Dual braid monoids and Koszulity

Phillippe Nadeau (CNRS, Univ. Lyon 1)

SLC 69, Strobl, September 10th 2012

Goal

Investigate the **combinatorics** of a certain **graded algebra** associated to a **Coxeter system**, namely

"The Koszul dual of the algebra of the dual braid monoid"

Goal

Investigate the **combinatorics** of a certain **graded algebra** associated to a **Coxeter system**, namely

"The Koszul dual of the algebra of the dual braid monoid"

Most of the talk will be focused on **type** A for simplicity.

... and also because I cannot yet prove the main results in all generality.

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1} . So $W = S_n$ generated by $S = \{(i, i+1)\}$ for i = 1, ..., n-1.

• Standard theory

Length $\ell_S(w) = \text{minimal } k \text{ such that } w = s_{i_1} \cdots s_{i_k}.$ Bruhat order: $w \leq_S w'$ if $\ell_S(w) + \ell_S(w^{-1}w') = \ell_S(w')$

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1} . So $W = S_n$ generated by $S = \{(i, i+1)\}$ for i = 1, ..., n-1. • Standard theory Length $\ell_S(w) =$ minimal k such that $w = s_{i_1} \cdots s_{i_k}$. Bruhat order: $w \leq_S w'$ if $\ell_S(w) + \ell_S(w^{-1}w') = \ell_S(w')$

• Dual presentation

W with all transpositions $T = \{(i, j)\}$ as generators.

Absolute length $\ell_T(w) = \text{minimal } k \text{ with } w = t_{i_1} \cdots t_{i_k}.$ $= n - |\{ \text{ cycles of } w\}|$

Absolute order: $w \leq_T w'$ if $\ell_T(w) + \ell_T(w^{-1}w') = \ell_T(w')$.

Usual noncrossing partitions.

Let (W, S) the Coxeter system of type A_{n-1} . So $W = S_n$ generated by $S = \{(i, i+1)\}$ for i = 1, ..., n-1. • Standard theory Length $\ell_S(w) =$ minimal k such that $w = s_{i_1} \cdots s_{i_k}$. Bruhat order: $w \leq_S w'$ if $\ell_S(w) + \ell_S(w^{-1}w') = \ell_S(w')$

• Dual presentation

W with all transpositions $T = \{(i, j)\}$ as generators.

Absolute length $\ell_T(w) = \text{minimal } k$ with $w = t_{i_1} \cdots t_{i_k}$.

 $= n - |\{ \text{ cycles of } w\}|$

Absolute order: $w \leq_T w'$ if $\ell_T(w) + \ell_T(w^{-1}w') = \ell_T(w')$.

 $NC(n) = NC(A_{n-1}) = [id, (12\cdots n)]_{\leq_T}$

NC(4) and its Möbius function

NC(4) and its Möbius function

NC(4) and its Möbius function

Braids on n strings = Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Braids on n strings = Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Permutation of the endpoints $\Rightarrow S_n$ as quotient group.

Braids on n strings = Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

Permutation of the endpoints $\Rightarrow S_n$ as quotient group.

Consider the **monoid** BKL_n generated by the braids \mathbf{a}_{ij} in this braid group.

(Usual generators of the braid group/monoid are \mathbf{a}_{ii+1} .)

Braids on n strings = Strings go down, 2 of them can cross in two ways.

Braids (up to isotopy) form a group wrt concatenation.

 \mathbf{a}_{ij}

Permutation of the endpoints $\Rightarrow S_n$ as quotient group.

Consider the **monoid** BKL_n generated by the braids a_{ij} in this braid group.

(Usual generators of the braid group/monoid are \mathbf{a}_{ii+1} .)

They verify certain relations, eg $\mathbf{a}_{ij}\mathbf{a}_{jk} = \mathbf{a}_{jk}\mathbf{a}_{ik}$. One can characterize all such relations.

