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Signed Enumeration of Ribbon Tableaux with Local Rules and Generalizations

of the Schensted Correspondence.

Dominique Gouyou-Beauchamps and Philippe Nadeau

Abstract. Sergey Fomin defined the general framework of dual graded graphs that extends the classical
Schensted correspondence to a much wider class of objects. His approach is both bijective and algebraic,
the latter being inspired by the works of Stanley on differential posets.

In this work we present an extension of Fomin’s work, through the signed enumeration of ribbon
tableaux. We consider ribbons of different sizes, so we do not deal with graded graphs, yet algebraic and
bijective techniques can still be developed. We will also give an application of our work to the computation
of column sums in the character table of the symmetric group.

Résumé. Sergey Fomin a défini le cadre général de graphes gradués en dualité qui étend la correspondance
de Schensted à une classe plus vaste d’objets ; son approche est bijective et possède également un pendant
algébrique inspiré des travaux de Stanley sur les ensembles ordonnés différentiels.

Dans ce travail nous présentons une extension possible du cadre défini par Fomin, via l’énumération
signée des tableaux de rubans. Nous considérons des rubans de tailles diverses, de sorte que nous n’avons plus
affaire à des graphes gradués, et néanmoins des techniques algébriques et bijectives peuvent être développées
ici aussi. Nous donnerons également une application de notre travail au calcul de la somme des entrées d’une
colonne dans la table des caractères du groupe symétrique.

Introduction

In the articles [Fom86, Fom94, Fom95], Sergey Fomin founded a general theory of ’dual graded graphs’
which can be seen as the theory of ’Schensted like’ correspondences. One of the applications is the extension
of the Schensted correspondence to the case of ribbon tableaux where all ribbons have the same size.

The article [Whi83] by White is a bijective proof of an orthogonality relation in the character theory of
the symmetric group Sn; it relies on the Murnaghan-Nakayama rule that interprets character values as sums
over ribbon tableaux, where ribbons may have different sizes. White’s proof is an insertion and deletion
algorithm of which the classical Schensted correspondence is a special case.

We will use and extend Fomin’s techniques to deal with the case of general ribbon tableaux. The benefits
will go both ways. On the one hand we will be able to extend the results of White, in particular by being
able to prove a symmetric version of his algorithm (Theorem 3.3 ); on the other hand the ideas developed
can be applied to graphs more general than dual graded graphs.

Section 1 contains mainly standard definitions about ribbon tableaux. Section 2 introduces the concepts
of hook permutations and involutions. Section 3 contains the main results of the paper concerning the
enumeration of ribbon tableaux. Proofs of these results are sketched in sections 4 and 5, first in a bijective
fashion, and then with an algebraic approach. This parallels the works of S. Fomin [Fom95, Fom94] where
these two techniques are presented in the context of dual graded graphs. The bijective approach is a ’back
and forth’ algorithm whose proof relies on the involution principle of Garsia and Milne [GM81b, GM81a].
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In Section 6 we will use our results to compute the column sums of the character table of the symmetric
group, and relate this enumeration to others. Finally in the conclusion we will explain how to extend the
results in the context of the ribbon graph, and for more general dual layered graphs.

1. Definitions

1.1. Ribbons and Ribbon Tableaux. If 2k is a positive integer then we define its double factorial
(2k)!! = 1 · 3 · 5 · · · (2k − 1). It is the number of partitions in 2-subsets of [[2k]], and also the number of
fixed point free involutions on [[2k]]; we use here the notation [[n]] to denote the integers between 1 and n.
A permutation σ of [[ℓ]] is a bijection from [[ℓ]] to itself. Permutations will be in general written as words
σ1 . . . σℓ where σi = σ(i).

A composition is a finite sequence of positive integers, and a partition λ of a nonnegative integer n is a
nonincreasing sequence λ1 > λ2 > . . . λk > 0 of integers such that

∑
i λi = n; k is the number of parts of

λ, and |λ| = n is its size. Similar definitions hold for compositions as well. A partition µ̃ can be associated
to each composition µ by rearranging it in nonincreasing order; it has therefore the same number of parts
counted with multiplicity. We will note Y the set of all partitions, and Yn the set of the partitions of size
n. We will identify a partition λ with its Ferrers diagram: it is a left justified set of unit cells in Z2, where
the ith row has λi cells; see Figure 1.

Figure 1. Ferrers diagrams representing the partition (8, 6, 5, 2, 2, 1, 1) of size 25 (left) and
the skew shape (9, 8, 7, 4, 4, 1, 1)/(8, 6, 5, 2, 2, 1, 1) (right).

Two partitions λ ⊆ µ ( inclusion of Ferrers diagrams) define a skew shape µ/λ. We will often think of
a skew shape as the collection of cells µ\λ; this will cause no confusion, even though different skew shapes
may define the same collection of cells. The size of µ/λ is its number of cells and is denoted |µ/λ|. A set S
of cells in Z2 is connected if given any 2 cells c and c′ of S there exist cells c = c0, c1, . . . , ct = c′ in S such
that any 2 consecutive cells in the sequence share a common side.

