Dual braid monoids and Koszulity

Phillippe Nadeau (CNRS, Univ. Lyon 1)

SLC 69, Strobl, September 10th 2012

Goal

Investigate the combinatorics of a certain graded algebra associated to a Coxeter system, namely
"The Koszul dual of
the algebra of
the dual braid monoid"

Goal

Investigate the combinatorics of a certain graded algebra associated to a Coxeter system, namely
"The Koszul dual of
the algebra of the dual braid monoid"

Most of the talk will be focused on type A for simplicity.
... and also because I cannot yet prove the main results in all generality.

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1}.
So $W=S_{n}$ generated by $S=\{(i, i+1)\}$ for $i=1, \ldots, n-1$.

- Standard theory

Length $\ell_{S}(w)=$ minimal k such that $w=s_{i_{1}} \cdots s_{i_{k}}$.
Bruhat order: $w \leq_{S} w^{\prime}$ if $\ell_{S}(w)+\ell_{S}\left(w^{-1} w^{\prime}\right)=\ell_{S}\left(w^{\prime}\right)$

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1}.
So $W=S_{n}$ generated by $S=\{(i, i+1)\}$ for $i=1, \ldots, n-1$.

- Standard theory

- Dual presentation
W with all transpositions $T=\{(i, j)\}$ as generators.
Absolute length $\ell_{T}(w)=$ minimal k with $w=t_{i_{1}} \cdots t_{i_{k}}$.

$$
=n-\mid\{\text { cycles of } w\} \mid
$$

Absolute order: $w \leq_{T} w^{\prime}$ if $\ell_{T}(w)+\ell_{T}\left(w^{-1} w^{\prime}\right)=\ell_{T}\left(w^{\prime}\right)$.

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1}.
So $W=S_{n}$ generated by $S=\{(i, i+1)\}$ for $i=1, \ldots, n-1$.

- Standard theory

Lenoth ts (w) $=$ minimai, such that $w=$ sis

- Dual presentation
W with all transpositions $T=\{(i, j)\}$ as generators.
Absolute length $\ell_{T}(w)=$ minimal k with $w=t_{i_{1}} \cdots t_{i_{k}}$.

$$
=n-\mid\{\text { cycles of } w\} \mid
$$

Absolute order: $w \leq_{T} w^{\prime}$ if $\ell_{T}(w)+\ell_{T}\left(w^{-1} w^{\prime}\right)=\ell_{T}\left(w^{\prime}\right)$.

$$
N C(n)=N C\left(A_{n-1}\right)=[i d,(12 \cdots n)]_{\leq_{T}}
$$

$N C(4)$ and its Möbius function

$N C(4)$ and its Möbius function

$N C(4)$ and its Möbius function

Braids

Braids on n strings $=$ Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Braids

Braids on n strings $=$ Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Permutation of the endpoints
$\Rightarrow S_{n}$ as quotient group.

Braids

Braids on n strings $=$ Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Permutation of the endpoints $\Rightarrow S_{n}$ as quotient group.

Consider the monoid $B K L_{n}$ generated by the braids $\mathbf{a}_{i j}$ in this braid group.
(Usual generators of the braid group/monoid are $\mathbf{a}_{i i+1}$.)

Braids

Braids on n strings $=$ Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Permutation of the endpoints
$\Rightarrow S_{n}$ as quotient group.

Consider the monoid $B K L_{n}$ generated by the braids $\mathbf{a}_{i j}$ in this braid group.
(Usual generators of the braid group/monoid are $\mathbf{a}_{i i+1}$.)

They verify certain relations, eg $\quad \mathbf{a}_{i j} \mathbf{a}_{j k}=\mathbf{a}_{j k} \mathbf{a}_{i k}$.
One can characterize all such relations.

The Birman Ko Lee monoid

Proposition [BKL '98] The monoid $B K L_{n}$ has generators $\mathbf{a}_{i j}$ for $1 \leq i<j \leq n$ and relations:

$$
\begin{gathered}
\mathbf{a}_{i j} \mathbf{a}_{j k}=\mathbf{a}_{j k} \mathbf{a}_{i k}=\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k ; \\
\mathbf{a}_{i j} \mathbf{a}_{k l}=\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j .
\end{gathered}
$$

The relations respect length of words
\Rightarrow length $\ell(m)$ of an element in the quotient is well defined.

