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FPL configurations : Definition
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Start with the square grid Gn with n2 vertices and 4n external
edges. In the example, we have n = 7.
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FPL configurations : Definition

(1) such that around each vertex of Gn,
2 edges out of 4 are selected ; (“Fully
Packed”)
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Start with the square grid Gn with n2 vertices and 4n external
edges. In the example, we have n = 7.

(2) containing every other external
edge. (“Boundary condition”)

A FPL configuration of size n is a sub-
graph of the grid Gn
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FPL configurations : Enumeration
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...
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FPL configurations : Enumeration

An ASM is a square matrix with co-
efficients in {1, 0,−1} such that on
each row or column 1 and −1 alter-
nate, and the sum is 1.
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n

bijection
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FPL configurations : Enumeration

An ASM is a square matrix with co-
efficients in {1, 0,−1} such that on
each row or column 1 and −1 alter-
nate, and the sum is 1.

Here 1 and -1
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n

bijection
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FPL configurations : Enumeration

|FPLn| = An =
n−1∏
i=0

(3i+ 1)!

(n+ i)!

[Zeilberger ’96, Kuperberg ’96]
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Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size n



4-1

FPL configurations : Refined enumeration
Every FPL configuration determines a link pattern on the odd or
even external edges of the grid Gn.
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Link pattern= set of n noncrossing
chords between 2n points on a disk

|LPn| = Cn :=
1

n+ 1

(
2n
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)
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FPL configurations : Refined enumeration

If X =

Now if we are given a pairing X of external edges, our main
question will be : how many FPL configurations induce the link
pattern X ?
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For this link pattern we have AX = 2.
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Definition We note AX this number.
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FPL configurations : Refined enumeration

AX = AX′

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

Theorem [Wieland ’00]

Now given a link pattern X, let X ′ be defined by

(i, j) ∈ X ′ ⇔ (i− 1, j − 1) ∈ X
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FPL configurations : Refined enumeration

AX = AX′

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

Theorem [Wieland ’00]

Now given a link pattern X, let X ′ be defined by

(i, j) ∈ X ′ ⇔ (i− 1, j − 1) ∈ X

For enumeration purposes, we can then use
unlabeled link patterns :
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Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ei on link patterns for i = 1 . . . 2n
by {i, j}, {i+ 1, k} ∈ X → {i, i+ 1}, {j, k} ∈ ei(X).

ei

i
i+ 1i

i+ 1
j
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k
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Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ei on link patterns for i = 1 . . . 2n
by {i, j}, {i+ 1, k} ∈ X → {i, i+ 1}, {j, k} ∈ ei(X).

ei

i
i+ 1i

i+ 1
j

k

j

k

Markov chain M
• States = LPn ;
• Transition probabilities : P (X → Y ) = k

2n where k is the
number of i ∈ {1, . . . , 2n} such that ei(X) = Y .
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Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ei on link patterns for i = 1 . . . 2n
by {i, j}, {i+ 1, k} ∈ X → {i, i+ 1}, {j, k} ∈ ei(X).

ei

i
i+ 1i

i+ 1
j

k

j

k

Markov chain M
• States = LPn ;
• Transition probabilities : P (X → Y ) = k

2n where k is the
number of i ∈ {1, . . . , 2n} such that ei(X) = Y .

Stationary distribution (ψX) of M
Let P be the matrix defined by PXY = P (X → Y ) where
X,Y ∈ LPn. Then there is a unique probability distribution
(ψ)X on LPn such that Pψ = ψ.
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Motivation : the Razumov-Stroganov conjecture.

1/6
2/6
3/6

n = 3
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Motivation : the Razumov-Stroganov conjecture.
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RS conjecture : The stationary distribution (ψX)X∈LPn is given
by

ψX =
AX
An

Motivation : the Razumov-Stroganov conjecture.

Another formulation is : ∀X, 2nAX =
∑

(i,Y ),ei(Y )=X

AY
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RS conjecture : The stationary distribution (ψX)X∈LPn is given
by

ψX =
AX
An

Motivation : the Razumov-Stroganov conjecture.

