Fully Packed Loop Configurations and

Littlewood Richardson coefficients

Philippe Nadeau
Faculty of Mathematics, University of Vienna

MIT Combinatorics seminar, February 24th, 2010

FPL configurations : Definition

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges. In the example, we have $n=7$.

FPL configurations: Definition

Start with the square grid G_{n} with n^{2} vertices and $4 n$ external edges. In the example, we have $n=7$.

A FPL configuration of size n is a subgraph of the grid G_{n}
(1) such that around each vertex of G_{n}, 2 edges out of 4 are selected ; ("Fully Packed")
(2) containing every other external edge. ("Boundary condition")

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary
\downarrow bijection
Alternating sign matrices of size n

An ASM is a square matrix with coefficients in $\{1,0,-1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1 .

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary
\dagger bijection
Alternating sign matrices of size n

An ASM is a square matrix with coefficients in $\{1,0,-1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1 .

$$
\text { Here } 1 \rightarrow 0 \text { and }-1 \longrightarrow 0
$$

FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary \downarrow
Alternating sign matrices of size n

$$
\begin{aligned}
& \left|F P L_{n}\right|=A_{n}=\prod_{i=0}^{n-1} \frac{(3 i+1)!}{(n+i)!} \\
& \text { [Zeilberger '96, Kuperberg '96] }
\end{aligned}
$$

FPL configurations: Refined enumeration

Every FPL configuration determines a link pattern on the odd or even external edges of the grid G_{n}.

Link pattern $=$ set of n noncrossing chords between $2 n$ points on a disk

$$
\left|L P_{n}\right|=C_{n}:=\frac{1}{n+1}\binom{2 n}{n}
$$

FPL configurations: Refined enumeration

Now if we are given a pairing X of external edges, our main question will be : how many FPL configurations induce the link pattern X ?

Definition We note A_{X} this number.

For this link pattern we have $A_{X}=2$.

FPL configurations: Refined enumeration

Now given a link pattern X, let X^{\prime} be defined by

$$
(i, j) \in X^{\prime} \Leftrightarrow(i-1, j-1) \in X
$$

Theorem [Wieland '00]

$$
A_{X}=A_{X^{\prime}}
$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

FPL configurations: Refined enumeration

Now given a link pattern X, let X^{\prime} be defined by

$$
(i, j) \in X^{\prime} \Leftrightarrow(i-1, j-1) \in X
$$

Theorem [Wieland '00]

$$
A_{X}=A_{X^{\prime}}
$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

For enumeration purposes, we can then use unlabeled link patterns :

Motivation : the Razumov-Stroganov conjecture.

Definition: We define operators e_{i} on link patterns for $i=1 \ldots 2 n$ by $\{i, j\},\{i+1, k\} \in X \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(X)$.

Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators e_{i} on link patterns for $i=1 \ldots 2 n$ by $\{i, j\},\{i+1, k\} \in X \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(X)$.

Markov chain \mathcal{M}

- States $=L P_{n}$;
- Transition probabilities : $P(X \rightarrow Y)=\frac{k}{2 n}$ where k is the number of $i \in\{1, \ldots, 2 n\}$ such that $e_{i}(X)=Y$.

Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators e_{i} on link patterns for $i=1 \ldots 2 n$ by $\{i, j\},\{i+1, k\} \in X \rightarrow\{i, i+1\},\{j, k\} \in e_{i}(X)$.

Markov chain \mathcal{M}

- States $=L P_{n}$;
- Transition probabilities : $P(X \rightarrow Y)=\frac{k}{2 n}$ where k is the number of $i \in\{1, \ldots, 2 n\}$ such that $e_{i}(X)=Y$.

Stationary distribution $\left(\psi_{X}\right)$ of \mathcal{M}
Let P be the matrix defined by $P_{X Y}=P(X \rightarrow Y)$ where $X, Y \in L P_{n}$. Then there is a unique probability distribution $(\psi)_{X}$ on $L P_{n}$ such that $P \psi=\psi$.

Motivation : the Razumov-Stroganov conjecture.

Motivation : the Razumov-Stroganov conjecture.

Motivation : the Razumov-Stroganov conjecture.

