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Fully Packed Loop configurations in a triangle
and Littlewood Richardson coefficients

Philippe Nadeau
Fakultät für Mathematik, Universität Wien, Nordbergstraße 15, A-1090 Wien, AUSTRIA.

Abstract. We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied
by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence
relations with coefficients computed from TFPL configurations. We then give constraints and enumeration results
for certain classes of TFPL configurations. For special boundary conditions, we show that TFPLs are counted by the
famous Littlewood Richardson coefficients.

Résumé. Nous nous intéressons aux configurations de “Fully Packed Loops” dans un triangle (TFPL), introduites par
Caselli et al. et étudiées par Thapper. Nous montrons que pour les Fully Packed Loops avec un couplage donné, il
existe des relations de récurrence linéaires dont les coefficients sont calculés à partir de certains TFPLs. Nous donnons
ensuite des contraintes et des résultats énumératifs pour certaines familles de TFPLs. Pour certaines conditions au
bord, nous montrons que le nombre de TFPL est donné par les coefficients de Littlewood Richardson.
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1 Introduction
The recently proved Razumov-Stroganov correspondence [RS04, CS10] states that the ground state com-
ponents ψπ of the so called O(1) loop model are equal to the refined Fully Packed Loop number Aπ ,
where π is a link pattern (see Section 1.1 for definitions on FPLs). Although certain general expressions
have been developed for the ψπ’s from which results could be obtained (see [ZJ] and references therein),
explicit formulas for the Aπ’s are known only in certain very special cases of link patterns (cf. [ZJ06]).

The purpose of this article is to study the numbers Aπ thanks to the decomposition found in [CKLN06]
which involves the counting of FPLs in a triangle (TFPLs). More recently, the paper [Tha07] developed
new ideas and conjectures concerning these TFPLs, and was the original motivation for the present paper.
We will actually first prove a conjecture of [Tha07] about certain recurrence relations for the numbers
Aπ that involve coefficients computed from TFPLs. Then we will start the study of TFPL configurations
themselves, gathering several of their properties, the most striking being Theorem 4.3 which shows that a
certain subclass of TFPLs turns out to be enumerated by Littlewood Richardson coefficients.

This work is thus a starting point in the study of TFPLs. Our results will show that these are not
only interesting by themselves, but are also a promising tool in order to obtain explicit recurrences or
expressions for the refined FPL numbers Aπ .

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAMind.html


294 Philippe Nadeau

In the rest of this section we define FPL configurations, and notions related to words and partitions.
In Section 2 FPLs in a triangle are defined, and we prove Theorem 2.5 about linear recurrence relations
for the numbers Aπ . In Section 3, we prove certain properties and constraints of TFPL numbers, giving
in particular a very nice new proof of Theorem 3.1 from [CKLN06]. Finally, we prove Theorem 4.3
mentioned above in Section 4.

1.1 Fully Packed Loop configurations
We fix a positive integer n, and let Gn be the square grid with n2 vertices; we impose also periodic
boundary conditions on Gn, which means that we select every other external edge on the grid, starting
by convention with the topmost on the left side, and we will number these 2n external edges counter-
clockwise. A Fully Packed Loop (FPL) configuration F of size n is defined as a subgraph of Gn such
that each vertex of Gn is incident to two edges of F . An example of configuration is given on Figure 1
(left). We let An be the total number of FPL configurations on the grid Gn. It is well known that FPL
configurations are in bijection with alternating sign matrices (cf. [Pro01] for instance), and thus we have
the famous enumeration proved independently by Zeilberger [Zei96] and Kuperberg [Kup96]:
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n−1∏
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Fig. 1: A FPL configuration of size 7.

Define a link pattern π of size n as a matching on {1, . . . , 2n} of n pairwise noncrossing pairs {i, j}
between these 2n points, which means that there are no integers i < j < k < ` such that {i, k} and {j, `}
are both in π. A FPL configuration on Gn naturally defines nonintersecting paths between its external
edges, so we can define the link pattern π(F ) as the set of pairs {i, j} where i, j label external edges
which are the extremities of the same path in F . For instance, if F is the configuration of Figure 1, then
π(F ) is the link pattern shown on its right, represented as a chord diagram.

