Fully Packed Loop Configurations and Littlewood Richardson coefficients

Philippe Nadeau

Faculty of Mathematics, University of Vienna

MIT Combinatorics seminar, February 24th, 2010

FPL configurations : Definition

Start with the square grid G_n with n^2 vertices and 4n external edges. In the example, we have n = 7.

FPL configurations : Definition

Start with the square grid G_n with n^2 vertices and 4n external edges. In the example, we have n = 7.

A FPL configuration of size n is a subgraph of the grid G_n

(1) such that around each vertex of G_n , 2 edges out of 4 are selected; ("Fully Packed")

(2) containing every other external edge. ("Boundary condition")

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary **\oint bijection**

Alternating sign matrices of size \boldsymbol{n}

An ASM is a square matrix with coefficients in $\{1, 0, -1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1.

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary **\oint bijection**

Alternating sign matrices of size \boldsymbol{n}

An ASM is a square matrix with coefficients in $\{1, 0, -1\}$ such that on each row or column 1 and -1 alternate, and the sum is 1.

Here $1 \rightarrow \bullet$ and $-1 \rightarrow \bullet$

Such FPL configurations are in simple bijection with numerous objects : alternating sign matrices, height matrices, configurations of the six vertex model, Gog triangles,...

FPL of size n with even boundary

Alternating sign matrices of size \boldsymbol{n}

$$FPL_n| = A_n = \prod_{i=0}^{n-1} \frac{(3i+1)!}{(n+i)!}$$

[Zeilberger '96, Kuperberg '96]

Every FPL configuration determines a link pattern on the odd or even external edges of the grid G_n .

Link pattern = set of n noncrossing chords between 2n points on a disk

$$|LP_n| = C_n := \frac{1}{n+1} \binom{2n}{n}$$

Now if we are given a pairing X of external edges, our main question will be : how many FPL configurations induce the link pattern X?

Definition We note A_X this number.

For this link pattern we have $A_X = 2$.

Now given a link pattern X, let X' be defined by

 $(i,j) \in X' \Leftrightarrow (i-1,j-1) \in X$

Theorem [Wieland '00]

$$A_X = A_{X'}$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

Now given a link pattern X, let X' be defined by

 $(i,j) \in X' \Leftrightarrow (i-1,j-1) \in X$

Theorem [Wieland '00]

$$A_X = A_{X'}$$

This means that "rotating the link pattern" does not change the number of FPL configurations attached to it.

For enumeration purposes, we can then use unlabeled link patterns :

Definition : We define operators e_i on link patterns for $i = 1 \dots 2n$ by $\{i, j\}, \{i+1, k\} \in X \rightarrow \{i, i+1\}, \{j, k\} \in e_i(X)$.

Definition : We define operators e_i on link patterns for $i = 1 \dots 2n$ by $\{i, j\}, \{i+1, k\} \in X \rightarrow \{i, i+1\}, \{j, k\} \in e_i(X)$.

Markov chain \mathcal{M}

- States = LP_n ;
- Transition probabilities : $P(X \to Y) = \frac{k}{2n}$ where k is the number of $i \in \{1, ..., 2n\}$ such that $e_i(X) = Y$.

Definition : We define operators e_i on link patterns for $i = 1 \dots 2n$ by $\{i, j\}, \{i+1, k\} \in X \rightarrow \{i, i+1\}, \{j, k\} \in e_i(X)$.

Markov chain \mathcal{M}

• States = LP_n ;

• Transition probabilities : $P(X \to Y) = \frac{k}{2n}$ where k is the number of $i \in \{1, ..., 2n\}$ such that $e_i(X) = Y$.

Stationary distribution (ψ_X) of \mathcal{M}

Let P be the matrix defined by $P_{XY} = P(X \to Y)$ where $X, Y \in LP_n$. Then there is a unique probability distribution $(\psi)_X$ on LP_n such that $P\psi = \psi$.