RS conjecture : The stationary distribution $\left(\psi_{X}\right)_{X \in L P_{n}}$ is given by

$$
\psi_{X}=\frac{A_{X}}{A_{n}}
$$

Another formulation is : $\quad \forall X, \quad 2 n A_{X}=$

$$
\sum_{(i, Y), e_{i}(Y)=X} A_{Y}
$$

Motivation : the Razumov-Stroganov conjecture.

RS conjecture : The stationary distribution $\left(\psi_{X}\right)_{X \in L P_{n}}$ is given by

$$
\psi_{X}=\frac{A_{X}}{A_{n}}
$$

Another formulation is: $\quad \forall X, \quad 2 n A_{X}=\sum_{(i, Y), e_{i}(Y)=X} A_{Y}$
The numbers ψ_{X} were studied in detail by Di Francesco and Zinn-Justin
\rightarrow integral expressions (up to a change of basis), multivariate versions, computation in special cases.

For the numbers A_{X}, very little is known in contrast.

Special cases for A_{X}

二 Complicated determinant formulas
[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]

Special cases for A_{X}

二 Complicated determinant formulas
[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]
In this talk we will describe a possible approach for the computation of A_{X}.

Outline of the talk

(0) Long introduction

Why do we want to count FPLs with a given link pattern?
(1) From the square to the triangle

We will explain a formula expressing numbers A_{X} in terms of FPL configurations in a certain triangle (TFPL), which uses link patterns with nested arches.
(2) FPL configurations in a triangle We will collect various formulas and relations for FPL configurations in the triangle.
(3) Extremal TFPL configurations

In a special case, we will show that TFPL configurations are enumerated by the famous Littlewood-Richardson coefficients.
(1) From the square to the triangle

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

$$
X=\pi \cup m
$$

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

$$
X=\pi \cup m
$$

Notation We write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Link patterns with nested arches

We consider now integers $n, m \geq 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

$$
X=\pi \cup m
$$

Notation We write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Idea : for m large enough, we derive an expression for $A_{\pi}(m)$ based on a certain combinatorial decomposition. It turns out that the expression is actually valid for all $m \geq 0$.

We suppose $m \geq 3 n-1$, and choose k such that $0 \leq k \leq m-(3 n-1)$.

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

Many edges of the grid belong to every FPL configuration respecting the link pattern.
\Rightarrow "Fixed edges"

To find them, the main tool is a lemma proved in [de Gier, '02].

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

Word $\sigma=\sigma_{1} \ldots \sigma_{2 n}$ in $\{0,1\}^{2 n}$, where $\sigma_{i}=0 \Leftrightarrow$ a vertical edge is present

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_{1}, \mathcal{R}_{2}, \mathcal{T}$.
For this, we need to encode the possible boundaries between \mathcal{R}_{1} and \mathcal{T}, and between \mathcal{R}_{2} and \mathcal{T}.

Word $\tau=\tau_{1} \ldots \tau_{2 n}$ in $\{0,1\}^{2 n}$, where $\tau_{i}=1 \Leftrightarrow$ a vertical edge is present

Putting things together

We can then write, for $m \geq 3 n-1$ and $0 \leq k \leq m-(3 n-1)$

$$
A_{\pi}(m)=\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, k)\right| \times t_{\sigma, \tau}^{\pi} \times\left|\mathcal{R}_{2}(\tau, m-3 n-k+1)\right|
$$

where

- σ, τ are words of length $2 n$ on $\{0,1\}$;
- $\mathcal{R}_{1}(\sigma,),. \mathcal{R}_{2}(\tau,$.$) are the sets of FPL confi-$ gurations in the regions \mathcal{R}_{1} and \mathcal{R}_{2} with boundaries σ, τ respectively;
- $t_{\sigma, \tau}^{\pi}$ is the number of FPL configurations in the triangle \mathcal{T} with boundary data $\{\sigma, \pi, \tau\}$.

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.

Words $=$ Ferrers shapes in a box.

$$
\sigma=0101011110 \quad|\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
$$

Words and Shapes

Let $\sigma=\sigma_{1} \ldots \sigma_{p}$ be a word in $\{0,1\}^{p}$; we write $|\sigma|:=p$.