Another formulation is : ∀X, 2nAX =
∑

(i,Y ),ei(Y )=X

AY

The numbers ψX were studied in detail by Di Francesco and
Zinn-Justin
→ integral expressions (up to a change of basis), multivariate
versions, computation in special cases.

For the numbers AX , very little is known in contrast.
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Special cases for AX

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2

Complicated determinant formulas

a

b

c

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]
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Special cases for AX

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2

Complicated determinant formulas

a

b

c

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]

In this talk we will describe a possible approach for the
computation of AX .
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Outline of the talk

(1) From the square to the triangle
We will explain a formula expressing numbers AX in terms of
FPL configurations in a certain triangle (TFPL), which uses link
patterns with nested arches.

(3) Extremal TFPL configurations
In a special case, we will show that TFPL configurations are enu-
merated by the famous Littlewood-Richardson coefficients.

(2) FPL configurations in a triangle
We will collect various formulas and relations for FPL configura-
tions in the triangle.

(0) Long introduction
Why do we want to count FPLs with a given link pattern ?



12-1

(1) From the square to the triangle
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

m

π

Link patterns with nested arches

X = π ∪m
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

Notation We write the number Aπ∪m as Aπ(m).

m

π

Link patterns with nested arches

X = π ∪m
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We consider now integers n,m ≥ 0, and
link patterns with m nested arches, and π
is a noncrossing matching with n arches.

Notation We write the number Aπ∪m as Aπ(m).

m

π

Link patterns with nested arches

X = π ∪m

Idea : for m large enough, we derive an expression
for Aπ(m) based on a certain combinatorial decom-
position. It turns out that the expression is actually
valid for all m ≥ 0.
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k 4n− 2 m− 3n− k + 1

π

m

π

We suppose m ≥ 3n− 1,
and choose k such that
0 ≤ k ≤ m− (3n− 1).
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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k 4n− 2 m− 3n− k + 1

π

R1

T

R2

Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.
⇒”Fixed edges”

To find them, the main
tool is a lemma proved
in [de Gier, ’02].
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .

Word σ = σ1 . . . σ2n in {0, 1}2n, where
σi = 0⇔ a vertical edge is present

σ1

σ2

σ3

σ4

σ5

σ6
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π

R2

T

R1

To compute the numbers Aπ(m), we will count FPL confi-
gurations separately in R1,R2, T .

For this, we need to encode the possible boundaries between
R1 and T , and between R2 and T .

Word τ = τ1 . . . τ2n in {0, 1}2n, where
τi = 1⇔ a vertical edge is present

τ6

τ5

τ4

τ3

τ2

τ1
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We can then write, for m ≥ 3n− 1 and 0 ≤ k ≤ m− (3n− 1)

Aπ(m) =
∑
σ,τ

|R1(σ, k)| × tπσ,τ × |R2(τ,m− 3n− k + 1)|

where

• R1(σ, .),R2(τ, .) are the sets of FPL confi-
gurations in the regionsR1 andR2 with boun-
daries σ, τ respectively ;

• σ, τ are words of length 2n on {0, 1} ;

• tπσ,τ is the number of FPL configurations in
the triangle T with boundary data {σ, π, τ}.

Putting things together

π

T
R1

R2

σ τ
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Words and Shapes

Words = Ferrers shapes in a box.

σ = 0101011110

σ

0 1

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6
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Words and Shapes

Words = Ferrers shapes in a box.

σ = 0101011110

Length d(σ) := the number of boxes in the diagram σ.

d(σ) = 9

Transpose σ∗ :=(1− σp) · · · (1− σ2)(1− σ1)

σ

0 1

Let σ = σ1 . . . σp be a word in {0, 1}p ; we write |σ| := p.

|σ| = 10, |σ|0 = 4, |σ|1 = 6

σ∗ = 1000010101
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σ ≤ σ′ σ → σ′

At most one more box per column
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σ ≤ σ′ σ → σ′

Definition
A semi standard Young tableau of shape σ and entries bounded
by N is a filling of the shape σ by integers in {1, . . . , N} such that
entries are strictly increasing in columns and weakly increasing in
rows.

At most one more box per column

The number of such tableaux is given by SSY T (σ,N), a polyno-
mial in N with leading term 1

H(σ)N
d(σ).

