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FPL configurations : Definition

Start with the square grid G,, with n? vertices and 4n external
edges. In the example, we have n = 7.
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FPL configurations : Definition

Start with the square grid G,, with n? vertices and 4n external
edges. In the example, we have n = 7.
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A FPL configuration of size n is a sub-
graph of the grid G,,

(1) such that around each vertex of G,

2 edges out of 4 are selected; (“Fully
Packed")

(2) containing every other external
edge. ( “Boundary condition™)



FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

21201918 1716 15
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FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

2:1 20 1:9 18 1716 15 FPL of size n with even boundary

22 l—l =14 Ibijection

Alternating sign matrices of size n

An ASM is a square matrix with co-
efficients in {1,0,—1} such that on
each row or column 1 and —1 alter-
nate, and the sum is 1.
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FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

2:1 20 1:9 18 1716 15 FPL of size n with even boundary

22 I—o—' 14 J bijection

Alternating sign matrices of size n

An ASM is a square matrix with co-
efficients in {1,0,—1} such that on
each row or column 1 and —1 alter-
nate, and the sum is 1.

Here 1— @ and-1— O
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FPL configurations : Enumeration

Such FPL configurations are in simple bijection with numerous
objects : alternating sign matrices, height matrices, configurations
of the six vertex model, Gog triangles,...

2:1 20 1:9 18 1716 15 FPL of size n with even boundary
22 I—I — 14 I
T E’ Alternating sign matrices of size n
- 11
=10 (30 + 1)
Rt | S

8 i=0 '

[Zeilberger '96, Kuperberg '96]
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FPL configurations : Refined enumeration

Every FPL configuration determines a link pattern on the odd or
even external edges of the grid GG,,.

21201918 1716 15

22 :-~L-{-!~f 14
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20 ¢ 16
22 14
2 12
2 10
2 8

Link pattern= set of n noncrossing
chords between 2n points on a disk

1 2
ILP,| = C, = ( ")
n+1\n




5-1

FPL configurations : Refined enumeration

Now if we are given a pairing X of external edges, our main
question will be : how many FPL configurations induce the link
pattern X 7

Definition We note A x this number.

8
10 6 1()_| 101j---
f X= [ () gl el )
12 S D —I_I 12 _|
2

For this link pattern we have Ax = 2.
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FPL configurations : Refined enumeration
Now given a link pattern X, let X’ be defined by
(1,j)eX' & (i—1,7—-1)e X

Theorem [Wieland "00]
| Ax = Ax

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.
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FPL configurations : Refined enumeration
Now given a link pattern X, let X’ be defined by
(1,j)eX' & (i—1,7—-1)e X

Theorem [Wieland "00]
| Ax = Ax

This means that “rotating the link pattern” does not change
the number of FPL configurations attached to it.

For enumeration purposes, we can then use
unlabeled link patterns :



Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ¢; on link patternsfori: =1...2n
by {i,7}{i + 1k} € X = {i,i +1},{j,k} € &i(X).
)

i + 1,7 i1,
€4
—>
k k
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Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ¢; on link patternsfori: =1...2n
by {i,7}{i + 1k} € X = {i,i +1},{j,k} € &i(X).
)

i+ 1 4K i+ 1,
e;
—>
k k

Markov chain M

e States = LP,, ;

e Transition probabilities : P(X — Y)
number of ¢ € {1,...,2n} such that ¢;(X)

where k is the

k.
2n
=Y.
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Motivation : the Razumov-Stroganov conjecture.

Definition : We define operators ¢; on link patternsfori: =1...2n
by {i,7}{i + 1k} € X = {i,i +1},{j,k} € &i(X).
)

i+ 1 4K i+ 1,
e;
—>
k k

Markov chain M

e States = LP,, ;

e Transition probabilities : P(X — Y)
number of ¢ € {1,...,2n} such that ¢;(X)

where k is the
Y.

k.
2n

Stationary distribution (¢ x) of M
Let P be the matrix defined by Pxy = P(X — Y) where
X,Y € LP,. Then there is a unique probability distribution

(¢)x on LP, such that Py = 1.
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Motivation : the Razumov-Stroganov conjecture.