Words $=$ Ferrers shapes in a box.

$$
\sigma=0101011110 \quad|\sigma|=10,|\sigma|_{0}=4,|\sigma|_{1}=6
$$

$$
\begin{aligned}
& d(\sigma)=9 \\
& \sigma^{*}=1000010101
\end{aligned}
$$

Length $d(\sigma):=$ the number of boxes in the diagram σ.
Transpose $\sigma^{*}:=\left(1-\sigma_{p}\right) \cdots\left(1-\sigma_{2}\right)\left(1-\sigma_{1}\right)$

At most one more box per column

At most one more box per column

Definition

A semi standard Young tableau of shape σ and entries bounded by N is a filling of the shape σ by integers in $\{1, \ldots, N\}$ such that entries are strictly increasing in columns and weakly increasing in rows.

The number of such tableaux is given by $\operatorname{SSY} T(\sigma, N)$, a polynomial in N with leading term $\frac{1}{H(\sigma)} N^{d(\sigma)}$.
(Here $H(\sigma)$ is the product of hook lengths of the shape σ.)

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [Caselli,Krattenthaler,Lass,N. '05]
Let σ be a word of length $2 n$, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_{1}(\sigma, k)$ and semistandard Young tableaux of shape σ and length $n+k$.

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let σ be a word of length $2 n$, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_{1}(\sigma, k)$ and semistandard Young tableaux of shape σ and length $n+k$.
So for $m \geq 3 n-1$ (and $k=0$) we obtain :

$$
\begin{aligned}
A_{\pi}(m) & =\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, 0)\right| \cdot t_{\sigma, \tau}^{\pi} \cdot\left|\mathcal{R}_{2}(\tau, m-3 n+1)\right| \\
& =\sum_{\sigma, \tau} \operatorname{SSY}(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot \operatorname{SSY}\left(\tau^{*}, m-2 n+1\right)
\end{aligned}
$$

Regions \mathcal{R}_{1} and \mathcal{R}_{2}

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let σ be a word of length $2 n$, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_{1}(\sigma, k)$ and semistandard Young tableaux of shape σ and length $n+k$.
So for $m \geq 3 n-1$ (and $k=0$) we obtain :

$$
\begin{aligned}
A_{\pi}(m) & =\sum_{\sigma, \tau}\left|\mathcal{R}_{1}(\sigma, 0)\right| \cdot t_{\sigma, \tau}^{\pi} \cdot\left|\mathcal{R}_{2}(\tau, m-3 n+1)\right| \\
& =\sum_{\sigma, \tau} \operatorname{SSY}(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot \operatorname{SSY}\left(\tau^{*}, m-2 n+1\right)
\end{aligned}
$$

Theorem [CKLN '05]
$A_{\pi}(m)$ is a polynomial function of m for $m \geq 0$

Some more definitions

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Some more definitions

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

The words obtained from matchings are the famous Dyck words :
Definition We note \mathcal{D}_{n} the words w such that $|w|_{0}=|w|_{1}=n$ and which are smaller than (01) ${ }^{n}$.

We write $\mathbf{0}_{n}:=0^{n} 1^{n}$, and $\mathbf{1}_{n}:=(01)^{n}$. Then $\left(\mathcal{D}_{n}, \leq\right)$ forms a poset with minimum $\mathbf{0}_{n}$ and maximum $\mathbf{1}_{n}$.

The final expression for $A_{\pi}(m)$
Theorem [CKLN '04]
For all σ, τ, π, we have $t_{\sigma, \tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi, \mathbf{0}_{n}}^{\pi}=1$ and $t_{\pi \tau}^{\pi}=0$ if $\tau \neq \mathbf{0}_{n}$.

The final expression for $A_{\pi}(m)$

Theorem [CKLN '04]

For all σ, τ, π, we have $t_{\sigma, \tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi, \mathbf{0}_{n}}^{\pi}=1$ and $t_{\pi \tau}^{\pi}=0$ if $\tau \neq \mathbf{0}_{n}$.

As a consequence, the expression for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_{n}$: for any $m \geq 0$

$$
A_{\pi}(m)=\sum_{\sigma, \tau \in \mathcal{D}_{n}} S S Y T(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot \operatorname{SSY} T\left(\tau^{*}, m-2 n+1\right)
$$

One can show then that $A_{\pi}(m)$ has leading term $\frac{1}{H(\pi)} m^{d(\pi)}$.