A ribbon is then a connected skew shape containing no 2 × 2 square of cells ; they are also called rim
hooks in the literature. We need some specific definitions concerning ribbons; let r = µ/λ be a non empty
ribbon. It is said to be µ-addable and λ-removable. The height ht(r) is the number of rows of r minus
one, and the sign ε(r) is defined as (−1)ht(r). By convention, the empty ribbons will have positive sign
ε(λ/λ) = 1. The Southwestmost cell of r is its tail, and its Northeastmost cell is its head.

For i positive, we will note Ribi the set of ribbons of size i, and Rib the set of all non empty ribbons.
We shall often think of Y as the vertices of a nonoriented graph GR with edges given by Rib; each of these
edges carries a sign given by the corresponding ribbon. This graph is partitioned in levels corresponding to
partitions of a fixed size, and we will think of bigger partitions to be at a higher level: to add a ribbon is
then to go up one step, and to remove a ribbon is to go down one step. See Figure 3 for the first five levels
of the graph GR.

Definition 1.1. A ribbon tableau of shape λ ∈ Y and length ℓ is a numbering of the cells of λ by
numbers from 1 to ℓ such that :

• The numbers are nondecreasing in each row and each column.
• for each i ∈ [[ℓ]] the cells numbered i form a non empty ribbon shape r(i).

Equivalently, a ribbon tableau is a chain of partitions of length ℓ from ∅ to λ such that successive
partitions form ribbons, i.e. a path from ∅ to λ going up in the graph GR. We will note the set of ribbon
tableaux of shape λ and length ℓ by RTλ,ℓ. The sign ε(P ) of a ribbon tableau P is the product of the signs
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Figure 2. Examples of ribbons. The left one has size 4, height 2 and sign +1, while the
one on the right has size 6, height 1 and sign −1.

Figure 3. First levels of the graph of ribbons GR = (Y, Rib); negative edges are repre-
sented by dashed lines.

of its defining ribbons r(i). The content c(P ) of a ribbon tableau P is the composition consisting of the
successive sizes of the ribbons forming P , and we will let RTλ,µ be the set of ribbon tableaux of shape λ and
content µ.
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Figure 4. A ribbon tableau of shape (8, 6, 6, 2, 1), of content (1, 6, 6, 3, 7), and of sign
(−1)0(−1)2(−1)2(−1)1(−1)2 = −1

1.2. Signed sets and signed bijections. In this work we have to deal with signed enumerations, so
we need some definitions and notations to explain what we mean by a bijection in this context. All sets are
assumed to be finite.

Definition 1.2 (Signed Sets). A signed set is a set A together with a partition A = A+ ⊔ A− (with
either of these sets possibly empty). The members of A+ are positive elements, those of A− are negative.

A function f between two signed sets is sign preserving (resp. sign reversing) if a and f(a) have the
same sign (resp. different signs) for all a. Fixed points of a function i form the set Fix(i).
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Definition 1.3 (Signed bijections). A signed bijection between the signed sets A and B is the data of 3
functions iA, iB and ϕ such that iA (resp. iB) is an involution on A (resp. B) which is sign reversing outside
its fixed points , and ϕ is a sign preserving bijection between Fix(iA) and Fix(iB).

The signed cardinal of a signed set A is |A|± = |A+| − |A−|. A signed bijection between A and B proves
that |A|± = |B|±, and this is equivalent to |A+|+ |B−| = |B+|+ |A−|. A bijection proving this last equality
, i.e. a bijection between the unsigned sets A+ ⊔B− and B+ ⊔A−, is clearly equivalent to a signed bijection
between A and B. This explains why signed bijections are the correct generalizations of bijections, in that
they give a combinatorial explanation of the equality of signed cardinals.

Our objects of study here are the sets RTλ,µ , the sign being given by the function ε; the signed cardinal
of a set R = RTλ,µ can thus be written by

∑
P∈R ε(P ). Note also that unless explicitly stated, usual sets

are naturally considered as positive sets.

2. Hook Permutations and Hook Involutions

2.1. Hook Permutations. A hook is a non empty ribbon of shape λ/∅, or equivalently a partition of
the type (k, 1, 1, · · · , 1). Note that a hook is characterized by the data of its size s and height h ∈ [[0, s− 1]].

Definition 2.1. A hook permutation (H,σ) is an ordered sequence H = (H1, . . . , Hℓ) of ℓ hooks,
together with a permutation σ of [[ℓ]]. The length of a hook permutation is ℓ, its size is

∑
i |Hi|, and its

content is the composition (|H1|, . . . , |Hℓ|).

We will write HP for the set of hook permutations, its elements of content µ forming HP(µ) where µ
is any composition. Hook permutations can be represented by the list H where the cells of hook Hi are
numbered by σ(i), or by square matrices of size ℓ such that entry (i, j) is empty unless j = σ(i) in which
case it is occupied by the ith hook Hi. Illustrations are given Figure 5.
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Figure 5. Two representations of the same hook permutation of length 5, size 23 and
content (6, 4, 6, 2, 5).

2.2. Hook Involutions.

Definition 2.2. Hook involutions are hook permutations with a matrix representation that is symmetric
with respect to the diagonal i = j.