S




Motivation : the Razumov-Stroganov conjecture.

A=
&

~[—=

NI\

~1[—

N1\

n =23



Motivation : the Razumov-Stroganov conjecture.

RS conjecture : The stationary distribution (¥ x ) xcrp, is given
by e Ax

X= 7
Another formulation is : VX, 2nAyxy = Z Ay

(ivY)aei (Y):X
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Motivation : the Razumov-Stroganov conjecture.

9-2

RS conjecture : The stationary distribution (¥ x ) xcrp, is given

by . Ay
X=1
Another formulation is : VX, 2nAx = Z Ay

(’I:,Y),eq; (Y):X

The numbers 1 x were studied in detail by Di Francesco and
Zinn-Justin

— integral expressions (up to a change of basis), multivariate
versions, computation in special cases.

For the numbers Ax, very little is known in contrast.



Special cases for Ax

a
b{ Ty itk —1
— Eggi+j+k—2

=7

Complicated determinant formulas

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]
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Special cases for Ax

_a
b{ Ty itk
— Eggi+j+k—2

=7

Complicated determinant formulas

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]

In this talk we will describe a possible approach for the
computation of Ax.
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Outline of the talk

111

(0) Long introduction
Why do we want to count FPLs with a given link pattern?

(1) From the square to the triangle
We will explain a formula expressing numbers Ax in terms of
FPL configurations in a certain triangle (TFPL), which uses link

patterns with nested arches.

(2) FPL configurations in a triangle
We will collect various formulas and relations for FPL configura-

tions in the triangle.

(3) Extremal TFPL configurations
In a special case, we will show that TFPL configurations are enu-

merated by the famous Littlewood-Richardson coefficients.



(1) From the square to the triangle
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Link patterns with nested arches

We consider now integers n,m > 0, and
link patterns with m nested arches, and =
IS @ noncrossing matching with n arches.
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Link patterns with nested arches

e
We consider now integers n,m > 0, and ~ m
link patterns with m nested arches, and 7 a

IS @ noncrossing matching with n arches.

Notation We write the number A, ,, as A;(m).



Link patterns with nested arches

-
We consider now integers n,m > 0, and ~ m
. . —
link patterns with m nested arches, and 7 a

IS @ noncrossing matching with n arches.
X=mUm

Notation We write the number A, ,, as A;(m).

Idea : for m large enough, we derive an expression
for A;(m) based on a certain combinatorial decom-
position. It turns out that the expression is actually

valid for all m > 0.
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We suppose m > 3n — 1,
and choose k such that
0<k<m-—(3n-1).

' >
k 4n — 2 m—3n—k-+1

14-1



Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.

=" Fixed edges”

To find them, the main
tool I1s a lemma proved

in [de Gier, '02].

' >
k 4n — 2 m—3n—k-+1
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Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.

=" Fixed edges”

To find them, the main
tool I1s a lemma proved

in [de Gier, '02].
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Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.

=" Fixed edges”

To find them, the main
tool I1s a lemma proved

in [de Gier, '02].
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Many edges of the
grid belong to every
FPL configuration res-
pecting the link pat-
tern.

=" Fixed edges”

To find them, the main
tool I1s a lemma proved

in [de Gier, '02].




To compute the numbers A, (m), we will count FPL confi-
gurations separately in R, Ra, 7T .

For this, we need to encode the possible boundaries between
R1 and T, and between R, and 7T . i

18-1
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To compute the numbers A, (m), we will count FPL confi-
gurations separately in R, Ra, 7T .

For this, we need to encode the possible boundaries between
R+ and T, and between R, and 7.

i
. — -
| | +

Word 0 = o1 ...09, in {0,1}*", where -
o, = 0 < a vertical edge Is present
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To compute the numbers A, (m), we will count FPL confi-
gurations separately in R, Ra, 7T .