The final expression for $A_{\pi}(m)$

Theorem [CKLN '04]

For all σ, τ, π, we have $t_{\sigma, \tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi, \mathbf{0}_{n}}^{\pi}=1$ and $t_{\pi \tau}^{\pi}=0$ if $\tau \neq \mathbf{0}_{n}$.

As a consequence, the expression for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_{n}:$ for any $m \geq 0$

$$
A_{\pi}(m)=\sum_{\sigma, \tau \in \mathcal{D}_{n}} S S Y T(\sigma, n) \cdot t_{\sigma, \tau}^{\pi} \cdot \operatorname{SSY}\left(\tau^{*}, m-2 n+1\right)
$$

One can show then that $A_{\pi}(m)$ has leading term $\frac{1}{H(\pi)} m^{d(\pi)}$.
Our goal is to obtain a formula for $A_{\pi}(m)$, so the problem is now to evaluate the numbers $t_{\sigma, \tau}^{\pi}$, i.e. the number of FPLs in a triangle.

(2) FPL configurations in a triangle

The triangle \mathcal{T}_{n}

We now study the FPL configurations in the triangle, in short TFPL configurations.

Goal : understand the structure of TFPL configurations with given boundaries, and deduce enumerative results.

First properties

A vertical symmetry gives immediately

$$
t_{\sigma, \tau}^{\pi}=t_{\tau^{*}, \sigma^{*}}^{\pi^{*}} .
$$

First properties

A vertical symmetry gives immediately

$$
t_{\sigma, \tau}^{\pi}=t_{\tau^{*}, \sigma^{*}}^{\pi^{*}}
$$

There holds also the following identity, the proof of which is based on Wieland's rotation :

Théorème [N '09]
$\mid \sum_{\substack{\sigma_{1} \in \mathcal{D}_{n} \\ \sigma \rightarrow \sigma_{1}}} t_{\sigma_{1}, \tau}^{\pi}=\sum_{\substack{\tau_{1} \in \mathcal{D}_{n} \\ \tau^{*} \rightarrow \tau_{1}^{*}}} t_{\sigma, \tau_{1}}^{\pi}$.

Theorem [CKLN '04, N]

$$
t_{\sigma, \tau}^{\pi} \neq 0 \text { implies } \sigma \leq \pi
$$

Proof (sketch) the idea is to attach to any TFPL f certain integers $N_{i}(f) \geq 0$ such that if f has boundaries σ, π, τ, then

$$
\pi_{i}-\sigma_{i}=N_{i}(f)-N_{i-1}(f)
$$

for all $i \geq 1$, and $N_{0}(f)=0$. These integers $N_{i}(f)$ actually count certain edges in the configuration f.
One obtains then :

$$
\forall j, \sum_{i \leq j}\left(\pi_{i}-\sigma_{i}\right)=N_{j}(f) \geq 0
$$

which is equivalent to $\sigma \leq \pi$.

Common prefixes and suffixes

For $\sigma=\pi$, there is just one possible TFPL, which verifies $\tau=\mathbf{0}_{n}$. What happens when σ is "close" to π ?
A partial answer : σ and π share a common prefix and/or suffix.

Common prefixes and suffixes

For $\sigma=\pi$, there is just one possible TFPL, which verifies $\tau=\mathbf{0}_{n}$. What happens when σ is "close" to π ?
A partial answer : σ and π share a common prefix and/or suffix.

Proposition [N]

Let $\pi, \sigma, \tau \in \mathcal{D}_{n}$. Let also $u, v, \sigma^{\prime}, \pi^{\prime}, v$ be such that

$$
\sigma=u \sigma^{\prime} v \quad \text { and } \quad \pi=u \pi^{\prime} v
$$

Write $a:=|u|_{0}+|v|_{0}$ and $b:=|u|_{1}+|v|_{1}$.
Then $t_{\sigma, \tau}^{\pi} \neq 0$ implies $\tau=0^{a} \tau^{\prime} 1^{b}$ for a certain τ^{\prime}.

implies
$\tau \subseteq$

Common prefixes and suffixes

In a special case we can actually evaluate the coefficient $t_{\sigma, \tau}^{\pi}$.