The Birman Ko Lee monoid
Proposition [BKL '98] The monoid $B K L_{n}$ has generators $\mathbf{a}_{i j}$ for $1 \leq i<j \leq n$ and relations:

$$
\begin{gathered}
\mathbf{a}_{i j} \mathbf{a}_{j k}=\mathbf{a}_{j k} \mathbf{a}_{i k}=\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k ; \\
\mathbf{a}_{i j} \mathbf{a}_{k l}=\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j .
\end{gathered}
$$

The relations respect length of words
\Rightarrow length $\ell(m)$ of an element in the quotient is well defined.
Let $P_{n}(t)=\sum_{k=0}^{n-1} \frac{(n-1+k)!}{(n-1-k)!k!(k+1)!} t^{k}$.
Proposition $\sum_{m \in B K L_{n}} t^{\ell(m)}=\frac{1}{P_{n}(-t)}$.
For instance $\sum_{m \in B K L_{4}} t^{\ell(m)}=\frac{1}{1-6 t+10 t^{2}-5 t^{3}}$.

Proof of the evaluation of $P_{n}(t)$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier-Foata]).

$$
P_{n}(t)=\sum_{m \in B K L_{n}}|\mu(m)| t^{\ell(m)} .
$$

Proof of the evaluation of $P_{n}(t)$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier-Foata]).

$$
P_{n}(t)=\sum_{m \in B K L_{n}}|\mu(m)| t^{\ell(m)} .
$$

But $B K L_{n}$ is a Garside monoid with Garside element $C=\mathbf{a}_{12} \mathbf{a}_{23} \cdots \mathbf{a}_{n-1 n} \Rightarrow \mu(m)=0$ if m does not divide C.
Furthermore $[1, C]_{\text {left divisibility }} \simeq N C(n)$, and so

$$
P_{n}(t)=\sum_{w \in N C\left(S_{n}\right)}|\mu(w)| t^{\ell(w)}
$$

Proof of the evaluation of $P_{n}(t)$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier-Foata]).

$$
P_{n}(t)=\sum_{m \in B K L_{n}}|\mu(m)| t^{\ell(m)} .
$$

But $B K L_{n}$ is a Garside monoid with Garside element $C=\mathbf{a}_{12} \mathbf{a}_{23} \cdots \mathbf{a}_{n-1 n} \Rightarrow \mu(m)=0$ if m does not divide C. Furthermore $[1, C]_{\text {left divisibility }} \simeq N C(n)$, and so

$$
P_{n}(t)=\sum_{w \in N C\left(S_{n}\right)}|\mu(w)| t^{\ell(w)}
$$

In [Albenque, N. '09] we computed this "combinatorially".

Proof of the evaluation of $P_{n}(t)$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier-Foata]).

$$
P_{n}(t)=\sum_{m \in B K L_{n}}|\mu(m)| t^{\ell(m)} .
$$

But $B K L_{n}$ is a Garside monoid with Garside element $C=\mathbf{a}_{12} \mathbf{a}_{23} \cdots \mathbf{a}_{n-1 n} \Rightarrow \mu(m)=0$ if m does not divide C. Furthermore $[1, C]_{\text {left divisibility }} \simeq N C(n)$, and so

$$
P_{n}(t)=\sum_{w \in N C\left(S_{n}\right)}|\mu(w)| t^{\ell(w)}
$$

In [Albenque, N. '09] we computed this "combinatorially".
And then I talked to Vic Reiner.