(Here H(σ) is the product of hook lengths of the shape σ.)
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Regions R1 and R2
Proposition [Caselli,Krattenthaler,Lass,N. ’05]

Let σ be a word of length 2n, and k ∈ N. There is a bijection
between FPLs in R1(σ, k) and semistandard Young tableaux of
shape σ and length n+ k.
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Regions R1 and R2
Proposition [Caselli,Krattenthaler,Lass,N. ’05]

Let σ be a word of length 2n, and k ∈ N. There is a bijection
between FPLs in R1(σ, k) and semistandard Young tableaux of
shape σ and length n+ k.

Aπ(m) =
∑
σ,τ

|R1(σ, 0)| · tπσ,τ · |R2(τ,m− 3n+ 1)|

=
∑
σ,τ

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

So for m ≥ 3n− 1 (and k = 0) we obtain :
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Regions R1 and R2
Proposition [Caselli,Krattenthaler,Lass,N. ’05]

Let σ be a word of length 2n, and k ∈ N. There is a bijection
between FPLs in R1(σ, k) and semistandard Young tableaux of
shape σ and length n+ k.

Aπ(m) =
∑
σ,τ

|R1(σ, 0)| · tπσ,τ · |R2(τ,m− 3n+ 1)|

=
∑
σ,τ

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

So for m ≥ 3n− 1 (and k = 0) we obtain :

Theorem [CKLN ’05]

Aπ(m) is a polynomial function of m for m ≥ 0
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11

0 1

Some more definitions
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Given a noncrossing matching π of size n, we can associate to it
a word, and thus a Ferrers shape :

0 0 0 00 1 1 1 11

Definition We note Dn the words w such that |w|0 = |w|1 = n
and which are smaller than (01)n.

We write 0n := 0n1n, and 1n := (01)n.Then (Dn,≤) forms a poset
with minimum 0n and maximum 1n.

0 1

The words obtained from matchings are the famous Dyck words :

Some more definitions
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Theorem [CKLN ’04]

For all σ, τ, π, we have tπσ,τ 6= 0 implies σ ≤ π.
Moreover, tππ,0n = 1 and tππτ = 0 if τ 6= 0n.

The final expression for Aπ(m)
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Theorem [CKLN ’04]

For all σ, τ, π, we have tπσ,τ 6= 0 implies σ ≤ π.
Moreover, tππ,0n = 1 and tππτ = 0 if τ 6= 0n.

As a consequence, the expression for Aπ(m) can be restricted to
words σ, τ ∈ Dn : for any m ≥ 0

Aπ(m) =
∑

σ,τ∈Dn

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

One can show then that Aπ(m) has leading term 1
H(π)m

d(π).

The final expression for Aπ(m)
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Theorem [CKLN ’04]

For all σ, τ, π, we have tπσ,τ 6= 0 implies σ ≤ π.
Moreover, tππ,0n = 1 and tππτ = 0 if τ 6= 0n.

As a consequence, the expression for Aπ(m) can be restricted to
words σ, τ ∈ Dn : for any m ≥ 0

Aπ(m) =
∑

σ,τ∈Dn

SSY T (σ, n) · tπσ,τ · SSY T (τ∗,m− 2n+ 1)

One can show then that Aπ(m) has leading term 1
H(π)m

d(π).

Our goal is to obtain a formula for Aπ(m), so the problem is now
to evaluate the numbers tπσ,τ , i.e. the number of FPLs in a triangle.

The final expression for Aπ(m)
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(2) FPL configurations in a triangle
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The triangle Tn

π

σ τ

0

0

0

0

0 0
0

0

1 1

11 1
1

1
1

1

0
σ1

σ2

σ3

σ4

σ5

σ6 τ1
τ2
τ3
τ4
τ5
τ6

We now study the FPL configurations in the triangle, in short
TFPL configurations.

Goal : understand the structure of TFPL configurations with given
boundaries, and deduce enumerative results.

π1 π2 π3 π4 π5 π6
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First properties

tπσ,τ = tπ
∗

τ∗,σ∗ .

A vertical symmetry gives immediately
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First properties

tπσ,τ = tπ
∗

τ∗,σ∗ .