In other words, they are hook permutations (H,σ) such that σ is an involution, and Hi = Hj if j = σ(i).
For a hook involution I = (H,σ), we define its sign as ε(I) =

∏
i/σ(i)=i ε(Hi). It is the product of the signs

of the hooks associated to fixed points (considering all hooks would not change the value of the product, by
definition of a hook involution).

We define HI as the signed set of hook involutions, HI(µ) as the signed subset of those hook involutions
with content µ, and finally HIspec(µ) as the elements of HI(µ) all of whose fixed points are hooks of odd
size and of height 0. HIspec(µ) is clearly a positive set.

Lemma 2.3. There is an involution on HI(µ) which is sign reversing outside the set HIspec(µ).
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Proof: If I = (H,σ) /∈ HIspec(µ) then let i = σ(i) be its smallest fixed point contradicting the definition
of HIspec(µ). Let h be the height of the hook Hi. If Hi is of even size , then we let H ′

i be the hook of the
same size and of height h+ 1 (resp. h− 1) if h is even (resp. odd). If Hi is of odd size, so that necessarily
h 6= 0 by the definition of Hi, then we let H ′

i be the hook of the same size and of height h+ 1 (resp. h− 1)
if h is odd (resp.even).

Let H ′ be the hook list equal to H except in position i where H ′
i replaces Hi. If we define f(I) = (H ′, σ),

then we have the desired sign reversing involution on HI(µ) \ HIspec(µ). �

Corollary 2.4. |HI(µ)|± = |HIspec(µ)|.

We will give some consequences of this corollary in Section 6.

3. Main Results

When the contents of tableaux are partitions , such that the first one is smaller than the second for
the reverse lexicographical order, the following theorem is the work of White [Whi83]. We’ll prove it in
the following section by formulating his ’insertion and deletion’ algorithm in a version with ’local rules’ in
the spirit of Fomin [Fom95]; the advantages, as we will see, are the wider fields of applications of such
techniques. One could also argue that it simplifies somewhat the proof of White.

Theorem 3.1. There is a signed bijection (∅, i, ϕ) between hook permutations of size n and length ℓ, and
pairs of ribbon tableaux of size n and length ℓ. This bijection preserves contents in the following sense: if
i(P,Q) = (P1, Q1), then c(P ) = c(P1) and c(Q) = c(Q1); and if ϕ(H,σ) = (P,Q), then c(H) = c(Q) and
c(σ(H)) = c(P ).

This theorem has the following enumerative consequences :

Corollary 3.2. Let µ, ν be two compositions of n with ℓ parts.

(3.1)
∑

λ∈Yn

P∈RTλ,µ,Q∈RTλ,ν

ε(P )ε(Q) = δeµeν · 1j1(j1!)2
j2(j2!) · · · ,

where µ has j1 parts of size 1, j2 parts of size 2,. . .

(3.2)
∑

λ∈Yn

P,Q∈RTλ,ℓ

ε(P )ε(Q) =

(
n+ ℓ− 1

2ℓ− 1

)
· ℓ!

The Schensted correspondence sends involutions to identical standard tableaux. We were also able to
prove a result in this symmetric case for general ribbon tableaux :

Theorem 3.3. There is a signed bijection between ribbon tableaux of size n and length ℓ, and hook
involutions of size n and length ℓ; this bijection preserves contents.

We will outline bijective proofs of all these results in Section 4; section 5 contains an algebraic proof
of Corollary 3.2. In Section 6 we will apply Theorem 3.1 to the computation of the column sums of the
character table of the symmetric group.

4. Bijective approach

We will prove Theorem 3.1 in the part 4.2, but we have to first define a local correspondence concerning
ribbons. From there we will be able to deduce the global correspondence of the theorem. In a third part we
will prove Theorem 3.3, and finally we will deduce Corollary 3.2 in the last part.

4.1. Local Rules. In this subsection we fix µ, ν be two partitions of size m and n, and we let i, j be
nonnegative integers.

We define Ui(µ, ν) to be the set of partitions of size max(m,n) + i such that ξ/µ and ξ/ν are 2 ribbons.
Ui(µ, ν) is a signed set by sgn(ξ) := ε(ξ/µ) · ε(ξ/ν).Similarly, Dj(µ, ν) is the set of partitions λ of size
min(m,n) − j such that λ/µ and λ/ν are 2 ribbons. Dj(µ, ν) is a signed set by sgn(λ) := ε(µ/λ) · ε(ν/λ).
Notice that Ui(µ, µ) and Di(µ, µ) are positive sets.
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We draw a square with North West corner labeled by µ and South East corner labeled
by ν. Elements of Ui(µ, ν) will appear in the North East corner while elements of
Di(µ, ν) will appear in the South West corner . In the case λ = µ = ν, the interior C
can be either empty or filled by a hook; in all other cases it is empty. λ

µ

ν

C

ξ

To define local rules, we need to define many operations on ribbons and partitions, already used by other
authors; these definitions are given in Appendix A.