The monoid algebra

We pass from the monoid to its k-algebra A :
Definition The algebra A is defined by the generators $\mathbf{a}_{i j}$ and relations

$$
\begin{gathered}
I=<\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j ; \\
\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k .
\end{gathered}
$$

The monoid algebra

We pass from the monoid to its k-algebra A :
Definition The algebra A is defined by the generators $\mathbf{a}_{i j}$ and relations

$$
\begin{gathered}
I=<\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j ; \\
\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k .
\end{gathered}
$$

Elements of $B K L_{n}$ form a basis of A, which has a grading $A=\oplus_{k \geq 0} A_{k}$, with

$$
\operatorname{Hilb}_{A}(t)=\sum_{n \geq 0} \operatorname{dim} A_{k} \cdot t^{k}=\frac{1}{P_{n}(-t)}
$$

We associate to A another algebra A^{\dagger}, the Koszul dual of A. This transformation $Q \mapsto Q^{\dagger}$ is defined more generally for all quadratic algebras Q.

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2 .

$$
Q=k\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\rangle / \operatorname{Ideal}(R)
$$

with R vector subspace of $\mathbf{W}_{2}:=\left\{\sum_{i, j} \lambda_{i j} \mathbf{x}_{i} \mathbf{x}_{j}\right\}$.

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2 .

$$
Q=k\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\rangle / \operatorname{Ideal}(R)
$$

with R vector subspace of $\mathbf{W}_{2}:=\left\{\sum_{i, j} \lambda_{i j} \mathbf{x}_{i} \mathbf{x}_{j}\right\}$.
Declare that $\left(\mathbf{x}_{i} \mathbf{x}_{j}\right)_{i, j}$ is an orthonormal basis of \mathbf{W}_{2}, and let R^{\dagger} be the orthogonal of R. Then define

$$
Q^{\dagger}=k\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\rangle / \operatorname{Ideal}\left(R^{\dagger}\right)
$$

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2 .

$$
Q=k\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\rangle / \operatorname{Ideal}(R)
$$

with R vector subspace of $\mathbf{W}_{2}:=\left\{\sum_{i, j} \lambda_{i j} \mathbf{x}_{i} \mathbf{x}_{j}\right\}$.
Declare that $\left(\mathbf{x}_{i} \mathbf{x}_{j}\right)_{i, j}$ is an orthonormal basis of \mathbf{W}_{2}, and let R^{\dagger} be the orthogonal of R. Then define

$$
Q^{\dagger}=k\left\langle\mathbf{x}_{1}, \ldots, \mathbf{x}_{m}\right\rangle / \operatorname{Ideal}\left(R^{\dagger}\right)
$$

Examples

(a) $R=\operatorname{span}\left\{\mathbf{x}_{i} \mathbf{x}_{j}-\mathbf{x}_{j} \mathbf{x}_{i}, i<j\right\} \quad R^{\dagger}=\operatorname{span}\left\{\mathbf{x}_{i}^{2}, \mathbf{x}_{i} \mathbf{x}_{j}+\mathbf{x}_{j} \mathbf{x}_{i}, i<j\right\}$

Symmetric algebra
Exterior algebra
(b) $R=\operatorname{span}\left\{\mathbf{x}_{i} \mathbf{x}_{j},(i, j) \in I \subseteq[m]^{2}\right\} \quad R^{\dagger}=\operatorname{span}\left\{\mathbf{x}_{i} \mathbf{x}_{j},(i, j) \in[m]^{2}-I\right\}$

Monomial ideals

Koszul duality for algebras

- We have $A=k\left\langle\mathbf{a}_{i j}\right\rangle / \operatorname{Ideal}(R)$ with

$$
\begin{gathered}
R=\operatorname{span}\left\{\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j\right. \\
\left.\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k\right\}
\end{gathered}
$$

Koszul duality for algebras

- We have $A=k\left\langle\mathbf{a}_{i j}\right\rangle / \operatorname{Ideal}(R)$ with

$$
\begin{aligned}
& R=\operatorname{span}\left\{\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j\right. \\
&\left.\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k\right\}
\end{aligned}
$$

- What is R^{\dagger} in this case ?

It has a basis consisting of:
(1) all $\mathbf{a}_{i, j} \mathbf{a}_{k, l}$ which do not appear above;
(2) $\mathbf{a}_{i, j} \mathbf{a}_{k, l}+\mathbf{a}_{k, l} \mathbf{a}_{i, j}$ for $(i, j),(k, l)$ noncrossing;
(3) $\mathbf{a}_{i j} \mathbf{a}_{j k}+\mathbf{a}_{j k} \mathbf{a}_{i k}+\mathbf{a}_{i k} \mathbf{a}_{i j}$ with $i<j<k$.