Proposition

> If $\pi^{\prime}=1^{n-b} 0^{n-a}$, then $t_{\sigma, \tau}^{\pi}$ can be written as a determinant of size $\min (n-a, n-b)$, the entries of which are certain binomial coefficients.

This corresponds to the case where the skew shape π / σ is a "rotated diagram".

Common prefixes and suffixes

Idea of Proof: there are many fixed edges.

$$
\begin{aligned}
& \sigma=00100 \sigma^{\prime} 1011 \\
& \pi=00100 \pi^{\prime} 1011
\end{aligned}
$$

Common prefixes and suffixes

Idea of Proof: there are many fixed edges.

$$
\begin{aligned}
\sigma & =00100 \cdots \cdots 1011 \\
\pi & =00100111001011
\end{aligned}
$$

(3) Extremal TFPL and

 Littlewood-Richardson coefficients.
Extremal configurations

We previously saw the "non vanishing" constraint $\sigma \leq \pi$.
Thapper proved another important such constraint :

$$
t_{\sigma, \tau}^{\pi} \neq 0 \text { implies } d(\sigma)+d(\tau) \leq d(\pi)
$$

Extremal configurations

We previously saw the "non vanishing" constraint $\sigma \leq \pi$. Thapper proved another important such constraint :

$$
t_{\sigma, \tau}^{\pi} \neq 0 \text { implies } d(\sigma)+d(\tau) \leq d(\pi)
$$

Following his idea, one obtains a certain identity in the case $d(\sigma)+d(\tau)=d(\pi):$

Proposition For any $\pi \in \mathcal{D}_{n}$,

$$
\frac{1}{H(\pi)}=\sum_{\substack{\sigma, \tau \in \mathcal{D}_{n} \\ d(\sigma)+d(\tau)=d(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)} H(\sigma)} \cdot \frac{1}{2^{d(\tau)} H(\tau)}
$$

Definition : We name extremal the TFPL with boundaries $\{\sigma, \pi, \tau\}$ verifying $d(\sigma)+d(\tau)=d(\pi)$.

Sketch of proof

(a) $t_{\sigma, \tau}^{\pi} \neq 0$ implies $d(\sigma)+d(\tau) \leq d(\pi)$.
(b) $\frac{1}{H(\pi)}=\sum_{\sigma, \tau \in \mathcal{D}_{n}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)} H(\sigma)} \cdot \frac{1}{2^{d(\tau)} H(\tau)}$ $d(\sigma)+d(\tau)=d(\pi)$

Sketch of proof

(a) $t_{\sigma, \tau}^{\pi} \neq 0$ implies $d(\sigma)+d(\tau) \leq d(\pi)$.
(b) $\frac{1}{H(\pi)}=\sum_{\substack{\sigma, \tau \in \mathcal{D}_{n} \\ d(\sigma)+d(\tau)=d(\pi)}} t_{\sigma, \tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)} H(\sigma)} \cdot \frac{1}{2^{d(\tau)} H(\tau)}$

Let us recall that $A_{\pi}(m)$ is a polynomial of degree $d(\pi)$ whose leading coefficient is $1 / H(\pi)$, and that

$$
A_{\pi}(m)=\sum_{\sigma, \tau} t_{\sigma, \tau}^{\pi} \cdot S S Y T(\sigma, n+k) \cdot S S Y T\left(\tau^{*}, m+1-k-2 n\right)
$$

for k between 0 and $m-(3 n-1)$. We choose then $k=m / 2$ for m even and large enough. Then we obtain
(a) by comparing coefficients in degree $>d(\pi)$ and
(b) by comparing them in degree $=d(\pi)$.

Littlewood Richardson coefficients

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_{1}, x_{2}, \ldots The Schur functions $s_{\lambda}(x)$ can be defined as

$$
s_{\lambda}(x)=\sum_{T} \prod_{i} x_{i}^{T_{i}}
$$

where T goes through all semistandard Young tableaux of shape λ, and T_{i} is the number of cells labeled i.