The Birman Ko Lee monoid

Proposition [BKL '98] The monoid BKL_n has generators \mathbf{a}_{ij} for $1 \le i < j \le n$ and relations:

$$\mathbf{a}_{ij}\mathbf{a}_{jk} = \mathbf{a}_{jk}\mathbf{a}_{ik} = \mathbf{a}_{ik}\mathbf{a}_{ij}$$
 for $i < j < k$;

 $\mathbf{a}_{ij}\mathbf{a}_{kl} = \mathbf{a}_{kl}\mathbf{a}_{ij}$ for i < j < k < l or i < k < l < j.

The relations respect length of words \Rightarrow length $\ell(m)$ of an element in the quotient is well defined.

The Birman Ko Lee monoid

Proposition [BKL '98] The monoid BKL_n has generators \mathbf{a}_{ij} for $1 \le i < j \le n$ and relations:

$$\mathbf{a}_{ij}\mathbf{a}_{jk} = \mathbf{a}_{jk}\mathbf{a}_{ik} = \mathbf{a}_{ik}\mathbf{a}_{ij}$$
 for $i < j < k$;

 $\mathbf{a}_{ij}\mathbf{a}_{kl} = \mathbf{a}_{kl}\mathbf{a}_{ij}$ for i < j < k < l or i < k < l < j.

The relations respect length of words \Rightarrow length $\ell(m)$ of an element in the quotient is well defined.

Let
$$P_n(t) = \sum_{k=0}^{n-1} \frac{(n-1+k)!}{(n-1-k)!k!(k+1)!} t^k$$
.
Proposition $\sum_{m \in BKL_n} t^{\ell(m)} = \frac{1}{P_n(-t)}$.
For instance $\sum_{m \in BKL_4} t^{\ell(m)} = \frac{1}{1-6t+10t^2-5t^3}$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier–Foata]).

$$P_n(t) = \sum_{m \in BKL_n} |\mu(m)| t^{\ell(m)}.$$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier–Foata]).

$$P_n(t) = \sum_{m \in BKL_n} |\mu(m)| t^{\ell(m)}.$$

But BKL_n is a Garside monoid with Garside element $C = \mathbf{a}_{12}\mathbf{a}_{23}\cdots\mathbf{a}_{n-1n} \Rightarrow \mu(m) = 0$ if m does not divide C. Furthermore $[1, C]_{\text{left divisibility}} \simeq NC(n)$, and so

$$P_n(t) = \sum_{w \in NC(S_n)} |\mu(w)| t^{\ell(w)}$$

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier–Foata]).

$$P_n(t) = \sum_{m \in BKL_n} |\mu(m)| t^{\ell(m)}.$$

But BKL_n is a Garside monoid with Garside element $C = \mathbf{a}_{12}\mathbf{a}_{23}\cdots\mathbf{a}_{n-1n} \Rightarrow \mu(m) = 0$ if m does not divide C. Furthermore $[1, C]_{\text{left divisibility}} \simeq NC(n)$, and so

$$P_n(t) = \sum_{w \in NC(S_n)} |\mu(w)| t^{\ell(w)}$$

In [Albenque, N. '09] we computed this "combinatorially".

In fact there is a well known relation between the length generating function and the Moebius function of the monoid ordered by divisibility (see [Cartier–Foata]).

$$P_n(t) = \sum_{m \in BKL_n} |\mu(m)| t^{\ell(m)}.$$

But BKL_n is a Garside monoid with Garside element $C = \mathbf{a}_{12}\mathbf{a}_{23}\cdots\mathbf{a}_{n-1n} \Rightarrow \mu(m) = 0$ if m does not divide C. Furthermore $[1, C]_{\text{left divisibility}} \simeq NC(n)$, and so

$$P_n(t) = \sum_{w \in NC(S_n)} |\mu(w)| t^{\ell(w)}$$

In [Albenque, N. '09] we computed this "combinatorially".

And then I talked to Vic Reiner.

The monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators a_{ij} and relations

$$I = <\mathbf{a}_{ij}\mathbf{a}_{kl} - \mathbf{a}_{kl}\mathbf{a}_{ij} \quad \text{for } i < j < k < l \text{ or } i < k < l < j;$$
$$\mathbf{a}_{ij}\mathbf{a}_{jk} - \mathbf{a}_{jk}\mathbf{a}_{ik}; \mathbf{a}_{jk}\mathbf{a}_{ik} - \mathbf{a}_{ik}\mathbf{a}_{ij} \quad \text{for } i < j < k.$$

The monoid algebra

We pass from the monoid to its k-algebra A:

Definition The algebra A is defined by the generators a_{ij} and relations

$$I = <\mathbf{a}_{ij}\mathbf{a}_{kl} - \mathbf{a}_{kl}\mathbf{a}_{ij} \quad \text{for } i < j < k < l \text{ or } i < k < l < j;$$
$$\mathbf{a}_{ij}\mathbf{a}_{jk} - \mathbf{a}_{jk}\mathbf{a}_{ik}; \mathbf{a}_{jk}\mathbf{a}_{ik} - \mathbf{a}_{ik}\mathbf{a}_{ij} \quad \text{for } i < j < k.$$

Elements of BKL_n form a basis of A, which has a grading $A = \bigoplus_{k \ge 0} A_k$, with

$$Hilb_A(t) = \sum_{n \ge 0} \dim A_k \cdot t^k = \frac{1}{P_n(-t)}$$

We associate to A another algebra A^{\dagger} , the Koszul dual of A. This transformation $Q \mapsto Q^{\dagger}$ is defined more generally for all quadratic algebras Q.

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2.

$$Q = k \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle / Ideal(R)$$

with R vector subspace of $\mathbf{W}_2 := \{\sum_{i,j} \lambda_{ij} \mathbf{x}_i \mathbf{x}_j\}.$

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2.

$$Q = k \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle / Ideal(R)$$

with R vector subspace of $\mathbf{W}_2 := \{\sum_{i,j} \lambda_{ij} \mathbf{x}_i \mathbf{x}_j\}.$

Declare that $(\mathbf{x}_i \mathbf{x}_j)_{i,j}$ is an orthonormal basis of \mathbf{W}_2 , and let R^{\dagger} be the orthogonal of R. Then define

$$Q^{\dagger} = k \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle / Ideal(R^{\dagger})$$

Koszul duality of quadratic algebras

Definition A quadratic algebra Q is a graded algebra where the ideal of relations is generated by elements of degree 2.

$$Q = k \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle / Ideal(R)$$

with R vector subspace of $\mathbf{W}_2 := \{\sum_{i,j} \lambda_{ij} \mathbf{x}_i \mathbf{x}_j\}.$

Declare that $(\mathbf{x}_i \mathbf{x}_j)_{i,j}$ is an orthonormal basis of \mathbf{W}_2 , and let R^{\dagger} be the orthogonal of R. Then define

$$Q^{\dagger} = k \langle \mathbf{x}_1, \dots, \mathbf{x}_m \rangle / Ideal(R^{\dagger})$$

Examples

(a)
$$R = \text{span}\{\mathbf{x}_i \mathbf{x}_j - \mathbf{x}_j \mathbf{x}_i, i < j\}$$
 $R^{\dagger} = span\{\mathbf{x}_i^2, \mathbf{x}_i \mathbf{x}_j + \mathbf{x}_j \mathbf{x}_i, i < j\}$
Symmetric algebra Exterior algebra

(b) $R = \operatorname{span}\{\mathbf{x}_i \mathbf{x}_j, (i, j) \in I \subseteq [m]^2\}$ $R^{\dagger} = \operatorname{span}\{\mathbf{x}_i \mathbf{x}_j, (i, j) \in [m]^2 - I\}$ Monomial ideals

• We have $A = k \langle \mathbf{a}_{ij} \rangle / Ideal(R)$ with $R = \operatorname{span}\{\mathbf{a}_{ij}\mathbf{a}_{kl} - \mathbf{a}_{kl}\mathbf{a}_{ij} \text{ for } i < j < k < l \text{ or } i < k < l < j$ $\mathbf{a}_{ij}\mathbf{a}_{jk} - \mathbf{a}_{jk}\mathbf{a}_{ik}; \mathbf{a}_{jk}\mathbf{a}_{ik} - \mathbf{a}_{ik}\mathbf{a}_{ij} \text{ for } i < j < k\}.$