Definition 1.1 (Aπ and Aπ) Let π be a link pattern. The set Aπ is defined as the set of all FPL config-
urations F of size n such that π(F ) = π. We also let Aπ := |Aπ|.
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Wieland’s theorem: Given a link pattern π, consider the rotated link pattern r(π) defined by {i, j} ∈
r(π) if and only if {i − 1, j − 1} ∈ π, where indices are taken modulo 2n. A beautiful result of
Wieland [Wie00] states that Aπ = Ar(π), by giving a bijection between Aπ and Ar(π).

Nested arches and Aπ(m): Given a link pattern π on {1, . . . , 2n}, and an integer m ≥ 0, let us define
π ∪ m as the link pattern on {1, . . . , 2(n + m)} given by the “nested” pairs {i, 2n + 2m + 1 − i} for
i = 1 . . .m, and the pairs {i+m, j +m} for each {i, j} ∈ π. We will want to study the numbers Aπ∪m
as functions of m, so we introduce the notation Aπ(m) := Aπ∪m.

1.2 Words, Ferrers diagrams, link patterns
We consider finite words on the alphabet with two letters 0 and 1, simply named words. For u a word, we
let |u|0 denote its number of zeros, |u|1 its number of ones, and |u| = |u|0 + |u|1 its total length.

Proposition 1.2 Given nonnegative integers k, `, there is a bijection between words σ such that |σ|0 = k
and |σ|1 = `, and Ferrers diagrams fitting in the rectangle with k rows and ` columns.

Proof: This is very standard. Given such a word σ = σ1 · · ·σk+`, construct a path on the square lattice
by drawing a North step when σi = 0 and an East step when σi = 1, for i from 1 to k+ `. Then complete
the picture by drawing a line up from the starting point, and a line left of the ending point; the resulting
region enclosed in the wanted Ferrers diagram; see Figure 2 for an example. 2

σ = 0101011110

σ

0 1

|σ| = 10, |σ|0 = 4, |σ|1 = 6

Fig. 2: Bijection between words and Ferrers diagrams.

Since we do not want to introduce too much notation, we use the bijection of Proposition 1.2 to identify
words and their corresponding Ferrers diagrams in the rest of the article. The conjugate σ∗ of σ =
σ1 · · ·σn is the word of length n defined by σ∗i := 1− σn+1−i. Clearly we have (σ∗)∗ = σ. The degree
of σ is the number of indices i < j such that (σi, σj) = (1, 0), and is noted d(σ); it is the number of
boxes in the Ferrers diagram representation. For instance we have d(σ) = 9 for the example of Figure 2.

Suppose that σ, τ are words that verify |σ|0 = |τ |0 and |σ|1 = |τ |1, so that they form Ferrers diagrams
included in a common rectangle by Proposition 1.2. We define σ ≤ τ if σ is included in τ in the diagram
representation: this is equivalent to σ≤i ≤ τ≤i for all indices i, where σ≤i =

∑
j≤i σj . If σ ≤ τ , we

define the skew shape τ/σ as the set of boxes that are in τ but not in σ; if there are no two boxes in the same
column, then τ/σ is a horizontal strip, and we write σ → τ . We define a semistandard Young tableau of
shape σ, and length N ≥ 0 to be a sequence (σi)i=0...N of words such that σ0 = 0→ σ1 . . .→ σN = σ,
where 0 is the empty partition. This is equivalent to the standard definition, i.e. a filling of the boxes of
the diagram σ by positive integers not bigger than N , nondecreasing across each row from left to right
and increasing down each column.
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Suppose that u is a box in the diagram σ, which is in the kth row from the top and `th column from
the left. The content c(u) of u is defined as ` − k, while its hook-length h(u) is defined as the number
of boxes in σ which are below u and in the same column, or right of u and in the same row ( u itself
being counted just once); define also Hσ =

∏
h(u) where the product is over all cells u of the diagram

σ. We have then the hook content formula, which states that the number of semistandard Young tableaux
of shape σ and length N ≥ 0 is given by the following polynomial in N with leading term 1