Koszul duality for algebras

- We have $A=k\left\langle\mathbf{a}_{i j}\right\rangle / \operatorname{Ideal}(R)$ with

$$
\begin{gathered}
R=\operatorname{span}\left\{\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j\right. \\
\left.\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k\right\}
\end{gathered}
$$

- What is R^{\dagger} in this case ?

It has a basis consisting of:
(1) all $\mathbf{a}_{i, j} \mathbf{a}_{k, l}$ which do not appear above;
(2) $\mathbf{a}_{i, j} \mathbf{a}_{k, l}+\mathbf{a}_{k, l} \mathbf{a}_{i, j}$ for (i, j), (k, l) noncrossing;
(3) $\mathbf{a}_{i j} \mathbf{a}_{j k}+\mathbf{a}_{j k} \mathbf{a}_{i k}+\mathbf{a}_{i k} \mathbf{a}_{i j}$ with $i<j<k$.

Theorem [Albenque, N. '09; N.' 12]

$$
\operatorname{Hilb}_{A^{\dagger}}(t)=P_{n}(t)
$$

Koszul duality for algebras

- We have $A=k\left\langle\mathbf{a}_{i j}\right\rangle / \operatorname{Ideal}(R)$ with

$$
\begin{aligned}
& R=\operatorname{span}\left\{\mathbf{a}_{i j} \mathbf{a}_{k l}-\mathbf{a}_{k l} \mathbf{a}_{i j} \quad \text { for } i<j<k<l \text { or } i<k<l<j\right. \\
&\left.\mathbf{a}_{i j} \mathbf{a}_{j k}-\mathbf{a}_{j k} \mathbf{a}_{i k} ; \mathbf{a}_{j k} \mathbf{a}_{i k}-\mathbf{a}_{i k} \mathbf{a}_{i j} \quad \text { for } i<j<k\right\}
\end{aligned}
$$

- What is R^{\dagger} in this case ?

It has a basis consisting of:
(1) all $\mathbf{a}_{i, j} \mathbf{a}_{k, l}$ which do not appear above;
(2) $\mathbf{a}_{i, j} \mathbf{a}_{k, l}+\mathbf{a}_{k, l} \mathbf{a}_{i, j}$ for (i,j), (k,l) noncrossing;
(3) $\mathbf{a}_{i j} \mathbf{a}_{j k}+\mathbf{a}_{j k} \mathbf{a}_{i k}+\mathbf{a}_{i k} \mathbf{a}_{i j}$ with $i<j<k$.

Theorem [Albenque, N. '09; N.' 12]

$$
\operatorname{Hilb}_{A^{\dagger}}(t)=P_{n}(t)
$$

Main question: why did I reprove one of my own results ?

Koszul algebras

- In [Albenque, N. '09], we proved a bit more.

We showed that A is a Koszul algebra, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is linear".

Koszul algebras

- In [Albenque, N. '09], we proved a bit more.

We showed that A is a Koszul algebra, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is linear".
Now Q Koszul $\Rightarrow Q$ numerically Koszul:

$$
\operatorname{Hilb}_{Q}(t) \cdot \operatorname{Hilb}_{Q^{\dagger}}(-t)=1
$$

But this gives no insight on the structure of A^{\dagger}.

Koszul algebras

- In [Albenque, N. '09], we proved a bit more.

We showed that A is a Koszul algebra, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is linear".
Now Q Koszul $\Rightarrow Q$ numerically Koszul:

$$
\operatorname{Hilb}_{Q}(t) \cdot \operatorname{Hilb}_{Q^{\dagger}}(-t)=1
$$

But this gives no insight on the structure of A^{\dagger}.

- New work: a nice basis of the algebra A^{\dagger}.

$$
A^{\dagger}=\bigoplus_{w \in N C(n)} A^{\dagger}[w]
$$

with an explicit basis of $A^{\dagger}[w]$ of cardinality $\mu(w)$.