- We have $A = k \langle \mathbf{a}_{ij} \rangle / Ideal(R)$ with $R = \text{span}\{\mathbf{a}_{ij}\mathbf{a}_{kl} - \mathbf{a}_{kl}\mathbf{a}_{ij} \text{ for } i < j < k < l \text{ or } i < k < l < j$ $\mathbf{a}_{ij}\mathbf{a}_{jk} - \mathbf{a}_{jk}\mathbf{a}_{ik}; \mathbf{a}_{jk}\mathbf{a}_{ik} - \mathbf{a}_{ik}\mathbf{a}_{ij} \text{ for } i < j < k\}.$
- What is R[†] in this case ?
 It has a basis consisting of:

 all a_{i,j}a_{k,l} which do not appear above;
 a_{i,j}a_{k,l} + a_{k,l}a_{i,j} for (i, j), (k, l) noncrossing;
 a_{ij}a_{jk} + a_{jk}a_{ik} + a_{ik}a_{ij} with i < j < k.

- We have $A = k \langle \mathbf{a}_{ij} \rangle / Ideal(R)$ with $R = \operatorname{span} \{ \mathbf{a}_{ij} \mathbf{a}_{kl} - \mathbf{a}_{kl} \mathbf{a}_{ij} \text{ for } i < j < k < l \text{ or } i < k < l < j$ $\mathbf{a}_{ij} \mathbf{a}_{jk} - \mathbf{a}_{jk} \mathbf{a}_{ik}; \mathbf{a}_{jk} \mathbf{a}_{ik} - \mathbf{a}_{ik} \mathbf{a}_{ij} \text{ for } i < j < k \}.$
- What is R[†] in this case ?
 It has a basis consisting of:

 all a_{i,j}a_{k,l} which do not appear above;
 a_{i,j}a_{k,l} + a_{k,l}a_{i,j} for (i, j), (k, l) noncrossing;
 a_{ij}a_{jk} + a_{jk}a_{ik} + a_{ik}a_{ij} with i < j < k.

Theorem [Albenque, N. '09; N.' 12] $Hilb_{A^{\dagger}}(t) = P_n(t)$

- We have $A = k \langle \mathbf{a}_{ij} \rangle / Ideal(R)$ with $R = \operatorname{span} \{ \mathbf{a}_{ij} \mathbf{a}_{kl} - \mathbf{a}_{kl} \mathbf{a}_{ij} \text{ for } i < j < k < l \text{ or } i < k < l < j$ $\mathbf{a}_{ij} \mathbf{a}_{jk} - \mathbf{a}_{jk} \mathbf{a}_{ik}; \mathbf{a}_{jk} \mathbf{a}_{ik} - \mathbf{a}_{ik} \mathbf{a}_{ij} \text{ for } i < j < k \}.$
- What is R[†] in this case ?
 It has a basis consisting of:
 (1) all a_{i,j}a_{k,l} which do not appear above;
 (2) a_{i,j}a_{k,l} + a_{k,l}a_{i,j} for (i, j), (k, l) noncrossing;
 (3) a_{ij}a_{jk} + a_{jk}a_{ik} + a_{ik}a_{ij} with i < j < k.

Theorem [Albenque, N. '09; N.' 12] $Hilb_{A^{\dagger}}(t) = P_n(t)$

Main question: why did I reprove one of my own results ?

Koszul algebras

• In [Albenque, N. '09], we proved a bit more.

We showed that A is a **Koszul algebra**, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is **linear**".

Koszul algebras

• In [Albenque, N. '09], we proved a bit more.

We showed that A is a **Koszul algebra**, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is **linear**".

Now Q Koszul $\Rightarrow Q$ numerically Koszul:

 $Hilb_Q(t) \cdot Hilb_{Q^{\dagger}}(-t) = 1$

But this gives no insight on the structure of A^{\dagger} .

Koszul algebras

• In [Albenque, N. '09], we proved a bit more.

We showed that A is a **Koszul algebra**, which can be defined as "A graded k-algebra Q such that the Q-module k admits a minimal graded free resolution which is **linear**".