∑
σ1∈Dn
σ→σ1

tπσ1,τ =
∑
τ1∈Dn
τ∗→τ∗1

tπσ,τ1 .

A vertical symmetry gives immediately

There holds also the following identity, the proof of which is
based on Wieland’s rotation :

σ τ

π

σ τ

π

Théorème [N ’09]



28-1

Theorem [CKLN ’04, N]

tπσ,τ 6= 0 implies σ ≤ π.

Proof (sketch) the idea is to attach to any TFPL f certain integers
Ni(f) ≥ 0 such that if f has boundaries σ, π, τ , then

πi − σi = Ni(f)−Ni−1(f)

for all i ≥ 1 , and N0(f) = 0. These integers Ni(f) actually count
certain edges in the configuration f .
One obtains then :

∀j,
∑
i≤j

(πi − σi) = Nj(f) ≥ 0,

which is equivalent to σ ≤ π.
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Common prefixes and suffixes

For σ = π,there is just one possible TFPL, which verifies τ = 0n.
What happens when σ is “close” to π ?
A partial answer : σ and π share a common prefix and/or suffix.
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Common prefixes and suffixes

For σ = π,there is just one possible TFPL, which verifies τ = 0n.
What happens when σ is “close” to π ?
A partial answer : σ and π share a common prefix and/or suffix.

π

σ

implies τ ⊆i.e.

Proposition [N]

Let π, σ, τ ∈ Dn. Let also u, v, σ′, π′, v be such that

σ = uσ′v and π = uπ′v.

Write a := |u|0 + |v|0 and b := |u|1 + |v|1.
Then tπσ,τ 6= 0 implies τ = 0aτ ′1b for a certain τ ′.



30-1

If π′ = 1n−b0n−a, then tπσ,τ can be written as a determinant of
size min(n− a, n− b), the entries of which are certain binomial
coefficients.

Proposition

This corresponds to the case where the skew shape π/σ is a “rotated
diagram”.

In a special case we can actually evaluate the coefficient tπσ,τ .

π

σ

Common prefixes and suffixes
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σ = 00100σ′1011
π = 00100π′1011

Common prefixes and suffixes
Idea of Proof : there are many fixed edges.

π

σ

σ

π
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Common prefixes and suffixes
Idea of Proof : there are many fixed edges.

π

σ

σ = 00100 · · · · ·1011
π = 00100111001011

σ

π
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(3) Extremal TFPL
and

Littlewood-Richardson coefficients.
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Extremal configurations

We previously saw the “non vanishing” constraint σ ≤ π.
Thapper proved another important such constraint :

tπσ,τ 6= 0 implies d(σ) + d(τ) ≤ d(π).



33-2

Extremal configurations

We previously saw the “non vanishing” constraint σ ≤ π.
Thapper proved another important such constraint :

tπσ,τ 6= 0 implies d(σ) + d(τ) ≤ d(π).

1

H(π)
=

∑
σ,τ∈Dn

d(σ)+d(τ)=d(π)

tπσ,τ ·
1

2d(σ)H(σ)
· 1

2d(τ)H(τ)

Following his idea, one obtains a certain identity in the case
d(σ) + d(τ) = d(π) :

Proposition For anyπ ∈ Dn,

Definition : We name extremal the TFPL with boundaries
{σ, π, τ} verifying d(σ) + d(τ) = d(π).
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tπσ,τ 6= 0 implies d(σ) + d(τ) ≤ d(π).(a)

1

H(π)
=

∑
σ,τ∈Dn

d(σ)+d(τ)=d(π)

tπσ,τ ·
1

2d(σ)H(σ)
· 1

2d(τ)H(τ)
(b)

Sketch of proof
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Let us recall that Aπ(m) is a polynomial of degree d(π) whose leading
coefficient is 1/H(π), and that

for k between 0 and m − (3n − 1). We choose then k = m/2 for
m even and large enough. Then we obtain
(a) by comparing coefficients in degree > d(π) and
(b) by comparing them in degree = d(π).