Now, given ((λ,C), µ, ν) written on a square as above, to apply a direct local rule is to find out which
operation has to be performed according to the list below, thenerase λ and C from the square and finally
write the outcome of the direct rule on the square: in the Northeast corner for the rules D1 to D6, and in
the Soutwest corner for rule S. We ’erase and write’ in a similar fashion when applying inverse rules.

Direct rules: In what follows we let λ be an element of Di(µ, ν), and C is an empty hook except
possibly when λ = µ = ν (in which case it may be any hook). We let r, r′ be the (possibly empty) ribbons
µ/λ and ν/λ.

• If λ = µ = ν and C is empty, then ξ = λ. (D1)
• If λ = µ = ν and C is a hook h, then ξ = λ ∪ first(λ, h). (D2)
• If λ 6= µ = ν, then ξ = µ ∪ next(µ, µ/λ). (D3)
• If λ = µ 6= ν (resp. λ = ν 6= µ), then ξ = ν (resp. ξ = µ). (D4)
• If λ 6= µ 6= ν, then:

– if r and r′ have different heads and tails, then ξ = λ ∪ bumpout(r, r′). (D5)
– if r and r′ have the same head but different tails, or the same tail but different heads, then:

∗ if slideout(λ, r, r′) is defined, then ξ = slideout(λ, r, r′). (D6)
∗ otherwise, define λ′ = switchout(λ, r, r′) ∈ Di(µ, ν). (S)

Inverse Rules: In what follows ξ is an element of Ui(µ, ν). Define r, r′ be the (possibly empty)
ribbons ξ/µ and ξ/ν. Unless explicitly stated, the hook C is left empty.

• If ξ = µ = ν , then λ = ξ. (I1)
• If ξ 6= µ = ν, then

– if prev(ξ, r) = ∅ set λ = µ and C is the hook with the same size and height as r; (I2)
– otherwise λ = µ\prev(ξ, r). (I3)

• If ξ = µ 6= ν (resp. ξ = ν 6= µ), then λ = ν (resp.λ = µ). (I4)
• If ξ 6= µ 6= ν, then:

– if r and r′ have different heads and tails, then λ = ξ\bumpin(r, r′). (I5)
– if r and r′ have the same head but different tails, or same tail but different heads, then:

∗ if slidein(ξ, r, r′) is defined, then λ = slidein(ξ, r, r′); (I6)
∗ otherwise, define ξ′ = switchin(ξ, r, r′) ∈ Ui(µ, ν). (T)

Proposition 4.1. D1-D6 are the respective inverses of rules I1-I6, whereas S and T are both involu-
tions. Moreover, D1-D6 and I1-I6 are sign preserving between Di(µ, ν) and Ui(µ, ν), while S and T are sign
reversing, respectively on Di(µ, ν) and Ui(µ, ν).

This was proved in [SW02, Whi83] though not exactly in the form stated here. We will summarize
the local signed bijections afforded by these rules in the following theorem:

Theorem 4.1. (a) If µ = ν, there is a bijection ϕ1 between Ui(µ, µ) and Di(µ, µ) ⊔ [[0, i− 1]].
(b) If µ 6= ν, there is a signed bijection (iD, iU , ϕ2) between Di(µ, ν) and Ui(µ, ν).

The first bijection is also signed, but since all elements are positive in the two sets a signed bijection is
nothing else than a bijection.

The proofs can be found in the aforementioned papers; let us notice say here that the proofs in [Whi83]
can be simplified by using the encoding of partitions as edge sequences: see [vL99] and the appendix to
[SW02] for information about this encoding.
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4.2. Proof of Theorem 3.1. Let ℓ be fixed, and consider a square grid G = Gℓ of size ℓ× ℓ, made up
of ℓ2 squares; the square numbered (i, j) is the one in the ith row from the bottom and the jth row from the
left.The goal is to apply the local rules repeatedly in the squares of G, and obtain a global correspondence
as a result.

The ℓ2 squares of the grid are ordered by (i, j) � (i′, j′) iff i 6 i′ and j 6 j′. We now fix a total order 6

extending this partial order.Each square sq except (1, 1) has then a predecessor pred(sq), and each square
sq except (ℓ, ℓ) has a successor succ(sq); we set next(sq, dir) to be pred(sq) when dir = −1, and succ(sq)
when dir = 1.

Given a square sq and a direction dir ∈ {+1,−1} then:

• if dir = 1, and µ, ν, λ, C are as in the definition of direct rules, apply the adequate direct local rule;
• if dir = −1, and µ, ν, ξ are defined, apply the adequate inverse local rule.

We call this procedure Apply local rule and we write loc:=Apply local rule(dir,sq) where loc is the label
of the local rule that has been applied.