Other Coxeter groups

(W, S) a finite Coxeter system
Reflections $t \in T=\cup_{w} w S w^{-1}$ as new generators.

Other Coxeter groups

(W, S) a finite Coxeter system
Reflections $t \in T=\cup_{w} w S w^{-1}$ as new generators.

- $\ell_{T}(w)=$ minimal k such that $w=t_{1} \cdots t_{k}$.

$$
w \leq_{T} w^{\prime} \text { if } \ell_{T}(w)+\ell_{T}\left(w^{-1} w^{\prime}\right)=\ell_{T}\left(w^{\prime}\right)
$$

Fix a Coxeter element c, define $N C(W):=[1, c]_{\leq_{T}}$.

Other Coxeter groups

(W, S) a finite Coxeter system
Reflections $t \in T=\cup_{w} w S w^{-1}$ as new generators.

- $\ell_{T}(w)=$ minimal k such that $w=t_{1} \cdots t_{k}$.
$w \leq_{T} w^{\prime}$ if $\ell_{T}(w)+\ell_{T}\left(w^{-1} w^{\prime}\right)=\ell_{T}\left(w^{\prime}\right)$
Fix a Coxeter element c, define $N C(W):=[1, c]_{\leq_{T}}$.
- [Bessis '00] Define the dual braid monoid as generated by \mathbf{a}_{t} with $t \in T$ and relations $\mathbf{a}_{t} \mathbf{a}_{u}=\mathbf{a}_{u} \mathbf{a}_{u t u}$ whenever $t u \leq_{T} c$.

Other Coxeter groups

(W, S) a finite Coxeter system
Reflections $t \in T=\cup_{w} w S w^{-1}$ as new generators.

- $\ell_{T}(w)=$ minimal k such that $w=t_{1} \cdots t_{k}$.
$w \leq_{T} w^{\prime}$ if $\ell_{T}(w)+\ell_{T}\left(w^{-1} w^{\prime}\right)=\ell_{T}\left(w^{\prime}\right)$
Fix a Coxeter element c, define $N C(W):=[1, c]_{\leq_{T}}$.
- [Bessis '00] Define the dual braid monoid as generated by \mathbf{a}_{t} with $t \in T$ and relations $\mathbf{a}_{t} \mathbf{a}_{u}=\mathbf{a}_{u} \mathbf{a}_{u t u}$ whenever $t u \leq_{T} c$.

Its algebra $A(W)$ is clearly quadratic, we can therefore consider the dual algebra $A^{\dagger}(W)$ and explicit a presentation.

Same questions for $A(W)$ instead of $A=A\left(S_{n}\right)$

Questions for the future

1) Is $A(W)$ numerically Koszul, ie.

$$
\operatorname{Hilb}_{A(W)}(t) \cdot \operatorname{Hilb}_{A^{\dagger}(W)}(-t)=1 ?
$$

2) Is $A(W)$ a Koszul algebra?
3) Is there a decomposition $A^{\dagger}(W)=\bigoplus_{w \in N C(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Questions for the future

1) Is $A(W)$ numerically Koszul, ie.

$$
\operatorname{Hilb}_{A(W)}(t) \cdot \operatorname{Hilb}_{A^{\dagger}(W)}(-t)=1 ?
$$

2) Is $A(W)$ a Koszul algebra?
3) Is there a decomposition $A^{\dagger}(W)=\bigoplus_{w \in N C(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Conjecture Yes.

Questions for the future

1) Is $A(W)$ numerically Koszul, ie.

$$
\operatorname{Hilb}_{A(W)}(t) \cdot \operatorname{Hilb}_{A^{\dagger}(W)}(-t)=1 ?
$$

2) Is $A(W)$ a Koszul algebra?
3) Is there a decomposition $A^{\dagger}(W)=\bigoplus_{w \in N C(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Conjecture Yes.
Known and To do

- 3) or 2) imply 1).
- 2) is true for type B [Albenque, N. '09].
- Check 3) (or simply 1) for exceptional types by computer.
- Prove 3) by checking that a certain chain complex is exact (V. Féray).
- Use explicit EL-shelling of NC(W).