RS conjecture : The stationary distribution $(\psi_X)_{X \in LP_n}$ is given by A_X

$$\psi_X = \frac{\Lambda_X}{A_n}$$

Another formulation is : $\forall X, \quad 2nA_X = \sum_{(i,Y),e_i(Y)=X} A_Y$

RS conjecture : The stationary distribution $(\psi_X)_{X \in LP_n}$ is given by A_X

$$\psi_X = \frac{\Lambda_X}{A_n}$$

Another formulation is : $\forall X, \quad 2nA_X = \sum_{(i,Y),e_i(Y)=X} A_Y$

The numbers ψ_X were studied in detail by Di Francesco and Zinn-Justin

 \rightarrow integral expressions (up to a change of basis), multivariate versions, computation in special cases.

For the numbers A_X , very little is known in contrast.

Special cases for A_X

Complicated determinant formulas

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]

Special cases for A_X

Complicated determinant formulas

[Zinn-Justin, Zuber, Di Francesco, Caselli, Krattenthaler]

In this talk we will describe a possible approach for the computation of A_X .

Outline of the talk

(0) Long introduction

Why do we want to count FPLs with a given link pattern?

(1) From the square to the triangle

We will explain a formula expressing numbers A_X in terms of FPL configurations in a certain triangle (TFPL), which uses *link* patterns with nested arches.

(2) FPL configurations in a triangle

We will collect various formulas and relations for FPL configurations in the triangle.

(3) Extremal TFPL configurations

In a special case, we will show that TFPL configurations are enumerated by the famous Littlewood-Richardson coefficients.

(1) From the square to the triangle

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $X = \pi \cup m$

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $X = \pi \cup m$

Notation We write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Link patterns with nested arches

We consider now integers $n, m \ge 0$, and link patterns with m nested arches, and π is a noncrossing matching with n arches.

 $X = \pi \cup m$

Notation We write the number $A_{\pi \cup m}$ as $A_{\pi}(m)$.

Idea : for m large enough, we derive an expression for $A_{\pi}(m)$ based on a certain combinatorial decomposition. It turns out that the expression is actually valid for all $m \ge 0$.

 \Rightarrow " Fixed edges"

 \Rightarrow " Fixed edges"

 \Rightarrow " Fixed edges"

 \Rightarrow "Fixed edges"

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T} , and between \mathcal{R}_2 and \mathcal{T} .

 $\mathcal{R}_{\cdot 1}$

 π

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T}_1 , and between \mathcal{R}_2 and \mathcal{T} .

Word $\sigma = \sigma_1 \dots \sigma_{2n}$ in $\{0,1\}^{2n}$, where $\sigma_i = 0 \Leftrightarrow$ a vertical edge is present

To compute the numbers $A_{\pi}(m)$, we will count FPL configurations separately in $\mathcal{R}_1, \mathcal{R}_2, \mathcal{T}$.

For this, we need to encode the possible boundaries between \mathcal{R}_1 and \mathcal{T} , and between \mathcal{R}_2 and \mathcal{T}_1 .

 π

Word $\tau = \tau_1 \dots \tau_{2n}$ in $\{0,1\}^{2n}$, where $\tau_i = 1 \Leftrightarrow$ a vertical edge is present

 au_6

Putting things together

We can then write, for $m \geq 3n-1$ and $0 \leq k \leq m-(3n-1)$

$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_1(\sigma,k)| \times t_{\sigma,\tau}^{\pi} \times |\mathcal{R}_2(\tau,m-3n-k+1)|$$

where

- σ, τ are words of length 2n on $\{0, 1\}$;
- $\mathcal{R}_1(\sigma, .), \mathcal{R}_2(\tau, .)$ are the sets of FPL configurations in the regions \mathcal{R}_1 and \mathcal{R}_2 with boundaries σ, τ respectively;
- $t_{\sigma,\tau}^{\pi}$ is the number of FPL configurations in the triangle \mathcal{T} with boundary data $\{\sigma, \pi, \tau\}$.

Words and Shapes

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0,1\}^p$; we write $|\sigma| := p$.