Hσ
Nd(σ):

SSYT(σ,N) :=
1
Hσ

∏
u∈σ

(N + c(u)) (1)

Link patterns and the set Dn: A link pattern π on {1, . . . , 2n} can also be considered as a word of
length 2n, where for each pair {i, j} in π we set πi = 0 and πj = 1. Such words π form the following
subset of {0, 1}2n:

Definition 1.3 (Dn) We denote by Dn the set of words σ of length 2n, such that |σ|0 = |σ|1 = n, and
each prefix u of σ verifies |u|0 ≥ |u|1.

These are known as Dyck words, and counted by the Catalan number |Dn| = Cn := 1
n+1

(
2n
n

)
. Note that

(Dn,≤) is a poset, with smallest element 0n := 0n1n and greatest element 1n := (01)n. We will identify
link patterns with words in Dn.

0

1
0

1
0

0

0
1 1 1

0 0 00 0 1 1 1 11

Fig. 3: The word 0010100111 ∈ D5 as a diagram and a link pattern.

2 FPL in a triangle and linear recurrence relations
In all this section n will be a fixed positive integer.

2.1 FPL configurations in a triangle
We will here recall briefly the triangle arising in [CKLN06, Tha07], and refer to these works for more
detail; we also advise the reader to look at Figure 4 while reading the definitions. We define the triangle
T n as the subset of Z2 consisting of the points of coordinates (x, y) which verify x ≥ y ≥ 0 and
x + y ≤ 4n − 2, with 2n external edges below all vertices (2i, 0) for i = 0 . . . 2n − 1, and horizontal
edges between (i, i) and (i+1, i), and between (4n−2−i−1, i) and (4n−2−i, i) for i = 0, . . . , 2n−2,
see left of Figure 4, where the edges in bold are the forced edges just described.

We consider the triangle with some extra conditions given by σ, τ words in Dn: if σ = σ1 . . . σ2n, we
add a vertical edge below (i − 1, i − 1) for each i such that σi = 0, while if τ = τ1 . . . τ2n, we add
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a vertical edge below (2n − 2 + i, 2n − i) for each i such that τi = 1. Note that σ and τ have to be
interpreted differently than in [Tha07].

Definition 2.1 A FPL configuration f in a triangle (TFPL) with boundary conditions σ, π, τ in Dn is a
graph on T n, where vertical edges on the left and right boundary are given by σ and τ as above. All
vertices (except on the left and right boundaries) are imposed to be of degree 2, and we have furthermore
(1) the 2n bottom external edges must be linked by paths in T n according to the link pattern π, and (2)
the paths starting on the left boundary must end on the right boundary; cf Figure 4 for an example. The
set of these TFPLs is denoted T πσ,τ , and we define tπσ,τ as the cardinality |T πσ,τ |.

π
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Fig. 4: Boundary conditions for FPL in a triangle.

2.2 Linear recurrences for refined FPL numbers
The link between FPLs and TFPLs is given by the following formula from [CKLN06]: for m ≥ 0,

Aπ(m) =
∑

σ,τ∈Dn

SSYT(σ, n) · tπσ,τ · SSYT(τ∗,m− 2n+ 1), (2)

Following Thapper [Tha07], we now consider endomorphisms of CDn, the vector space of formal
complex linear combinations of elements of Dn. We will write such endomorphisms g as matrices in the
canonical basis Dn, so that, if σ, τ ∈ Dn, we denote by gστ the coefficient of σ in the expansion of g(τ).
Then we define b by bστ = 1 if σ → τ , and bστ = 0 otherwise. We define b̃ by b̃στ = 1 if τ∗ → σ∗

and b̃στ = 1 otherwise. Given π ∈ Dn, we also let (tπ)στ = tπσ,τ . By definition of semistandard Young
Tableaux, we have SSYT(σ, n) = (bn)0nσ and SSYT(τ∗,m − 2n + 1) = (b̃m−2n+1)τ0n . So we can
rewrite Equation (2) as