For this, we need to encode the possible boundaries between

R1 and 7, and between Ry and 7. - < -
Word 7 = 74 ...79, In {0, 1}271, WhD ~ ____+

7, = 1 & a vertical edge Is present
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Putting things together

We can then write, form>3n—1and 0 <k <m— (3n—1)
Ar(m) = |Ri(o,k)| x t7 . X |Ra(r,m —3n — k + 1)

where
e 0,7 are words of length 2n on {0,1};
e Ri(0,.),Ra(T,.) are the sets of FPL confi- _~& Y

gurations in the regions R1 and Ry with boun- -5~  Ro -~
daries o, 7 respectively ;

e {7 . is the number of FPL configurations in
the triangle 7 with boundary data {o, 7, 7}.




Words and Shapes

Let 0 =07 ...0, be a word in {0,1}P; we write |o| := p.
Words = Ferrers shapes in a box.

o= 0101011110 o] =10, |olo =4, o1 =6

20-1
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Words and Shapes

Let 0 =07 ...0, be a word in {0,1}P; we write |o| := p.
Words = Ferrers shapes in a box.

o= 0101011110 o] =10, |olo =4, o1 =6

d(c) =9
c* = 1000010101

Length d(o) := the number of boxes in the diagram o.

Transpose 0* :=(1—0,) - (1 —02)(1 —01)



At most one more box per column
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At most one more box per column

Definition

A semi standard Young tableau of shape o and entries bounded
by NV is a filling of the shape o by integersin {1,..., N} such that
entries are strictly increasing in columns and weakly increasing in
rows.

The number of such tableaux is given by SSY T (o, N), a polyno-
mial in IV with leading term ﬁ]\fd(“).
(Here H (o) is the product of hook lengths of the shape o.)

21-2



Regions /R; and R

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let 0 be a word of length 2n, and k& € N. There is a bijection
between FPLs in Ri(o,k) and semistandard Young tableaux of
shape o and length n + k.

22-1



Regions /R; and R

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let 0 be a word of length 2n, and k& € N. There is a bijection
between FPLs in Ri(o,k) and semistandard Young tableaux of
shape o and length n + k.

So for m > 3n — 1 (and k£ = 0) we obtain :

Ar(m) = |Ri(0,0)] - 17, - |Ra(r,m —3n+1)]

= ZSSYT(U, n)-ty - SSYT(r",m—2n+1)

22-2
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Regions K1 and Rs

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let 0 be a word of length 2n, and k& € N. There is a bijection
between FPLs in Ri(o,k) and semistandard Young tableaux of
shape o and length n + k.

So for m > 3n — 1 (and k£ = 0) we obtain :

Ar(m) = |Ri(0,0)] - 17, - |Ra(r,m —3n+1)]

= ZSSYT(U, n)-ty - SSYT(r",m—2n+1)

Theorem [CKLN ’05]

‘ A (m) is a polynomial function of m for m > 0



Some more definitions

Given a noncrossing matching 7 of size n, we can associate to it
a word, and thus a Ferrers shape :

~ N e

0010100111
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Some more definitions

Given a noncrossing matching 7 of size n, we can associate to it

a word, and thus a Ferrers shape :
I

(\1 r\mm B

0010100111

The words obtained from matchings are the famous Dyck words :

Definition We note D,, the words w such that |w|p = |w|; = n
and which are smaller than (01)”.

We write 0,, := 0"1", and 1,, := (01)".Then (D,,, <) forms a poset
with minimum 0,, and maximum 1,,.

23-2



The final expression for A, (m)

Theorem [CKLN '04]

For all o, 7,7, we have tg)T # 0 implies o < 7.
Moreover, t7 o, =1and tZ_=0if 7 # 0,.

r Vr,0,,

24-1



The final expression for A, (m)

Theorem [CKLN '04]

For all o, 7,7, we have tgﬁ # 0 implies o < 7.
Moreover, t7 o, =1and tZ_=0if 7 # 0,.

r Vr,0,,

As a consequence, the expression for A,(m) can be restricted to
words o, 7 € D,, : for any m > 0

Ar(m)= Y  SSYT(o,n) -7 -SSYT(r*,m —2n+1)

o,TeD,

1

One can show then that A, (m) has leading term mmd(”).
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The final expression for A, (m)

Theorem [CKLN '04]

For all o, 7,7, we have tg)T # 0 implies o < 7.
Moreover, t7 o, =1and tZ_=0if 7 # 0,.

r Vr,0,,

As a consequence, the expression for A,(m) can be restricted to
words o, 7 € D,, : for any m > 0

Ar(m)= Y  SSYT(o,n) -7 -SSYT(r*,m —2n+1)

o,TeD,

1

One can show then that A, (m) has leading term mmd(”).