We are now in a position to describe the sign-preserving bijection ϕ of Theorem 3.1, in an algorithmic
fashion :

Algorithm ϕ :
Input: hook permutation (H,σ).
0utput: pair of ribbon tableaux of the same shape (P,Q).
begin

sq := (1, 1); dir := 1;
repeat

loc:=Apply local rule(dir,sq);
if ((loc=S) or (loc=T)) then dir := −dir; end if;
sq:=next(sq,dir);
until ((sq:=(ℓ, ℓ) and dir = 1) or (sq = (1, 1) and dir = −1));
end

We will explain the algorithm on a small
example. Here the total order chosen is
(i, j) < (i′, j′) if j < j′, or if j = j′ and
i < i′. So a square is greater than another
if it is in a column strictly to the right, or
if it is in the same column but in a strictly
higher row.
First start with a hook permutation drawn
on the grid (see A).
Then we apply local rules a total
of eight times to get to the config-
uration B: the rules are successively
D2,D4,D4,D4,D1,D2,D4,D2.
Then we have to apply rule S, so that direc-
tion changes and we have to apply inverse
rules starting in square (2,3); rules are I5,I2
and I5, and we attain configuration C.
We apply T, change direction once again,
and apply rules D3,D2,D3 et D6 to reach
the final configuration D.

A B

C D

We define the involution i algorithmically in the same way as ϕ, only the input is a pair of tableaux
(P,Q), and initially sq = (ℓ, ℓ) and dir = −1. The repeat . . . until loop is then exactly the same as ϕ; if
the algorithm ends in (ℓ, ℓ), this defines i(P,Q), whereas if it ends in (1, 1) we retrieve σ = ϕ−1(P,Q).
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We will not give here a complete proof that these algorithms work correctly and that they prove Theorem
3.1, but we give the main ingredients: the proof uses mainly the original algorithm of White, the works of
Fomin and also the Involution Principle of Garsia and Milne [GM81b, GM81a] (see Appendix B).

Note that each change of direction in algorithm ϕ corresponds to a change of sign, because S and T are
sign reversing; this is why ϕ cannot end in (1, 1) since hook permutations are always positive.

Finally, the fact that the signed bijection preserves contents is a simple property of the local rules
themselves: the size of the ribbons corresponding to parallel edges of the square is unchanged unless rule D2
or I2 is applied, in which case the size of top and right ribbons match the size of the hook C.

4.3. Proof of Theorem 3.3. We will now consider just one half of the grid Gℓ, namely the squares
(i, j) with i > j; let us write Hℓ this set of squares. Ribbon tableaux will be represented by chains of
partitions on the top vertices, and we will represent hook involutions by their restriction to the squares
of Hℓ. We also fix a total order s < s′ on Hℓ that extends the restriction of the order �. We define
succ(sq),pred(sq) and next(dir, sq) as before.

Figure 6. The reduced grid for the symmetric case, and a hook involution.

Now we will run the same algorithms as the ones defined in the previous part, but on this reduced grid
Hℓ; to run the algorithm on the diagonal squares, one has first to write a ’ghost copy’ of the northwest
partition in the southeast corner, before applying the rule. Note that only rules D1-D3 and I1-I3 may then
be applied.

This defines the signed bijection of Theorem3.3.
Signs are defined differently than in Theorem 3.1, in which :

• pairs of tableaux (P, P ) have all positive sign 1 = ε(P )2;
• hook permutations are always positive, whereas hook involutions are signed in Theorem 3.3.

The proof is thus not a simple consequence of Theorem 3.1, but uses another ingredient: define Ui(µ) to
be a signed set identical to Ui(µ, µ) as a set, but with sign now given for λ ∈ Ui(µ) by ε(λ/µ); similarly,Di(µ)
is Di(µ, µ) but with sign ε(µ/λ). Then local rules D2, D3 and I2,I3 prove the following:

Proposition 4.2 ([SW02]). If k ∈ [[0, i − 1]] is a signed set by sgn(k) = (−1)k , then there is a sign
preserving bijection between Ui(µ) and Di(µ) ⊔ [[0, i− 1]]

This is the key result that insures that sign reversal happens exactly when direction reversal does. This
is the reason why we chose ’Shimozono and White’ rules (D2-D3,I2-I3) instead of ’Stanton and White’ rules
(used in [SW85, Whi83]):the latter are not a signed bijection in the sense of the above proposition.

In particular, White’s original bijection does not have Theorem 3.3 as a special case.

4.4. Proof of corollary 3.2. Let us start with the first identity. The signed bijection of Theorem
preserves contents, so if a hook permutation corresponds to a pair of tableaux, then the contents of this
tableaux must rearrange to the same partition, since this is true for the contents of H and of σ(H). Therefore
if µ̃ 6= ν̃, the terms on the left cancel out by the involution i. In the case µ̃ = ν̃, it is easily seen that
1j1(j1!)2

j2(j2!) · · · is the number of hook permutations of with c(H) = ν and c(σ(H)) = µ, and so the proof
is a consequence of Theorem 3.1.
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To prove the second identity, it is enough to prove that there are
(
n+ℓ−1

ℓ−1

)
hook lists of length ℓ and size

n. This is bijectively explained on Figure 7.

Figure 7. Here we have n = 23 and ℓ = 5, so that n + ℓ − 1 = 27 and 2ℓ − 1 = 9. The
9-subset of [[27]] in bijection with the given hook list is then {4, 7, 9, 12, 13, 19, 21, 22, 26}.