Aπ(m) =
(
bntπb̃m−2n+1

)
0n0n

(3)

We have then the following Proposition conjectured by Thapper [Tha07, Conjecture 3.4]:

Theorem 2.2
btπ = tπb̃ for all π ∈ Dn. (4)
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Proof (Sketch): As shown by Thapper, the coefficients on the left and right side enumerate some config-
urations in “extended” triangles. By studying Wieland’s rotation (cf. Section 1.1), it is possible to show
that this can be applied in these extended triangles, and that it indeed exchanges bijectively left and right
extended triangles. Note that one has to apply either H0 or H1 in Wieland’s original notation in [Wie00],
and not the composition H0 ◦ H1: this shifts the link pattern π, and one has to check that the boundary
conditions σ and τ are indeed preserved. 2

Now we can apply the commutation relation (4) repeatedly in Equation (3), and obtain Aπ(m) =(
bm−n+1tπ

)
0n0n

which can be expanded as
∑
σ∈Dn SSYT(σ,m − n + 1) · tπσ,0n ; this involves only

TFPLs with τ = 0n, so if we introduce t as (t)σπ = tπσ,0n we get :

Proposition 2.3 For all integers m ≥ 0, we have Aπ(m) =
(
bm−n+1t

)
0nπ

.

We can now use the beautiful idea of Thapper: by Theorem 3.1, the coefficients tπσ,0n of t are integers,
equal to 0 unless σ ≤ π, and such that tππ,0n = 1. This means that, if we give the basis Dn a linear order
extending≤, then the matrix of t is upper triangular with ones on its diagonal. It is thus invertible, with its
inverse t−1 being also triangular with ones on its diagonal, and with integer entries. We can thus define:

Definition 2.4 We define the matrix c by c := t−1bt.

We can now state the main result of this section, conjectured by Thapper [Tha07, Proposition 3.5]:

Theorem 2.5 For any π ∈ Dn, we have the polynomial identity:

Aπ(m) =
∑
α∈Dn

cαπAα(m− 1)

Proof: By Proposition 2.3 and the definition of c, we get for any m

Aπ(m) =
(
bm−n+1t

)
0nπ

=
(
bm−ntc

)
0nπ

=
∑
α∈Dn

(
bm−nt

)
0nα

cαπ,

from which the result follows, again by Proposition 2.3. 2

We remark that the coefficients cαπ are not the unique integers verifying Theorem 2.5. But first, we
have a uniform definition for them. Second, there is evidence that they are “good” coefficients, based on
data communicated to the author by J. Thapper: these numbers are quite small (they are between −1 and
2 for n = 5, while the supremum of t exceeds 80000), and we conjecture that they verify cαπ = cα∗π∗ ,
that cαπ only depends on the skew shape π/α, and many other properties. It seems that there is hope that
these coefficients have a direct combinatorial characterization.

3 Some properties of TFPL configurations
In this Section we will prove certain enumerative questions related to TFPL configurations. In particular
we give a new proof of the following theorem, which was essential in Section 2.2:

Theorem 3.1 Let σ, π, τ be in Dn. Then tπσ,τ = 0 unless σ ≤ π. Moreover, if σ = π, then tππ,0n = 1 and
tππ,τ = 0 for τ 6= 0n.

It was proved first in [CKLN06, Section 7] in a very technical way, while here our proof (see Sec-
tion 3.2) is much shorter and illuminating.
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3.1 Oriented TFPL configurations
The vertices of Tn can be partitioned in lines: for i ∈ {1, . . . , 2n}, we defineEi as the vertices of T n such
that x+y = 2i−2, and for i ∈ {1, . . . , 2n−1}, we defineOi as the vertices of T n such that x+y = 2i−1.
The case n = 3 is given on Figure 5. Now let us suppose we have boundary configurations σ, τ, π on
the triangle Tn. We first define an orientation for all edges around the triangle as follows. On the left
boundary, we orient edges to the right and upwards; on the right boundary, we orient them to the right
and downwards; for the 2n vertical external edges on the bottom, we orient the one attached to (2i− 2, 0)
upwards if πi = 0, and downwards if πi = 1, for i ∈ {1, . . . , 2n}. Now given a TFPL configuration f in
T πσ,τ , we now orient all remaining edges so that each vertex of degree 2 have one incoming edge and one
outgoing edge. This condition determines clearly the orientation of edges in a path of f joining external
edges, and by convention we orient the closed paths of f clockwise. In this way we associate to each
configuration f ∈ T πσ,τ an oriented configuration that we will denote by or(f).