Words = Ferrers shapes in a box.

$$\sigma = 0101011110 \qquad |\sigma| = 10, |\sigma|_0 = 4, |\sigma|_1 = 6$$

Words and Shapes

Let $\sigma = \sigma_1 \dots \sigma_p$ be a word in $\{0,1\}^p$; we write $|\sigma| := p$.

Words = Ferrers shapes in a box.

$$\sigma = 0101011110 \qquad |\sigma| = 10, |\sigma|_0 = 4, |\sigma|_1 = 6$$

$$d(\sigma) = 9$$

$$\sigma^* = 1000010101$$

Length $d(\sigma) :=$ the number of boxes in the diagram σ . Transpose $\sigma^* := (1 - \sigma_p) \cdots (1 - \sigma_2)(1 - \sigma_1)$

At most one more box per column

At most one more box per column

Definition

A semi standard Young tableau of shape σ and entries bounded by N is a filling of the shape σ by integers in $\{1, \ldots, N\}$ such that entries are strictly increasing in columns and weakly increasing in rows.

The number of such tableaux is given by $SSYT(\sigma, N)$, a polynomial in N with leading term $\frac{1}{H(\sigma)}N^{d(\sigma)}$.

(Here $H(\sigma)$ is the product of *hook lengths* of the shape σ .)

Regions \mathcal{R}_1 and \mathcal{R}_2

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let σ be a word of length 2n, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_1(\sigma, k)$ and semistandard Young tableaux of shape σ and length n + k.

Regions \mathcal{R}_1 and \mathcal{R}_2

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let σ be a word of length 2n, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_1(\sigma, k)$ and semistandard Young tableaux of shape σ and length n + k.

So for $m \ge 3n-1$ (and k=0) we obtain :

$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_{1}(\sigma,0)| \cdot t_{\sigma,\tau}^{\pi} \cdot |\mathcal{R}_{2}(\tau,m-3n+1)|$$
$$= \sum_{\sigma,\tau} SSYT(\sigma,n) \cdot t_{\sigma,\tau}^{\pi} \cdot SSYT(\tau^{*},m-2n+1)$$

Regions \mathcal{R}_1 and \mathcal{R}_2

Proposition [Caselli,Krattenthaler,Lass,N. '05]

Let σ be a word of length 2n, and $k \in \mathbb{N}$. There is a bijection between FPLs in $\mathcal{R}_1(\sigma, k)$ and semistandard Young tableaux of shape σ and length n + k.

So for $m \ge 3n-1$ (and k=0) we obtain :

$$A_{\pi}(m) = \sum_{\sigma,\tau} |\mathcal{R}_{1}(\sigma,0)| \cdot t_{\sigma,\tau}^{\pi} \cdot |\mathcal{R}_{2}(\tau,m-3n+1)|$$
$$= \sum_{\sigma,\tau} SSYT(\sigma,n) \cdot t_{\sigma,\tau}^{\pi} \cdot SSYT(\tau^{*},m-2n+1)$$

Theorem [CKLN '05]

 $A_{\pi}(m)$ is a polynomial function of m for $m \geq 0$

Some more definitions

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

Some more definitions

Given a noncrossing matching π of size n, we can associate to it a word, and thus a Ferrers shape :

The words obtained from matchings are the famous Dyck words :

Definition We note \mathcal{D}_n the words w such that $|w|_0 = |w|_1 = n$ and which are smaller than $(01)^n$.

We write $\mathbf{0}_n := \mathbf{0}^n \mathbf{1}^n$, and $\mathbf{1}_n := (\mathbf{0}\mathbf{1})^n$. Then (\mathcal{D}_n, \leq) forms a poset with minimum $\mathbf{0}_n$ and maximum $\mathbf{1}_n$.