Aπ(m) =
∑
σ,τ

tπσ,τ · SSY T (σ, n+ k) · SSY T (τ∗,m+ 1− k − 2n).

tπσ,τ 6= 0 implies d(σ) + d(τ) ≤ d(π).(a)

1

H(π)
=

∑
σ,τ∈Dn

d(σ)+d(τ)=d(π)

tπσ,τ ·
1

2d(σ)H(σ)
· 1

2d(τ)H(τ)
(b)

Sketch of proof
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Littlewood Richardson coefficients

Let λ, µ, ν be partitions, and Λ(x) be the ring of symmetric func-
tions of the variables x1, x2, . . .. The Schur functions sλ(x) can
be defined as

sλ(x) =
∑
T

∏
i

xTii ,

where T goes through all semistandard Young tableaux of shape
λ, and Ti is the number of cells labeled i.
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Littlewood Richardson coefficients

Let λ, µ, ν be partitions, and Λ(x) be the ring of symmetric func-
tions of the variables x1, x2, . . .. The Schur functions sλ(x) can
be defined as

sλ(x) =
∑
T

∏
i

xTii ,

where T goes through all semistandard Young tableaux of shape
λ, and Ti is the number of cells labeled i.

Schur functions form a basis of Λ(x). We can expand sµ(x)sν(x)
on this basis, where the coefficients cλµ,ν are often called the
Littlewood-Richardson (LR) coefficients.

sµ(x)sν(x) =
∑
λ

cλµ,νsλ(x)
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Littlewood Richardson coefficients

We have also, if sλ(x, y) is the symmetric function sλ in the
variables x1, x2, . . . , y1, y2, . . .

sλ(x, y) =
∑
µ,ν

cλµ,νsµ(x)sν(y)

By homogeneity of Schur functions, we have

cλµ,ν 6= 0 implies d(λ) = d(µ) + d(ν).



36-2

Littlewood Richardson coefficients

We have also, if sλ(x, y) is the symmetric function sλ in the
variables x1, x2, . . . , y1, y2, . . .

sλ(x, y) =
∑
µ,ν

cλµ,νsµ(x)sν(y)

If we evaluate this at xi = yi = 1 for i = 1, . . . ,m/2, xi = yi = 0
for i > m/2, we obtain polynomials in m which give the following
identity in top degree d(λ) :

1

H(λ)
=
∑
µ,ν

cλµ,ν ·
1

2d(µ)H(µ)
· 1

2d(ν)H(ν)

By homogeneity of Schur functions, we have

cλµ,ν 6= 0 implies d(λ) = d(µ) + d(ν).
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Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,∑

σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that d(σ) + d(τ) = d(π)
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Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,∑

σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that d(σ) + d(τ) = d(π)

Theorem [N. ’09]

For all words π, σ, τ ∈ Dn verifying d(σ) + d(τ) = d(π),
we have

tπσ,τ = cπσ,τ



37-3

Littlewood Richardson coefficients
As a consequence, there exist aστ> 0 such that, for any π ∈ Dn,∑

σ,τ

aστ c
π
σ,τ =

∑
σ,τ

aστ t
π
σ,τ (E)

in which σ, τ go through all words such that d(σ) + d(τ) = d(π)

Theorem [N. ’09]

For all words π, σ, τ ∈ Dn verifying d(σ) + d(τ) = d(π),
we have

tπσ,τ = cπσ,τ

Thanks to equation (E), we need only prove that cπσ,τ ≤ tπσ,τ
for all σ, τ, π such that d(σ) + d(τ) = d(π).
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.
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There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Fix σ, π, τ ∈ Dn, and label the boundary
edges of the triangle.

π = 00110101
σ = 00011011
τ = 00011011

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

σ τ

π
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Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling
of each edge of the triangle by 0, 1 or 2, such that :
• the labels on the boundary are given by σ, π, τ ;
• on each unit triangle, the induced labeling must be among :

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02

0

0

0

0

1

1

1

1 0

0

0

1

1

1

0 1 1 1 10 0 0

1
0

1
0

“Only 0s, only 1s, or 0, 1, 2 coun-
terclockwise’’
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Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling
of each edge of the triangle by 0, 1 or 2, such that :
• the labels on the boundary are given by σ, π, τ ;
• on each unit triangle, the induced labeling must be among :

We will picture the labeling of
edges as follows :

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02

label 0
label 1
label 2

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0
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Theorem [Knutson, Tao ’03][K., T. and Woodward ’03]

Let σ, τ, π ∈ Dn. Then the number of KT-puzzles with boun-
dary data σ, π, τ is equal to the LR coefficient cπσ,τ .
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Theorem [Knutson, Tao ’03][K., T. and Woodward ’03]

Let σ, τ, π ∈ Dn. Then the number of KT-puzzles with boun-
dary data σ, π, τ is equal to the LR coefficient cπσ,τ .