5. Algebraic approach

The goal here is to prove Corollary 3.2 without using Theorem 3.1

5.1. Elementary linear operators. Let K be a field of characteristic zero, and consider KY =
⊕nKYn, the graded vector space of formal linear combinations of partitions with coefficients in K. For i a
positive integer we first define two linear operators Ui and Di :

Definition 5.1.

Uiλ =
∑

r=µ/λ∈Ribi

ε(r)µ ; Diλ =
∑

r=λ/µ∈Ribi

ε(r)µ.

Ui and Di extend indeed to endomorphisms of KY, which send KYn to KYn+i and KYn−i respectively.
They were actually already defined by Stanley in [Sta88] but for different purposes. The fundamental
property of these operators is the following (AB = A ◦B here):

Proposition 5.1.

DiUi = UiDi + i · Id(5.1)

DiUj = UjDi if i 6= j(5.2)

Let us define < λ, µ >= δλµ, and extend it to KY × KY by linearity. Notice that Ui and Di are dual
for this bilinear form : < Uiλ, µ >=< λ,Diµ >

Proof: Take µ and ν two partitions. To prove the first equality we have to check that < DiUi(µ), ν >=<
UiDi + i · Id(µ), ν >, i.e. that < DiUi(µ), ν >=< UiDi(µ), ν > +δµ,ν ; the second equality means <
DiUj(µ), ν >=< UjDi(µ), ν >. These are in turn equivalent to |Ui(µ, µ)| = |Di(µ, µ)| + i and |Ui(µ, ν)|± =
|Di(µ, ν)|± for µ 6= ν. This is exactly what the bijections of Theorem 4.1 prove. �

5.2. Algebraic proof of Corollary 3.2. Take now K = Q((q)), the field of formal Laurent series in q
. Let us consider YK =

∏
n KYn, the vector space of functions from Y to K. We shall write such functions

as infinite linear combinations of partitions with coefficients in K. We may then extend the bilinear form
< ., . > to KY × YK.

With these conventions we define the operators U and D:

Definition 5.2.

U =
∑

i

qiUi ; D =
∑

j

qjDj

The endomorphisms Ui and Dj for any i, j extend to endomorphisms of YK, and U and D are then
themselves endomorphisms of YK (though they are not endomorphisms of KY).

Then we have as a direct consequence of the definitions of the operators U and D:
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(5.3)
∑

λ∈Yn

P,Q∈RTλ,ℓ

ε(P )ε(Q) = [q2n] < ∅,DℓUℓ∅ >

Proposition 5.1 can be restated in the single following commutation relation:

(5.4) DU = UD +
q2

(1 − q2)2
Id

We are now in a position to use the following result of Stanley:

Theorem 5.3 (Stanley [Sta88]). If two operators satisfy DU = UD + rI, then we have

(5.5) DℓU ℓ = (UD + rI)(UD + 2rI) · · · (UD + ℓrI)

Therefore, if there is an element Ô such that DÔ = 0, then < Ô,DℓU ℓÔ >= rℓℓ!

We have such a relation with Ô = ∅ and r = q2/(1− q2)2, so the second identity of Corollary 3.2 follows
from 5.4, 5.5 and the following computation

rℓℓ! = ℓ! · q2ℓ ·
1

(1 − q2)2ℓ
=

∑

n>2ℓ

[(
n+ ℓ− 1

2ℓ− 1

)
· ℓ!

]
q2n.

Let us turn to the proof of the first equality of 3.2. The left hand side of the formula in the corollary is

equal to < Ô,Dν1
· · ·Dνℓ

Uµℓ
· · ·Uµ1

Ô >. Then we have the following lemma:

Lemma 5.4. < Ô,Dν1
· · ·Dνℓ

Uµ1
· · ·Uµℓ

Ô >= νℓ ×
∑

ρ < Ô,Dν1
· · ·Dνℓ−1

UρÔ >, where ρ goes through
the multiset of the compositions of length ℓ− 1 deduced from µ by deleting a part equal to νℓ.

The proof uses repeatedly relations of Proposition 5.1, and the simple fact that < Uiλ, Ô >= 0. By
induction on ℓ, the sum on the right can be computed and a proof of Corollary 3.2 easily follows.

6. Column Sums of the character table of Sn

The link between hook involutions and ribbon tableaux is suited to the study of column sums of the
character table of Sn. For background concerning the representation theory of the symmetric group good
references are [Ful97, Sag01].

6.1. A formula for
∑

λ χ
λ
µ. Let λ, µ be partitions of n, and let χλ

µ b e the irreducible character of Sn

indexed by λ evaluated at a permutation with cycle type µ. The Murnaghan-Nakayama rule states that χλ
µ

is equal to the signed sum of ribbon tableaux of content µ and shape λ. So
∑

λ χ
λ
µ is equal to the signed sum

of ribbon tableaux of content µ. Then, by Theorem 3.3, this is equal to the signed sum of hook involutions
of content µ.

Defining C(µ) =
∑

λ χ
λ
µ as the sum of the entries of column µ of the Character table of Sn, what precedes

amounts to C(µ) = |RTλ,µ|± = |HI|±. By the corollary 2.4, we finally have

(6.1) C(µ) = |HIspec(µ)|

Theorem 6.1. Let µ = (1m12m2 · · · ) be a partition.Then C(µ) =
∏

i>0 ci,mi
with

ci,mi
=






0 if i is even and mi is odd;

mi!! · i(mi/2) if i is even and mi is even;
∑⌊mi

2
⌋

k=0

(
mi

mi−2k

)
· (2k)!! · (i)k if i is odd.