The final expression for $A_{\pi}(m)$

Theorem [CKLN '04]

For all σ, τ, π , we have $t_{\sigma,\tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi,\mathbf{0}_n}^{\pi} = 1$ and $t_{\pi\tau}^{\pi} = 0$ if $\tau \neq \mathbf{0}_n$. The final expression for $A_{\pi}(m)$

Theorem [CKLN '04]

For all σ, τ, π , we have $t_{\sigma,\tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi,\mathbf{0}_n}^{\pi} = 1$ and $t_{\pi\tau}^{\pi} = 0$ if $\tau \neq \mathbf{0}_n$.

As a consequence, the expression for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_n$: for any $m \ge 0$

$$A_{\pi}(m) = \sum_{\sigma,\tau\in\mathcal{D}_n} SSYT(\sigma,n) \cdot t_{\sigma,\tau}^{\pi} \cdot SSYT(\tau^*,m-2n+1)$$

One can show then that $A_{\pi}(m)$ has leading term $\frac{1}{H(\pi)}m^{d(\pi)}$.

The final expression for $A_{\pi}(m)$

Theorem [CKLN '04]

For all σ, τ, π , we have $t_{\sigma,\tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$. Moreover, $t_{\pi,\mathbf{0}_n}^{\pi} = 1$ and $t_{\pi\tau}^{\pi} = 0$ if $\tau \neq \mathbf{0}_n$.

As a consequence, the expression for $A_{\pi}(m)$ can be restricted to words $\sigma, \tau \in \mathcal{D}_n$: for any $m \ge 0$

$$A_{\pi}(m) = \sum_{\sigma,\tau\in\mathcal{D}_n} SSYT(\sigma,n) \cdot t_{\sigma,\tau}^{\pi} \cdot SSYT(\tau^*,m-2n+1)$$

One can show then that $A_{\pi}(m)$ has leading term $\frac{1}{H(\pi)}m^{d(\pi)}$.

Our goal is to obtain a formula for $A_{\pi}(m)$, so the problem is now to evaluate the numbers $t_{\sigma,\tau}^{\pi}$, i.e. the number of FPLs in a triangle.

(2) FPL configurations in a triangle

The triangle \mathcal{T}_n

We now study the FPL configurations in the triangle, in short TFPL configurations.

Goal : understand the structure of TFPL configurations with given boundaries, and deduce enumerative results.

First properties

A vertical symmetry gives immediately

$$t_{\sigma,\tau}^{\pi} = t_{\tau^*,\sigma^*}^{\pi^*}.$$

First properties

A vertical symmetry gives immediately

$$t_{\sigma,\tau}^{\pi} = t_{\tau^*,\sigma^*}^{\pi^*}.$$

There holds also the following identity, the proof of which is based on Wieland's rotation :

Théorème [N '09]

Theorem [CKLN '04, N]

 $t_{\sigma,\tau}^{\pi} \neq 0$ implies $\sigma \leq \pi$.

Proof (sketch) the idea is to attach to any TFPL f certain integers $N_i(f) \ge 0$ such that if f has boundaries σ, π, τ , then

$$\pi_i - \sigma_i = N_i(f) - N_{i-1}(f)$$

for all $i \ge 1$, and $N_0(f) = 0$. These integers $N_i(f)$ actually *count* certain edges in the configuration f. One obtains then :

$$\forall j, \sum_{i \le j} (\pi_i - \sigma_i) = N_j(f) \ge 0,$$

which is equivalent to $\sigma \leq \pi$.

For $\sigma = \pi$, there is just one possible TFPL, which verifies $\tau = \mathbf{0}_n$. What happens when σ is "close" to π ?

A partial answer : σ and π share a common prefix and/or suffix.

For $\sigma = \pi$, there is just one possible TFPL, which verifies $\tau = \mathbf{0}_n$. What happens when σ is "close" to π ?

A partial answer : σ and π share a common prefix and/or suffix.

Proposition [N]

Let $\pi, \sigma, \tau \in \mathcal{D}_n$. Let also u, v, σ', π', v be such that

$$\sigma = u\sigma'v$$
 and $\pi = u\pi'v.$

Write $a := |u|_0 + |v|_0$ and $b := |u|_1 + |v|_1$. Then $t^{\pi}_{\sigma,\tau} \neq 0$ implies $\tau = 0^a \tau' 1^b$ for a certain τ' .