Now Q Koszul $\Rightarrow Q$ numerically Koszul:

$$Hilb_Q(t) \cdot Hilb_{Q^{\dagger}}(-t) = 1$$

But this gives no insight on the structure of A^{\dagger} .

• New work: a nice basis of the algebra A^{\dagger} .

$$A^{\dagger} = \bigoplus_{w \in NC(n)} A^{\dagger}[w]$$

with an explicit basis of $A^{\dagger}[w]$ of cardinality $\mu(w)$.

(W, S) a finite Coxeter system Reflections $t \in T = \cup_w w S w^{-1}$ as new generators.

(W, S) a finite Coxeter system Reflections $t \in T = \bigcup_w w S w^{-1}$ as new generators. • $\ell_T(w) = \text{minimal } k$ such that $w = t_1 \cdots t_k$. $w \leq_T w'$ if $\ell_T(w) + \ell_T(w^{-1}w') = \ell_T(w')$

Fix a Coxeter element c, define $NC(W) := [1, c]_{\leq_T}$.

(W, S) a finite Coxeter system Reflections $t \in T = \bigcup_w w S w^{-1}$ as new generators. • $\ell_T(w) = \text{minimal } k$ such that $w = t_1 \cdots t_k$. $w \leq_T w'$ if $\ell_T(w) + \ell_T(w^{-1}w') = \ell_T(w')$ Fix a Coxeter element c, define $NC(W) := [1, c]_{\leq_T}$.

• [Bessis '00] Define the dual braid monoid as generated by \mathbf{a}_t with $t \in T$ and relations $\mathbf{a}_t \mathbf{a}_u = \mathbf{a}_u \mathbf{a}_{utu}$ whenever $tu \leq_T c$.

(W, S) a finite Coxeter system Reflections $t \in T = \bigcup_w w S w^{-1}$ as new generators. • $\ell_T(w) = \text{minimal } k$ such that $w = t_1 \cdots t_k$. $w \leq_T w'$ if $\ell_T(w) + \ell_T(w^{-1}w') = \ell_T(w')$ Fix a Coxeter element c, define $NC(W) := [1, c]_{\leq_T}$.

• [Bessis '00] Define the dual braid monoid as generated by \mathbf{a}_t with $t \in T$ and relations $\mathbf{a}_t \mathbf{a}_u = \mathbf{a}_u \mathbf{a}_{utu}$ whenever $tu \leq_T c$.

Its algebra A(W) is clearly quadratic, we can therefore consider the dual algebra $A^{\dagger}(W)$ and explicit a presentation.

Same questions for A(W) instead of $A = A(S_n)$

Questions for the future

1) Is A(W) numerically Koszul, ie. $Hilb_{A(W)}(t) \cdot Hilb_{A^{\dagger}(W)}(-t) = 1?$ 2) Is A(W) a Koszul algebra? 3) Is there a decomposition $A^{\dagger}(W) = \bigoplus_{w \in NC(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Questions for the future

1) Is A(W) numerically Koszul, ie. $Hilb_{A(W)}(t) \cdot Hilb_{A^{\dagger}(W)}(-t) = 1?$ 2) Is A(W) a Koszul algebra? 3) Is there a decomposition $A^{\dagger}(W) = \bigoplus_{w \in NC(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Conjecture Yes.

Questions for the future

1) Is A(W) numerically Koszul, ie. $Hilb_{A(W)}(t) \cdot Hilb_{A^{\dagger}(W)}(-t) = 1?$ 2) Is A(W) a Koszul algebra? 3) Is there a decomposition $A^{\dagger}(W) = \bigoplus_{w \in NC(W)} A^{\dagger}(W)[w]$ with $A^{\dagger}(W)[w]$ has a nice basis of size $\mu(w)$?

Conjecture Yes.

Known and To do

- 3) or 2) imply 1).
- 2) is true for type B [Albenque, N. '09].
- Check 3) (or simply 1) for exceptional types by computer.
- Prove 3) by checking that a certain chain complex is exact (V. Féray).
- Use explicit EL-shelling of NC(W).