We will give two proofs, one bijective and the other algebraic.

First Proof: The computation of |HIspec(µ)| for general µ reduces to the case µ = kak where µ has only
one part (counted with multiplicity). In this case an element of HIspec(µ) is an involution on [[1, ak]] with
a choice of a hook of size ak for each cycle of length 2. Remembering that elements of HIspec(µ) have no
fixed points corresponding to even parts, the proof is complete.
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Second Proof: We will now sketch a proof that does not use Theorem 3.3. For this we need an algebraic
formulation of Corollary 4.2 using the operators Di and Ui:

Proposition 6.1. DiY = UiY + [[i is odd]] ·Y

Here Y stands for the characteristic vector
∑

λ∈Y
λ, and [[P ]] equals 1 if property P is true and 0

otherwise. We may then deduce easily the following lemmas:

Lemma 6.2. Dm
i Y = [[i is odd]] ·Dm−1

i Y + (m− 1)i ·Dm−2
i Y + UiD

m−1
i Y.

Lemma 6.3. Dm
i Y = ci,mY + UiAi,mY, where ci,m is given by Theorem 6.1 and Ai,m is a certain

endomorphism of YK.

Lemma 6.4. < DµD
m
i Y, ∅̂ >= ci,m < DµY, ∅̂ > if all parts of µ are greater than k.

Proofs only use the relations of propositions 6.1 and 5.1. C(µ) is equal by the Murnaghan-Nakayama

rule to < DµY, ∅̂ >; applying the previous lemma by induction, one obtains eventually Theorem 6.1. �

6.2. Link with other works. The formula given in 6.1 is certainly not new, but it is to our knowledge
the first (signed) bijective proof of the result, the signed bijection being the result of going from ribbon
tableaux to hook involutions, and then from hook involutions to the enumeration.

The computation of C(µ) is given in Macdonald [Mac98], p.122 ex.111, and proved by symmetric

function techniques. It states that C(µ) is equal to
∏

i>1 a
(mi)
i , where a

(m)
i is the coefficient of tm/(m!) in

exp(t + 1
2 it

2) (resp. exp(1
2 it

2)) if i is odd (resp. even). It is a simple exercise to expand these generating
functions and then deduce Theorem 6.1 . Another enumeration appears in Exercise 7.69 of [Sta99], which
follows actually from a general result of Frobenius and Schur in the character theory of finite groups (see
the classic reference [Isa94] for instance):

Theorem 6.5 ([Sta99, Isa94]). Let σ be a permutation of [[1, n]] with cycle type µ. Then C(µ) is equal
to the number of square roots of σ, i.e. the number of permutations τ such that τ2 = σ.

It is possible to prove this theorem by constructing a bijection HiToRoot between HIspec(µ) and the
square roots of σ.

6.3. Equations on partitions. We can also use the formula to answer the question : for a given
integer k, what are the partitions µ such that the column sum C(µ) is equal to k ? Let OD be the set of
partitions with odd distinct parts. The answers for the first integers are:

• C(µ) = 0 iff µ has at least an even part with odd multiplicity.
• C(µ) = 1 iff µ ∈ OD.
• C(µ) = 2 iff 1 has multiplicity 2 and µ− 12 ∈ OD, or 2 has multiplicity 2 and µ− 22 ∈ OD
• C(µ) = 3 has no solution.
• C(µ) = 4 iff 3 has multiplicity 2 and µ− 32 ∈ OD, or 4 has multiplicity 1 and µ− 41 ∈ OD, or 2

and 1 have multiplicity 2 and µ− 1222 ∈ OD.

The number of solutions to C(µ) = 0 is sequence A085642 in Sloane’s Online Encyclopedia [Slo]. The
article [BO04] proves bijectively that another family of partitions is in bijection with OD, namely the
partitions with at least one part congruent to 2 modulo 4.

7. Conclusion

The results described here can easily be extended. As has been noticed, ribbon tableaux can be fruitfully
seen as paths going up in the graph GR = (Y, R). And a pair of ribbon tableaux of the same shape and the
same number of ribbons is a walk on GR from ∅ to ∅ with ℓ up steps followed by ℓ down steps . But other
walks from ∅ to ∅ with prescribed conditions on up or down steps can be studied, and so can oscillating
ribbon tableaux, i.e. walks on GR of length 2ℓ from ∅ to ∅ .

For standard tableaux, there exist the procedures of jeu de taquin and evacuation due to Schutzenberger.
Stanton and White explained how this could be generalized to ribbon tableaux, to show combinatorially that
|RTλ,µ|± = |RTλ,ν |± as soon as µ and ν are 2 compositions verifying µ̃ = ν̃.It is possible to give local rules

1actually the result in [Mac98] is stated with tm instead of tm/(m!) but we corrected it here
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realizing this, building on Fomin’s version of jeu de taquin in his appendix to Stanley’s book [Sta99]. Let
us justpoint out that the algebraic way to express the is simply DiDj = DjDi for all i, j.