In a special case we can actually evaluate the coefficient $t_{\sigma,\tau}^{\pi}$.

Proposition

If $\pi' = 1^{n-b}0^{n-a}$, then $t_{\sigma,\tau}^{\pi}$ can be written as a determinant of size $\min(n-a, n-b)$, the entries of which are certain binomial coefficients.

This corresponds to the case where the skew shape π/σ is a "rotated diagram".

Idea of Proof : there are many fixed edges.

 $\sigma = 00100\sigma' 1011$ $\pi = 00100\pi' 1011$

Idea of Proof : there are many fixed edges. $\sigma = 00100 \cdots 1011$

 $\pi = 00100111001011$

(3) Extremal TFPL and Littlewood-Richardson coefficients.

Extremal configurations

We previously saw the "non vanishing" constraint $\sigma \leq \pi$. Thapper proved another important such constraint :

$$t_{\sigma,\tau}^{\pi} \neq 0$$
 implies $d(\sigma) + d(\tau) \leq d(\pi)$.

Extremal configurations

We previously saw the "non vanishing" constraint $\sigma \leq \pi$. Thapper proved another important such constraint :

$$t_{\sigma,\tau}^{\pi} \neq 0$$
 implies $d(\sigma) + d(\tau) \leq d(\pi)$.

Following his idea, one obtains a certain identity in the case $d(\sigma)+d(\tau)=d(\pi)$:

Proposition For any $\pi \in \mathcal{D}_n$,

$$\frac{1}{H(\pi)} = \sum_{\substack{\sigma,\tau\in\mathcal{D}_n\\d(\sigma)+d(\tau)=d(\pi)}} t_{\sigma,\tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)}H(\sigma)} \cdot \frac{1}{2^{d(\tau)}H(\tau)}$$

Definition : We name extremal the TFPL with boundaries $\{\sigma, \pi, \tau\}$ verifying $d(\sigma) + d(\tau) = d(\pi)$.

Sketch of proof

Sketch of proof

(a)
$$t_{\sigma,\tau}^{\pi} \neq 0$$
 implies $d(\sigma) + d(\tau) \leq d(\pi)$.
(b) $\frac{1}{H(\pi)} = \sum_{\substack{\sigma,\tau\in\mathcal{D}_n\\d(\sigma)+d(\tau)=d(\pi)}} t_{\sigma,\tau}^{\pi} \cdot \frac{1}{2^{d(\sigma)}H(\sigma)} \cdot \frac{1}{2^{d(\tau)}H(\tau)}$

Let us recall that $A_{\pi}(m)$ is a polynomial of degree $d(\pi)$ whose leading coefficient is $1/H(\pi)$, and that

$$A_{\pi}(m) = \sum_{\sigma,\tau} t_{\sigma,\tau}^{\pi} \cdot SSYT(\sigma, n+k) \cdot SSYT(\tau^*, m+1-k-2n).$$

for k between 0 and m - (3n - 1). We choose then k = m/2 for m even and large enough. Then we obtain (a) by comparing coefficients in degree $> d(\pi)$ and (b) by comparing them in degree $= d(\pi)$.

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_1, x_2, \ldots . The Schur functions $s_{\lambda}(x)$ can be defined as

$$s_{\lambda}(x) = \sum_{T} \prod_{i} x_{i}^{T_{i}},$$

where T goes through all semistandard Young tableaux of shape λ , and T_i is the number of cells labeled i.

Let λ, μ, ν be partitions, and $\Lambda(x)$ be the ring of symmetric functions of the variables x_1, x_2, \ldots . The Schur functions $s_{\lambda}(x)$ can be defined as

$$s_{\lambda}(x) = \sum_{T} \prod_{i} x_{i}^{T_{i}},$$

where T goes through all semistandard Young tableaux of shape λ , and T_i is the number of cells labeled i.