For example, it is easy to see that there is
only one puzzle with the boundary data of
the example.

so cλµ,ν = 1 where

0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

λ =

µ =

ν =
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From KT puzzles to TFPL configurations.

We fix σ, π, τ ∈ Dn, such that d(σ) + d(τ) = d(π). We will
define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, π, τ

Φ
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From KT puzzles to TFPL configurations.

We fix σ, π, τ ∈ Dn, such that d(σ) + d(τ) = d(π). We will
define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, π, τ

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02

Φ
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From KT puzzles to TFPL configurations.

We fix σ, π, τ ∈ Dn, such that d(σ) + d(τ) = d(π). We will
define a map Φ.

KT puzzles with boundary data σ, π, τ

TFPL configurations with boundaries σ, π, τ

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.

0 0

0

000

0

1 1

1

1

1 1

1

1

1

1

1

1

2

2

2 2

20

0

0

0

0

02
Φ

Φ
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0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

From KT puzzles to TFPL configurations.
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0

0

0

0

1

1

1

1 0

0

1

0

0

1

1

1

0 1 1 1 10 0 0

From KT puzzles to TFPL configurations.From KT puzzles to TFPL configurations.
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From KT puzzles to TFPL configurations.
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One has to prove that Φ is :

1. well defined :
– the vertices of Φ(puzzle) are of degree 2 ,
– Φ(puzzle) verifies the boundary conditions σ, τ .
– the connectivity of external edges given by π is respected.

2. injective.

Φ is the wanted bijection

Φ

0
0
0

0

1
1
1

1 0
0

1

0

0

1

1
1

0 1 1 1 10 0 0
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d(σ)

d(τ)

Conclusion

d(σ) + d(τ) = d(π)

tπσ,τ for fixed π.

We have obtained enumerative results for certain numbers tπσ,τ
( in blue). In red are the coefficients tπσ,0n .
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Conclusion
– To compute AX , one needs all coeffs tπσ,τ , and not only the

extremal ones. A natural parameter to partition these num-
bers is exc(π, σ, τ) := d(π)− d(σ)− d(τ) ≥ 0.
The LR coefficients form the base case exc(π, σ, τ) = 0 ;
what are the general tπσ,τ ?
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Conclusion
– To compute AX , one needs all coeffs tπσ,τ , and not only the

extremal ones. A natural parameter to partition these num-
bers is exc(π, σ, τ) := d(π)− d(σ)− d(τ) ≥ 0.
The LR coefficients form the base case exc(π, σ, τ) = 0 ;
what are the general tπσ,τ ?

– Other direction (based on [Thapper ’07]).The polynomials
Aπ(m) verify linear recurrences

Aπ(m) =
∑

α≤π∈Dn

cαπAα(m− 1),

where cαπ are integers, defined in terms of the coefficients
tπσ0n . What are these coefficients cαπ ?
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Conclusion
– To compute AX , one needs all coeffs tπσ,τ , and not only the

extremal ones. A natural parameter to partition these num-
bers is exc(π, σ, τ) := d(π)− d(σ)− d(τ) ≥ 0.
The LR coefficients form the base case exc(π, σ, τ) = 0 ;
what are the general tπσ,τ ?

– Other direction (based on [Thapper ’07]).The polynomials
Aπ(m) verify linear recurrences

Aπ(m) =
∑

α≤π∈Dn

cαπAα(m− 1),

where cαπ are integers, defined in terms of the coefficients
tπσ0n . What are these coefficients cαπ ?

– Related work : joint with T. Fonseca, nice conjectures about
the polynomials Aπ(m) pointing to combinatorial recipro-
city for them ; cf arXiv.CO two days ago.
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Vielen Dank für Ihre Aufmerksamkeit !
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