As a matter of fact, algebraic and bijective techniques can be generalized to other graphs, and extend
parts of Fomin’s seminal work [Fom94, Fom95]. Consider a simple nonoriented graph G = (V,E) with a
sign function ε : E− > {+1,−1}. Suppose that V is a disjoint union of finite sets Vi, i ∈ N where V0 is a
singleton {O}. We say that G is a layered graph with zero. Introduce operators Ui, Dj on ZV defined for
v ∈ Vk by Ui(v) =

∑
e ε(e)v

′ where e runs through edges from v to the vertices v′ ∈ Vk+i; a similar definition
holds for operator Dj that sends ZVk to ZVk−i.

We say that G is self dual if it satisfies, for certain integers αi:

DiUi = UiDi + αi · Id(7.1)

DiUj = UjDi if i 6= j(7.2)

We only defined the self dual case, but layered graphs in duality can be defined likewise following
[Fom94]. It is then easy to see that algebraic techniques developed for the ribbon graph can be applied to
such graphs ; signed bijections can even be constructed if one defines local rules that prove combinatorially
the previous relations. Note that this concerns only generalizations of Theorem 3.1 and its Corollary: to
have a Theorem similar to Theorem 3.3 one needs additional properties.

One should try to generalize other properties of the Schensted correspondence to ribbon tableaux: for
instance, what relation is there between a hook permutation and the common shape of the ribbon tableaux
associated to it ? This might help in finding a combinatorial explanation of the positivity of the row sums
of the character table

(
χλ

µ

)
λ,µ

(see Exercise 7.71 in [Sta99]).
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Appendix A. Operations on Ribbons

• If r and r′ are the set of cells corresponding to 2 ribbons, then bumpout(r, r′) is the set of cells
(r\r′)∪(r′\r)∪(r′∩r)ց where Aց is the translate of the set A by the vector Southeast = {1,−1}.
bumpin(r, r′) is defined in a similar fashion by pushing common cells in the northwest direction.
These definitions differ slightly from the standard ones.
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• Let λ be a partition, k a positive integer, and h a nonnegative integer. By a result of Shimozono
and White [SW02], λ-addable ribbons of size k and height h and λ-removable ribbons of size k
and height h are r0 < r′1 < r1 < . . . < r′t < rt where:

– rib1 < rib2 if the head of rib1 is weakly southwest of the head of rib2;
– (ri)i=0...t are the λ-addable ribbons of size k and height h and (r′i)i=1...t are the λ-removable

ribbons of size k and height h.
We can now define first(λ, h) to be the ribbon r0 defined above, with k = |r0| = |h| and h =

ht(r0) = ht(r1); and we define next(λ, r′i) = ri for i ∈ [[1, t]]. Conversely, we define prev(λ, ri) = r′i
for i ∈ [[1, t]], and prev(λ, r0) = ∅. The arrow is ’next’ in the Figure below.
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• Let λ be a partition, and r, r′ be λ-addable ribbons having the same tail but different heads,
and without loss of generality we assume that |r| > |r′|. The outside rim of λ consists of cells
immediately to the right and below λ, or in the first column and below λ, or in the first row and
to the right of λ.Then consider the set τ of |r′| contiguous cells of the outside rim of λ that lie
Northwest of r and are adjacent to it.

– if τ ∪ r forms a λ-addable ribbon, then define slideout(λ, r, r′) = λ ∪ r ∪ τ .
– otherwise define switchout(λ, r, r′) = (λ ∪ r′)\τտ, where Aտ is the translate of the set A by

the vector Northwest = {−1, 1}.
If r and r′ have the same head but different tails, we operate the same procedures on the

transpose of λ, r, r′ and transpose again at the end.
switchin and slidein operations are defined similarly for λ-removable ribbons (see [Whi83]).
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Appendix B. The Garsia and Milne Principle

Garsia and Milne in [GM81b, GM81a] gave the first bijective proof of one of the famous Rogers-
Ramanujan identities. For this they created and used the involution principle, of which we give a possible
version in the following:

Let A,B be two signed sets, and iA, iB be two sign reversing involutions on A and B respectively.
Let also ϕ be a sign preserving bijection between A and B. With these conditions, we have an equality
|Fix(iA)|± = |Fix(iB)|±; yet suitable restrictions of iA, iB and ϕ do not necessarily induce a signed bijection
between Fix(iA) and Fix(iA).

The principle of Garsia and Milne is the construction of such a signed bijection (ψ, jA, jB): let a ∈ A,
and apply ϕ, then ϕ−1 ◦ iB, then ϕ ◦ iA, then ϕ−1 ◦ iB,then ϕ ◦ iA, etc ... until the image y is either :

• in Fix(A), in which case one defines jA(a) := x,
• or in Fix(B),in which case one defines ψ(a) := x.

In order to define jB (and ψ−1), do a symmetric procedure starting from b ∈ B. These procedures always
end and give the wanted signed bijection; for a proof of this fact see for instance [Ker99, p.76].
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