Schur functions form a basis of $\Lambda(x)$. We can expand $s_{\mu}(x)s_{\nu}(x)$ on this basis, where the coefficients $c_{\mu,\nu}^{\lambda}$ are often called the Littlewood-Richardson (LR) coefficients.

$$s_{\mu}(x)s_{\nu}(x) = \sum_{\lambda} c_{\mu,\nu}^{\lambda} s_{\lambda}(x)$$

By homogeneity of Schur functions, we have $c_{\mu,\nu}^{\lambda}\neq 0 \text{ implies } d(\lambda)=d(\mu)+d(\nu).$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_1, x_2, \ldots, y_1, y_2, \ldots$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)$$

By homogeneity of Schur functions, we have $c_{\mu,\nu}^\lambda \neq 0 \text{ implies } d(\lambda) = d(\mu) + d(\nu).$

We have also, if $s_{\lambda}(x, y)$ is the symmetric function s_{λ} in the variables $x_1, x_2, \ldots, y_1, y_2, \ldots$

$$s_{\lambda}(x,y) = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} s_{\mu}(x) s_{\nu}(y)$$

If we evaluate this at $x_i = y_i = 1$ for $i = 1, \ldots, m/2$, $x_i = y_i = 0$ for i > m/2, we obtain polynomials in m which give the following identity in top degree $d(\lambda)$:

$$\frac{1}{H(\lambda)} = \sum_{\mu,\nu} c_{\mu,\nu}^{\lambda} \cdot \frac{1}{2^{d(\mu)}H(\mu)} \cdot \frac{1}{2^{d(\nu)}H(\nu)}$$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $d(\sigma) + d(\tau) = d(\pi)$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $d(\sigma) + d(\tau) = d(\pi)$

Theorem [N. '09]

For all words $\pi, \sigma, \tau \in \mathcal{D}_n$ verifying $d(\sigma) + d(\tau) = d(\pi)$, we have

$$t_{\sigma,\tau}^{\pi} = c_{\sigma,\tau}^{\pi}$$

As a consequence, there exist $a_{\sigma\tau} > 0$ such that, for any $\pi \in \mathcal{D}_n$,

$$\sum_{\sigma,\tau} a_{\sigma\tau} c^{\pi}_{\sigma,\tau} = \sum_{\sigma,\tau} a_{\sigma\tau} t^{\pi}_{\sigma,\tau} \qquad (E)$$

in which σ, τ go through all words such that $d(\sigma) + d(\tau) = d(\pi)$

Theorem [N. '09]

For all words $\pi, \sigma, \tau \in \mathcal{D}_n$ verifying $d(\sigma) + d(\tau) = d(\pi)$, we have

$$t^{\pi}_{\sigma,\tau} = c^{\pi}_{\sigma,\tau}$$

Thanks to equation (E), we need only prove that $c_{\sigma,\tau}^{\pi} \leq t_{\sigma,\tau}^{\pi}$ for all σ, τ, π such that $d(\sigma) + d(\tau) = d(\pi)$.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Computing LR coefficients

There are many objects that are counted by LR-coefficients. We use here Knutson-Tao puzzles.

Consider a triangle of size 2n on the triangular lattice.

Fix $\sigma, \pi, \tau \in \mathcal{D}_n$, and label the boundary edges of the triangle.

 $\pi = 00110101$ $\sigma = 00011011$ $\tau = 00011011$

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0, 1 or 2, such that :

- the labels on the boundary are given by σ, π, τ ;
- on each unit triangle, the induced labeling must be among :

Definition

A Knutson-Tao puzzle with boundary data σ, π, τ is a labeling of each edge of the triangle by 0, 1 or 2, such that :

 \bullet the labels on the boundary are given by σ,π,τ ;

label 2

• on each unit triangle, the induced labeling must be among :

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_n$. Then the number of KT-puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma,\tau}^{\pi}$.