Our goal is to obtain a formula for A, (m), so the problem is now
to evaluate the numbers t7 _, i.e. the number of FPLs in a triangle.



(2) FPL configurations in a triangle



The triangle 7,

We now study the FPL configurations in the triangle, in short
TFPL configurations.

Goal : understand the structure of TFPL configurations with given
boundaries, and deduce enumerative results.
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First properties
A vertical symmetry gives immediately

sk
T 4T
tO’,T T tT*,O‘*'
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First properties
A vertical symmetry gives immediately

sk
T 4T
tO’,T T tT*,O‘*'

There holds also the following identity, the proof of which is
based on Wieland's rotation :

Théoreme [N '09]
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Theorem [CKLN '04, NJ

ty . 7 0 implies o < .

Proof (sketch) the idea is to attach to any TFPL f certain integers
N;(f) > 0 such that if f has boundaries o, 7, 7, then

i —0i = N;(f) — Ni—a(f)

for all # > 1, and Ny(f) = 0. These integers N;(f) actually count
certain edges in the configuration f.
One obtains then :

which Is equivalent to o < .
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Common prefixes and suffixes

For 0 = m,there is just one possible TFPL, which verifies 7 = 0,,.
What happens when o is “close” to 77
A partial answer : ¢ and 7 share a common prefix and/or suffix.
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Common prefixes and suffixes

For 0 = m,there is just one possible TFPL, which verifies 7 = 0,,.
What happens when o is “close” to 77
A partial answer : ¢ and 7 share a common prefix and/or suffix.

Proposition [N]

Let 7,0, 7 € D,,. Let also u, v, o', 7", v be such that
oc=uc'v and w=urv.

Write a := |u|g + |v|g and b := |u]1 + |v]1.
Then t7 _ # 0 implies 7 = 0%7'1° for a certain 7.

implies T C

l.e.

29-2



Common prefixes and suffixes

In a special case we can actually evaluate the coefficient ¢7 .

Proposition

If 7/ = 1" %0" % then t* _ can be written as a determinant of

o,T

size min(n — a,n — b), the entries of which are certain binomial
coefficients.

This corresponds to the case where the skew shape 7/0 is a “rotated
diagram" .
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Common prefixes and suffixes

ldea of Proof : there are many fixed edges.

o = 00100071011
7 = 001007"1011

-—’———'T

&JH QL H}L'_{‘;

311



Common prefixes and suffixes

ldea of Proof : there are many fixed edges.

o = 00100----- 1011
7 = 00100111001011

31-2



(3) Extremal TFPL

and
Littlewood-Richardson coetficients.



Extremal configurations

We previously saw the “non vanishing” constraint ¢ < 7.
Thapper proved another important such constraint :

t7 - # 0 implies d(o) + d(7) < d(m).
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Extremal configurations

We previously saw the “non vanishing” constraint ¢ < 7.
Thapper proved another important such constraint :

t7 - # 0 implies d(o) + d(7) < d(m).

Following his idea, one obtains a certain identity in the case
d(o)+d(7) =d(m) :

Proposition For anym € D,,,

L _ v 1 1
H(m) 7T 2d0)H (o) 247 H(T)

o, 7Te€D,
d(o)+d(T)=d(m)

Definition : We name extremal the TFPL with boundaries
{o, 7,7} verifying d(o) + d(7) = d().
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Sketch of proof

(@) 7. # 0 implies d(o) + d() < d(m).