E1
O1

E2

O2

E3

O3

E4

O4

E5

O5

E6

Fig. 5: Lines Ei and Oi.

3.2 Proof of Theorem 3.1
Definition 3.2 (Ni(f) and Ni(f)) Let σ, τ, π be in Dn, f be a configuration in T πσ,τ , and i be an integer
in {1, . . . , 2n−1}. We defineNi(f) as the set of oriented edges in or(f) which are directed from a vertex
in Oi to a vertex in Ei. We also define Ni(f) = |Ni(f)|, and N0(f) = 0 by convention.

These oriented edges are circled in the example of Figure 5, and we get Ni(f) = 0, 1, 1, 1, 0 for
i = 1, 2, 3, 4, 5 respectively. We can now state the key lemma:

Lemma 3.3 Let σ, τ, π be in Dn, and f a configuration in T πσ,τ . Then

Ni(f)−Ni−1(f) = πi − σi, for i = 1, . . . , 2n− 1. (5)

Proof: We consider the oriented configuration or(f). The i vertices ofEi have one incoming edge, except
(i− 1, i− 1) when σi = 1. If this incoming edge comes from Oi it is an element of Ni(f); let Xi(f) be
the other incoming edges, and xi(f) := |Xi(f)|. We have then

Ni(f) + xi(f) + σi = i. (6)
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Similarly, consider the i − 1 vertices on the line Oi−1: each of them has exactly one outgoing edge, and
if this edge goes to the line Ei−1 it is by definition in Ni−1(f). We form the set Yi(f) with the other
outgoing edges of Oi−1, and let yi(f) := |Yi(f)|. We obtain here

Ni−1(f) + yi(f) = i− 1. (7)

Now the sets Yi(f) and Xi(f) coincide except in the case πi = 0, where there is an external edge
incoming in (2i− 2, 0) ∈ Ei (by definition of the orientation) and therefore belongs to Xi and not to Yi.
Thus xi(f) = yi(f) + (1− πi) and by injecting this in Equations (6) and (7) we deduce Equation (5). 2

We can now give the proof of the first half of Theorem 3.1. If we sum the relations (5) for i going from
1 to j, then for any j ∈ {1, . . . , 2n} we obtain π≤j −σ≤j = Nj(f). Since this is nonnegative, this proves
that σ ≤ π (cf. Section 1.2), and we are done. The second part of Theorem 3.1 is much easier, see the end
of Section 7 in [CKLN06].

3.3 Common prefixes and suffixes
We just showed that TFPLs exist only when σ ≤ π (and τ ≤ π by symmetry), and that in case of equality
σ = π there is just one configuration, when τ = 0n. It is natural to ask what happens when σ is smaller
than π but “close” to it, and one possible answer is the following:

Theorem 3.4 Let π, σ, τ ∈ Dn, and suppose that there exist words u, σ′, π′, v such that σ = uσ′v and
π = uπ′v (concatenation of words). Let a = |u|0 + |v|0 and b = |u|1 + |v|1. Then tπσ,τ = 0 unless τ is of
the form τ = 0aτ ′1b.

The proof is quite technical and will be omitted here. It involves a slight variant of de Gier’s lemma on
fixed edges [dG05, Lemma 8], in which we make use of the oriented TFPL configurations of Section 3.1.

There is one special case emerging naturally in the proof, which is when π′ = 1n−b0n−a; note that
this means that π/σ is a rotated diagram, i.e. a skew shape which is the (translated of) a Ferrers diagram
after a half turn. In this case, each vertex of Tn can be shown to be incident to at least one fixed edge,
and another observation of de Gier can be used to show that the enumeration of T πσ,τ is then reduced to a
tiling problem, whose solution in our case can be written under the form of a single determinant of size
min(n− a, n− b). So if π/σ is a row or a column of cells, we get a single binomial coefficient.