Theorem [Knutson, Tao '03][K., T. and Woodward '03]

Let $\sigma, \tau, \pi \in \mathcal{D}_n$. Then the number of KT-puzzles with boundary data σ, π, τ is equal to the LR coefficient $c_{\sigma,\tau}^{\pi}$.

For example, it is easy to see that there is only one puzzle with the boundary data of the example.

We fix $\sigma, \pi, \tau \in \mathcal{D}_n$, such that $d(\sigma) + d(\tau) = d(\pi)$. We will define a map Φ .

KT puzzles with boundary data σ, π, τ Φ TFPL configurations with boundaries σ, π, τ

We fix $\sigma, \pi, \tau \in \mathcal{D}_n$, such that $d(\sigma) + d(\tau) = d(\pi)$. We will define a map Φ .

KT puzzles with boundary data σ,π,τ

TFPL configurations with boundaries σ,π,τ

The map is local : it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

We fix $\sigma, \pi, \tau \in \mathcal{D}_n$, such that $d(\sigma) + d(\tau) = d(\pi)$. We will define a map Φ .

KT puzzles with boundary data σ,π,τ

TFPL configurations with boundaries σ,π,τ

The map is local : it changes every small labeled triangle of the puzzle to a piece of a path of a TFPL configuration.

Φ is the wanted bijection

One has to prove that Φ is :

- 1. well defined :
 - the vertices of $\Phi(puzzle)$ are of degree 2 ,
 - $\Phi(puzzle)$ verifies the boundary conditions σ, τ .
 - the connectivity of external edges given by π is respected.
- 2. injective.

We have obtained enumerative results for certain numbers $t_{\sigma,\tau}^{\pi}$ (in blue). In red are the coefficients $t_{\sigma,\mathbf{0}_n}^{\pi}$.

- To compute A_X , one needs all coeffs $t_{\sigma,\tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $exc(\pi, \sigma, \tau) := d(\pi) - d(\sigma) - d(\tau) \ge 0$. The LR coefficients form the base case $exc(\pi, \sigma, \tau) = 0$; what are the general $t_{\sigma,\tau}^{\pi}$?

- To compute A_X , one needs all coeffs $t_{\sigma,\tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $exc(\pi, \sigma, \tau) := d(\pi) d(\sigma) d(\tau) \ge 0$. The LR coefficients form the base case $exc(\pi, \sigma, \tau) = 0$; what are the general $t_{\sigma,\tau}^{\pi}$?
- Other direction (based on [Thapper '07]). The polynomials $A_{\pi}(m)$ verify linear recurrences

$$A_{\pi}(m) = \sum_{\alpha \le \pi \in \mathcal{D}_n} c_{\alpha \pi} A_{\alpha}(m-1),$$

where $c_{\alpha\pi}$ are integers, defined in terms of the coefficients $t_{\sigma \mathbf{0}_n}^{\pi}$. What are these coefficients $c_{\alpha\pi}$?

- To compute A_X , one needs all coeffs $t_{\sigma,\tau}^{\pi}$, and not only the extremal ones. A natural parameter to partition these numbers is $exc(\pi, \sigma, \tau) := d(\pi) d(\sigma) d(\tau) \ge 0$. The LR coefficients form the base case $exc(\pi, \sigma, \tau) = 0$; what are the general $t_{\sigma,\tau}^{\pi}$?
- Other direction (based on [Thapper '07]). The polynomials $A_{\pi}(m)$ verify linear recurrences

$$A_{\pi}(m) = \sum_{\alpha \le \pi \in \mathcal{D}_n} c_{\alpha \pi} A_{\alpha}(m-1),$$

where $c_{\alpha\pi}$ are integers, defined in terms of the coefficients $t_{\sigma \mathbf{0}_n}^{\pi}$. What are these coefficients $c_{\alpha\pi}$?

– Related work : joint with T. Fonseca, nice conjectures about the polynomials $A_{\pi}(m)$ pointing to combinatorial reciprocity for them ; cf arXiv.CO two days ago.

Vielen Dank für Ihre Aufmerksamkeit!