1 _ 1 1
) -2 7 EOHE) TR

o, Te€D,
d(o)+d(T)=d(m)

34-1
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Sketch of proof

(@) 7. # 0 implies d(o) + d() < d(m).

W 1 1
b) " T 2 tor 9a@ H (o) " 240 H(7)

o, 7€D,
d(o)+d(T)=d(m)

Let us recall that A (m) is a polynomial of degree d(m) whose leading
coefficient is 1/H (7), and that

Zt .SSYT(o,n+k)-SSYT(*,m+1—k — 2n).

for k between 0 and m — (3n — 1). We choose then k = m/2 for
m even and large enough. Then we obtain

(a) by comparing coefficients in degree > d(m) and

(b) by comparing them in degree = d(7).



Littlewood Richardson coefficients

Let A\, i, v be partitions, and A(x) be the ring of symmetric func-
tions of the variables z1,x2,.... The Schur functions s)(x) can

be defined as
sa(@) =) |]="
T i

where 1" goes through all semistandard Young tableaux of shape
A, and T} is the number of cells labeled 2.

35-1



Littlewood Richardson coefficients

Let A\, i, v be partitions, and A(x) be the ring of symmetric func-
tions of the variables z1,x2,.... The Schur functions s)(x) can

be defined as
sa(@) =) |]="
T i

where 1" goes through all semistandard Young tableaux of shape
A, and T} is the number of cells labeled 2.

Schur functions form a basis of A(x). We can expand s, (x)s, (x)
on this basis, where the coefficients cﬁ’ are often called the

74

Littlewood-Richardson (LR) coefficients.

su(@)su(@) = ) cpusa(z)

35-2



Littlewood Richardson coefficients

By homogeneity of Schur functions, we have
| * , # 0 implies d(A) = d(u) + d(v).

We have also, if sy(x,y) is the symmetric function sy in the
variables L1, L2y...Y1,Y2, ...

sa(z,y) = Ci\L,I/S,U(:E)SV(y)

%

36-1



Littlewood Richardson coefficients

By homogeneity of Schur functions, we have

| * , # 0 implies d(A) = d(u) + d(v).
We have also, if sy(x,y) is the symmetric function sy in the
variables L1, L2y...Y1,Y2, ...
S)\(ZE,y) — Ci\b,z/su(w)su(y)
pov
If we evaluate thisatz; =y, =1fore=1,....m/2, z;, =y, =0

for i > m/2, we obtain polynomials in m which give the following
identity in top degree d()\) :
1 N 1 1
C . .
HOV v QA H () 290 H (v)

TRZ

36-2



Littlewood Richardson coefficients

As a consequence, there exist a,,> 0 such that, for any m € D,,,

Z aa’rcg; — Z a'O'Tt;'T,T (F)
o, T

o,T

in which o, 7 go through all words such that d(o) + d(7) = d(m)
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Littlewood Richardson coefficients

As a consequence, there exist a,,> 0 such that, for any m € D,,,

Z a’O'TC;'T,T — Z aUTtg,T (F)
o, T

o,T

in which o, 7 go through all words such that d(o) + d(7) = d(m)
Theorem [N. "09]

For all words 7, 0,7 € D,, verifying d(o) + d(7) = d(w),
we have

T

™
tO’,T T CO’,T
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Littlewood Richardson coefficients
As a consequence, there exist a,,> 0 such that, for any m € D,,,
Z a’O'TC;'T,T — Z aUTtg,T (F)

in which o, 7 go through all words such that d(o) + d(7) = d(m)

Theorem [N. '09]

For all words 7, 0,7 € D,, verifying d(o) + d(7) = d(w),

we have
T

o,T

s N
tgr =2C

Thanks to equation (F), we need only prove that ¢ = < {7
for all o, 7,7 such that d(o) + d(7) = d(m).
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.
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Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

IR
I

/NN NN NN AN/

38-2



Computing LR coefficients

There are many objects that are counted by LR-coefficients. We
use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Fix o,m,7 € D,, and label the boundary 1 O
edges of the triangle.

