Permutation of the endpoints
⇒ Sn as quotient group.

Braids (up to isotopy) form a group wrt
concatenation.



The Birman Ko Lee monoid

Proposition [BKL ’98] The monoid BKLn has generators aij
for 1 ≤ i < j ≤ n and relations:

aijajk = ajkaik = aikaij for i < j < k;

aijakl = aklaij for i < j < k < l or i < k < l < j.

The relations respect length of words
⇒ length `(m) of an element in the quotient is well defined.



The Birman Ko Lee monoid

Proposition [BKL ’98] The monoid BKLn has generators aij
for 1 ≤ i < j ≤ n and relations:

aijajk = ajkaik = aikaij for i < j < k;

aijakl = aklaij for i < j < k < l or i < k < l < j.

The relations respect length of words
⇒ length `(m) of an element in the quotient is well defined.

Let Pn(t) =

n−1∑
k=0

(n− 1 + k)!

(n− 1− k)!k!(k + 1)!
tk.

Proposition
∑

m∈BKLn

t`(m) =
1

Pn(−t)
.

For instance
∑

m∈BKL4

t`(m) =
1

1− 6t+ 10t2 − 5t3
.



Proof of the evaluation of Pn(t)

In fact there is a well known relation between the length
generating function and the Moebius function of the monoid
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Proof of the evaluation of Pn(t)

In fact there is a well known relation between the length
generating function and the Moebius function of the monoid
ordered by divisibility (see [Cartier–Foata]).

But BKLn is a Garside monoid with Garside element
C = a12a23 · · ·an−1n ⇒ µ(m) = 0 if m does not divide C.
Furthermore [1, C]left divisibility ' NC(n), and so

Pn(t) =
∑

w∈NC(Sn)
|µ(w)|t`(w)

Pn(t) =
∑

m∈BKLn

|µ(m)|t`(m).

In [Albenque, N. ’09] we computed this “combinatorially”.

And then I talked to Vic Reiner.



The monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators aij and relations

I =<aijakl − aklaij for i < j < k < l or i < k < l < j;

aijajk − ajkaik;ajkaik − aikaij for i < j < k.



The monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators aij and relations

I =<aijakl − aklaij for i < j < k < l or i < k < l < j;

aijajk − ajkaik;ajkaik − aikaij for i < j < k.

Elements of BKLn form a basis of A, which has a grading
A = ⊕k≥0Ak, with

HilbA(t) =
∑
n≥0

dimAk · tk =
1

Pn(−t)

We associate to A another algebra A†, the Koszul dual of A.
This transformation Q 7→ Q† is defined more generally for all
quadratic algebras Q.
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Definition A quadratic algebra Q is a graded algebra where
the ideal of relations is generated by elements of degree 2.
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with R vector subspace of W2 := {
∑

i,j λijxixj}.
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Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where
the ideal of relations is generated by elements of degree 2.

Q = k〈x1, . . . ,xm〉/Ideal(R)

with R vector subspace of W2 := {
∑

i,j λijxixj}.

Declare that (xixj)i,j is an orthonormal basis of W2, and let
R† be the orthogonal of R. Then define

Q† = k〈x1, . . . ,xm〉/Ideal(R†)
Examples

(a) R = span{xixj − xjxi, i < j}
Symmetric algebra Exterior algebra

R†=span{x2
i ,xixj + xjxi, i < j}

Symmetric algebra Exterior algebra

R†=span{x2
i ,xixj + xjxi, i < j}

(b) R = span{xixj , (i, j) ∈ I ⊆ [m]2} R† = span{xixj , (i, j) ∈ [m]2 − I}
Monomial ideals



Koszul duality for algebras

R = span{aijakl − aklaij for i < j < k < l or i < k < l < j

aijajk − ajkaik;ajkaik − aikaij for i < j < k}.
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Koszul duality for algebras

R = span{aijakl − aklaij for i < j < k < l or i < k < l < j

aijajk − ajkaik;ajkaik − aikaij for i < j < k}.

• What is R† in this case ?

It has a basis consisting of:
(1) all ai,jak,l which do not appear above;
(2) ai,jak,l + ak,lai,j for (i, j), (k, l) noncrossing;
(3) aijajk + ajkaik + aikaij with i < j < k.

Theorem [Albenque, N. ’09; N.’ 12]

HilbA†(t) = Pn(t)

Main question: why did I reprove one of my own results ?

• We have A = k〈aij〉/Ideal(R) with
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We showed that A is a Koszul algebra, which can be defined
as “A graded k-algebra Q such that the Q-module k admits a
minimal graded free resolution which is linear”.
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Koszul algebras

• In [Albenque, N. ’09], we proved a bit more.

We showed that A is a Koszul algebra, which can be defined
as “A graded k-algebra Q such that the Q-module k admits a
minimal graded free resolution which is linear”.

Now Q Koszul ⇒ Q numerically Koszul:

HilbQ(t) ·HilbQ†(−t) = 1

But this gives no insight on the structure of A†.

• New work: a nice basis of the algebra A†.

A† =
⊕

w∈NC(n)

A†[w]

with an explicit basis of A†[w] of cardinality µ(w).
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Other Coxeter groups

(W,S) a finite Coxeter system

Reflections t ∈ T = ∪wwSw−1 as new generators.

• `T (w) = minimal k such that w = t1 · · · tk.

w ≤T w′ if `T (w) + `T (w
−1w′) = `T (w

′)

Fix a Coxeter element c, define NC(W ) := [1, c]≤T
.

• [Bessis ’00] Define the dual braid monoid as generated by
at with t ∈ T and relations atau = auautu whenever tu ≤T c.

Its algebra A(W ) is clearly quadratic, we can therefore
consider the dual algebra A†(W ) and explicit a presentation.

Same questions for A(W ) instead of A = A(Sn)
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Questions for the future

1) Is A(W ) numerically Koszul, ie.
HilbA(W )(t) ·HilbA†(W )(−t) = 1?

2) Is A(W ) a Koszul algebra?
3) Is there a decomposition A†(W ) =

⊕
w∈NC(W )A

†(W )[w]

with A†(W )[w] has a nice basis of size µ(w) ?

• 3) or 2) imply 1).
• 2) is true for type B [Albenque, N. ’09].

Check 3) (or simply 1) for exceptional types by computer.
•• Prove 3) by checking that a certain chain complex is exact

(V. Féray).
• Use explicit EL-shelling of NC(W).

Known and To do

Conjecture Yes.