3.4 Extremal TFPL configurations
We recall that d(σ) is the number of boxes in the Ferrers diagram of σ.

Proposition 3.5 One has tπσ,τ = 0 unless d(σ) + d(τ) ≤ d(π). Furthermore, for every π ∈ Dn we have

1
Hπ

=
∑

σ,τ∈Dn
d(σ)+d(τ)=d(π)

tπσ,τ ·
1

2d(σ)Hσ
· 1

2d(τ)Hτ
. (8)

We reproduce the argument of [Tha07, Lemma 3.7] which is the first part of the proposition.

Proof: As Equation (2) shows, Aπ(m) is polynomial in m, and using Theorem 3.1 and (1), it is easy
to deduce as in [CKLN06] that it is a polynom with leading term 1

Hπ
md(π). Now using relation (4) and
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assuming m is an even integer, we can get from (3) that Aπ(m) =
(
bm/2tπb̃m/2−n+1

)
0n0n

, i.e.

∑
σ,τ∈Dn

SSYT(σ,m/2) · tπσ,τ · SSYT(τ∗,m/2− n+ 1).

This is also polynomial in m, and thus the coefficients of degree > d(π) must vanish, which implies the
first part of the proposition. The second part follows by taking the coefficient of degree d(π) in this last
expression, which is necessarily equal to 1

Hπ
md(π). 2

We will call extremal the TFPL configurations verifying d(σ) + d(τ) = d(π).

4 TFPL and Littlewood Richardson coefficients
In this section we will show that the coefficients tπσ,τ when d(σ)+d(τ) = d(π) are given by the Littlewood
Richardson coefficients.

4.1 Littlewood Richardson coefficients and puzzles
We refer to [Sta99] for background on symmetric functions. Let x = (x1, x2, . . .) be commuting in-
determinates, and let Λ(x) be the ring of symmetric functions in x. Schur functions sλ(x) (λ a Ferrers
diagram) form a basis of Λ(x), and the Littlewood–Richardson (LR) coefficients cνλ,µ are defined as the
coefficients in the expansion of their products sµ(x)sν(x) =

∑
λ c

λ
µ,νsλ(x). The LR coefficient cνλ,µ is

0 unless λ ≥ µ, ν and d(µ) + d(ν) = d(λ). Schur functions can be defined combinatorially in terms
of semistandard Young tableaux, and in this case it is clear that, under the specialization xi = 1 for
i = 1 . . . N and xi = 0 otherwise, sλ(x) is equal to SSYT(λ,N).

If one introduces sλ(x, y) as the Schur function in variables x1, x2, . . . , y1, y2, . . . then it is shown
in [Sta99, p.341] that sλ(x, y) =

∑
µ,ν c

λ
µ,νsµ(x)sν(y). By specializing at xi = yi = 1 for i = 1 . . .m

and xi = yi = 0 for i > m, we get a polynomial identity in m which in top degree can be written as:

1
Hλ

=
∑
µ,ν

cλµ,ν ·
1

2d(µ)Hµ
· 1

2d(ν)Hν
. (9)

The LR coefficients are easily seen to be nonnegative integers by character theory [Sta99, p.355];
many combinatorial descriptions of them are also known, the most famous being the original Littlewood
Richardson rule [LR34]. We will here use the (slightly adatpted) Knutson Tao puzzles [KTW04, KT03]:

Definition 4.1 (Knutson Tao puzzle) Let n be an integer, and σ, π, τ words in Dn. Consider a triangle
with edge size 2n on the regular triangular lattice, where unit edges on left, bottom and right side are
labelled by σ, π, τ respectively. A Knutson-Tao (KT) puzzle with boundary σ, π, τ is a labeling of each
internal edge of the triangle with 0,1 or 2, such that the labeling induced on each of the (2n)2 unit
triangles is composed either of three 0, or of three 1, or has 0, 1, 2 in counterclockwise order.