7 = 00110101 1/W\0

o = 00011011 o 4
T = 00011011

38-3 T
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Definition

A Knutson-Tao puzzle with boundary data o, 7, 7 is a labeling
of each edge of the triangle by 0,1 or 2, such that :

e the labels on the boundary are given by o, , 7;

e on each unit triangle, the induced labeling must be among :

“Only Os, only 1s, or 0,1,2 coun- 0 0
terclockwise™ 0 1

0O 0 1 1 0 1 0 1




Definition

A Knutson-Tao puzzle with boundary data o, 7, 7 is a labeling
of each edge of the triangle by 0,1 or 2, such that :

e the labels on the boundary are given by o, , 7;

e on each unit triangle, the induced labeling must be among :

We will picture the labeling of
edges as follows :

[

0O 0 1 1 0 1 0 1
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Theorem [Knutson, Tao '03][K., T. and Woodward 03]

Let o,7,m € D,,. Then the number of KT-puzzles with boun-
dary data o, 7, 7 is equal to the LR coefficient ¢7 ...

40-1



Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let o,7,m € D,,. Then the number of KT-puzzles with boun-
dary data o, 7, 7 is equal to the LR coefficient ¢7 ...

For example, it is easy to see that there is
only one puzzle with the boundary data of

the example.

SO Cﬁ,v = 1 where
- HF
p= 1]
v = 1]

0O 0 1 1 0 1 0 1
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From KT puzzles to TFPL configurations.

We fix o, 7,7 € Dy, such that d(o) + d(7) = d(w). We will
define a map ®.

KT puzzles with boundary data o, 7, 7
| @

TFPL configurations with boundaries o, 7, 7

41-1
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From KT puzzles to TFPL configurations.
We fix o, 7,7 € Dy, such that d(o) + d(7) = d(w). We will
define a map ®.
KT puzzles with boundary data o, 7, 7
@
TFPL configurations with boundaries o, 7, 7

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.
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From KT puzzles to TFPL configurations.
We fix o, 7,7 € Dy, such that d(o) + d(7) = d(w). We will
define a map ®.
KT puzzles with boundary data o, 7, 7
@
TFPL configurations with boundaries o, 7, 7

The map is local : it changes every small labeled triangle of the
puzzle to a piece of a path of a TFPL configuration.




From KT puzzles to TFPL configurations.




From KT puzzles to TFPL configurations.
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From KT puzzles to TFPL configurations.




® s the wanted bijection

One has to prove that @ is :

1. well defined :
— the vertices of ®(puzzle) are of degree 2,
— ®(puzzle) verifies the boundary conditions o, T.
— the connectivity of external edges given by 7 is respected.

2. Injective.

00110101
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Conclusion

We have obtained enumerative results for certain numbers ¢7
(in blue). In red are the coefficients t7 g .

d(7)

ty . for fixed .
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Conclusion

— To compute Ax, one needs all coeffs tgﬁ, and not only the
extremal ones. A natural parameter to partition these num-
bers is exc(m,0,7) :=d(w) — d(o) — d(7) > 0.

The LR coefficients form the base case exc(m,0,7) = 0;
what are the general ¢7 7
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— Other direction (based on [Thapper '07]).The polynomials
A (m) verify linear recurrences

Ar(m) = Z CanAa(m — 1),

a<mTeD,

where c,, are integers, defined in terms of the coefficients

50, - What are these coefficients ¢, 7
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extremal ones. A natural parameter to partition these num-
bers is exc(m,0,7) :=d(w) — d(o) — d(7) > 0.

The LR coefficients form the base case exc(m,0,7) = 0;
what are the general ¢7 7

— Other direction (based on [Thapper '07]).The polynomials
A (m) verify linear recurrences

Ar(m) = Z CanAa(m — 1),

a<mTeD,

where c,, are integers, defined in terms of the coefficients

50, - What are these coefficients ¢, 7

— Related work : joint with T. Fonseca, nice conjectures about
the polynomials A, (m) pointing to combinatorial recipro-
city for them; cf arXiv.CO two days ago.
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Vielen Dank fur lhre Auftmerksamkeit !
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