Littlewood Richardson coefficients

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_{1}, x_{2}, \ldots The Schur functions $s_{\lambda}(x)$ can be defined as

$$
s_{\lambda}(x)=\sum_{T} \prod_{i} x_{i}^{T_{i}}
$$

where T goes through all semistandard Young tableaux of shape λ, and T_{i} is the number of cells labeled i.

Schur functions form a basis of $\Lambda(x)$. We can expand $s_{\mu}(x) s_{\nu}(x)$ on this basis, where the coefficients $c_{\mu, \nu}^{\lambda}$ are often called the Littlewood-Richardson (LR) coefficients.

$$
s_{\mu}(x) s_{\nu}(x)=\sum_{\lambda} c_{\mu, \nu}^{\lambda} s_{\lambda}(x)
$$

Littlewood Richardson coefficients

By homogeneity of Schur functions, we have

$$
c_{\mu, \nu}^{\lambda} \neq 0 \text { implies } d(\lambda)=d(\mu)+d(\nu) .
$$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$

$$
s_{\lambda}(x, y)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)
$$

Littlewood Richardson coefficients

By homogeneity of Schur functions, we have

$$
c_{\mu, \nu}^{\lambda} \neq 0 \text { implies } d(\lambda)=d(\mu)+d(\nu) .
$$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots$

$$
s_{\lambda}(x, y)=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)
$$

If we evaluate this at $x_{i}=y_{i}=1$ for $i=1, \ldots, m / 2, x_{i}=y_{i}=0$ for $i>m / 2$, we obtain polynomials in m which give the following identity in top degree $d(\lambda)$:

$$
\frac{1}{H(\lambda)}=\sum_{\mu, \nu} c_{\mu, \nu}^{\lambda} \cdot \frac{1}{2^{d(\mu)} H(\mu)} \cdot \frac{1}{2^{d(\nu)} H(\nu)}
$$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $d(\sigma)+d(\tau)=d(\pi)$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $d(\sigma)+d(\tau)=d(\pi)$
Theorem [N. '09]
For all words $\pi, \sigma, \tau \in \mathcal{D}_{n}$ verifying $d(\sigma)+d(\tau)=d(\pi)$, we have

$$
t_{\sigma, \tau}^{\pi}=c_{\sigma, \tau}^{\pi}
$$

Littlewood Richardson coefficients

As a consequence, there exist $a_{\sigma \tau}>0$ such that, for any $\pi \in \mathcal{D}_{n}$,

$$
\begin{equation*}
\sum_{\sigma, \tau} a_{\sigma \tau} c_{\sigma, \tau}^{\pi}=\sum_{\sigma, \tau} a_{\sigma \tau} t_{\sigma, \tau}^{\pi} \tag{E}
\end{equation*}
$$

in which σ, τ go through all words such that $d(\sigma)+d(\tau)=d(\pi)$
Theorem [N. '09]
For all words $\pi, \sigma, \tau \in \mathcal{D}_{n}$ verifying $d(\sigma)+d(\tau)=d(\pi)$, we have

$$
t_{\sigma, \tau}^{\pi}=c_{\sigma, \tau}^{\pi}
$$

Thanks to equation (E), we need only prove that $c_{\sigma, \tau}^{\pi} \leq t_{\sigma, \tau}^{\pi}$ for all σ, τ, π such that $d(\sigma)+d(\tau)=d(\pi)$.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size $2 n$ on the triangular lattice.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size $2 n$ on the triangular lattice.
Fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, and label the boundary edges of the triangle.

$$
\begin{aligned}
& \pi=00110101 \\
& \sigma=00011011 \\
& \tau=00011011
\end{aligned}
$$

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0,1 or 2 , such that :

- the labels on the boundary are given by σ, π, τ;
- on each unit triangle, the induced labeling must be among :

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0,1 or 2 , such that :

- the labels on the boundary are given by σ, π, τ;
- on each unit triangle, the induced labeling must be among :

We will picture the labeling of edges as follows :

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_{n}$. Then the number of KT -puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma, \tau}^{\pi}$.

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_{n}$. Then the number of KT-puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma, \tau}^{\pi}$.