The exhaustive list of all authorized labelings of triangles is given on the left of Figure 6, and on the
right we have an example of a puzzle with boundaries σ = 00011011, π = 00110101, τ = 00011011. It
turns out that KT puzzles give a combinatorial interpretation for LR coefficients.

Theorem 4.2 ([KTW04, KT03]) KT-puzzles with boundary σ, π, τ are counted by cπσ,τ .
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Fig. 6: Authorized triangles in a KT puzzle, and an example.

4.2 The enumeration of extremal TFPL configurations
We can finally state our final result:

Theorem 4.3 Given σ, π, τ such that d(σ) + d(τ) = d(π), we have tπσ,τ = cπσ,τ .

The proof consists in a bijective correspondence Φ from KT-puzzles with boundary σ, π, τ to TFPLs
in T πσ,τ . The definition is local: each piece of a puzzle is transformed into a small part of a TFPL config-
uration. In fact, we will define directly a bijection to oriented configurations (defined in 3.1). The rules
are described on Figure 7: non horizontal edges of unit triangles give rise to vertices in Tn, while the
horizontal ones are sent on lines y = i+ 1/2. After every triangle of a puzzle P has been tranformed (see
Figure 8, left), delete the original puzzle, and rescale the graph obtained so that vertices lie on a square
grid. To finish, remove the superfluous horizontal edges that appear along the left boundary, double the
length of the bottom vertical edges:the resulting graph on Tn is by definition Φ(P ): see Figure 8 again.
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Fig. 7: The local transformations of the bijection Φ.

Lemma 4.4 For any puzzle P with boundary σ, π, τ , Φ(P ) is an (oriented) TFPL configuration in T πσ,τ .

Proof: It is easily seen (albeit a bit tedious) to check by inspection of Figure 7 that the edges created on
the left and right boundaries of Φ(P ) correspond indeed to σ and τ , and that the bottom external edges
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are also present, all of them with their correct orientation. It is also the case, once again by inspection,
that the graph Φ(P ) is such that each of its vertices has one incoming edge and one outgoing.

Paths starting from the left side end up on the right side: indeed, the only other possibility is that such
a path p ends on the bottom side (the left side is not possible because of conflicting orientations); but this
case is easily dismissed, because in the region of Tn above p, there would remain less incoming edges (on
the left boundary) than outgoing edges (on the right boundary), which is absurd.

Finally, one needs to check that the paths connecting the bottom external edges follow the link pattern
π, and this is more subtle. We already checked that the orientation of these external edges is correct; we
must also show that the paths go globally “from left to right”, that is they should not connect two external
edges such that the left one is directed downwards and the right one upwards. Now such a bad path would
necessarily possess a subpath consisting of an up step followed by one or more steps to the left, followed
by one downstep; but a quick look at the rules of Figure 7 reveals that a step to the left is either preceded
by a down step, or followed by an up step, and thus bad paths cannot appear in Φ(P ). A similar reasoning
to the one for paths between the left and right boundaries then shows that paths between bottom external
edges follow the link pattern π; this finally proves that Φ(P ) is in T πσ,τ . 2
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Fig. 8: Example of the bijection Φ.

Proof of Theorem 4.3: The previous lemma showed that Φ is well defined. It is also clear that Φ is
injective, because the ten configurations of oriented edges on Figure 7 are all different, and thus from
a puzzle Φ(P ) one can reconstruct the labeling of all edges, i.e. the puzzle P . Note the importance of
orienting configurations here, because without them some of the local configurations become identified.
The injectivity implies by Theorem 4.2 that tπσ,τ ≤ cπσ,τ . Now comparing Equations (8) and (9) tells us
that for a fixed π,

∑
σ,τ c

π
σ,τXστ =

∑
σ,τ t

π
σ,τXστ for certain positive coefficients Xστ , the sum being

over σ, τ such that d(σ) + d(τ) = d(π). Together with the injectivity of Φ, this proves that tπσ,τ = cπσ,τ
and Φ is in fact bijective, completing the proof of the theorem. 2
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