For example, it is easy to see that there is only one puzzle with the boundary data of the example.
so $c_{\mu, \nu}^{\lambda}=1$ where

$$
\begin{aligned}
& \lambda=\square \square \\
& \mu=\square \square \square \\
& \nu=\square
\end{aligned}
$$

From KT puzzles to TFPL configurations.
We fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, such that $d(\sigma)+d(\tau)=d(\pi)$. We will define a map Φ.

KT puzzles with boundary data σ, π, τ

$$
\Phi
$$

TFPL configurations with boundaries σ, π, τ

From KT puzzles to TFPL configurations.
We fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$, such that $d(\sigma)+d(\tau)=d(\pi)$. We will define a map Φ.

KT puzzles with boundary data σ, π, τ
Φ
TFPL configurations with boundaries σ, π, τ
The map is local: it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

From KT puzzles to TFPL configurations．
We fix $\sigma, \pi, \tau \in \mathcal{D}_{n}$ ，such that $d(\sigma)+d(\tau)=d(\pi)$ ．We will define a map Φ ．

KT puzzles with boundary data σ, π, τ
Φ
TFPL configurations with boundaries σ, π, τ
The map is local：it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration．
$\overbrace{0}^{0} 0$
苑亩
立
$\stackrel{0}{8}$

From KT puzzles to TFPL configurations.

From KT puzzles to TFPL configurations.

From KT puzzles to TFPL configurations.

Φ is the wanted bijection
One has to prove that Φ is :

1. well defined :

- the vertices of $\Phi(p u z z l e)$ are of degree 2 ,
- $\Phi(p u z z l e)$ verifies the boundary conditions σ, τ.
- the connectivity of external edges given by π is respected.

2. injective.

Conclusion

We have obtained enumerative results for certain numbers $t_{\sigma, \tau}^{\pi}$ (in blue). In red are the coefficients $t_{\sigma, \mathbf{0}_{n}}^{\pi}$.

Conclusion

- To compute A_{X}, one needs all coeffs $t_{\sigma, \tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $\operatorname{exc}(\pi, \sigma, \tau):=d(\pi)-d(\sigma)-d(\tau) \geq 0$.
The LR coefficients form the base case $\operatorname{exc}(\pi, \sigma, \tau)=0$; what are the general $t_{\sigma, \tau}^{\pi}$?

Conclusion

- To compute A_{X}, one needs all coeffs $t_{\sigma, \tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $\operatorname{exc}(\pi, \sigma, \tau):=d(\pi)-d(\sigma)-d(\tau) \geq 0$. The LR coefficients form the base case $\operatorname{exc}(\pi, \sigma, \tau)=0$; what are the general $t_{\sigma, \tau}^{\pi}$?
- Other direction (based on [Thapper '07]). The polynomials $A_{\pi}(m)$ verify linear recurrences

$$
A_{\pi}(m)=\sum_{\alpha \leq \pi \in \mathcal{D}_{n}} c_{\alpha \pi} A_{\alpha}(m-1)
$$

where $c_{\alpha \pi}$ are integers, defined in terms of the coefficients $t_{\sigma 0_{n}}^{\pi}$. What are these coefficients $c_{\alpha \pi}$?

Conclusion

- To compute A_{X}, one needs all coeffs $t_{\sigma, \tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $\operatorname{exc}(\pi, \sigma, \tau):=d(\pi)-d(\sigma)-d(\tau) \geq 0$. The LR coefficients form the base case $\operatorname{exc}(\pi, \sigma, \tau)=0$; what are the general $t_{\sigma, \tau}^{\pi}$?
- Other direction (based on [Thapper '07]). The polynomials $A_{\pi}(m)$ verify linear recurrences

$$
A_{\pi}(m)=\sum_{\alpha \leq \pi \in \mathcal{D}_{n}} c_{\alpha \pi} A_{\alpha}(m-1)
$$

where $c_{\alpha \pi}$ are integers, defined in terms of the coefficients $t_{\sigma \mathbf{0}_{n}}^{\pi}$. What are these coefficients $c_{\alpha \pi}$?

- Related work: joint with T. Fonseca, nice conjectures about the polynomials $A_{\pi}(m)$ pointing to combinatorial reciprocity for them ; cf arXiv.CO two days ago.

Vielen Dank für Ihre Aufmerksamkeit!

