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Abstract

Let R(n,a) denote the number of unrestricted partitions of » whose sub-

sums are all different of a, and @(n,a) the number of unequal partitions
(i.e. each part is allowed to occur at most once) with: the same property. In
a preceding paper, we considered R(n,a) and Q{n, ) for a < A;/n, where
A; is a small constant. Here we study the case a >[As+/n. The behaviour
of these gquantities depends on the size of a, but also on the size of s{a),

the smallest positive integer which does not divide a.

1. Introduction
Let us denote by p(n) the number of unrestrict
r{n,m) the number of partitions of n whose parts
R(n,a) the number of those partitions

n=ny+---+m (ﬂls“-s1

of n which do not represent a, i.e. whose subsums
different from a.

We shall consider also partitions of n into distinct
above notations will be change to g(n), p(n,m) and

ed partitions of n, by
are at least m, and by

lg)

n;, + -+ ny; are all

parts. In that case the

Q(n,a).

In [58] J. Dixmier considered R(n,a) when 4 is fixed, and in [7], we studied

R(n,a) and Q(n,a) when a < A;+/n, where A; is a
we shall consider the case Az/n < @ < n/2, where
(Since R(n,a) = R(n,n — a) and Q(r,e) = Q(n,n
that @ < n/2.) We shall prove:

; small constant. Here
Aq is a large constant.
— a}, we may suppose
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Theorem 1. For n > ng and
10%¥/n < a < 0¥, (1.1)
we have
Q(n,a) < ¢([n/2]) exp(5 - 10%a~ 302 log(a3n=1%))  (1.2)

and

R{n,a) < p([n/2)) exp(5 - 10%a=/3n*/3 log(a'/3n=1/%}) (1.3)
where [z] denotes the integral part of .

Theorem 2. For n > ng and

2T <a<nf2 (1.4)
we have '
Q(n,a) < g([n/2]) exp(n*/>~1/%) (1.5)
and
R(n,0) < p([n/2)) exp(n*/>-1/), (L6)

It follows from Theorems 1 and 2 that
Corollary. If a = a(n) is such that e/\/n — oo and a < n/2, we have
Q(n,a) = (¢({n/2))"+°(") and R(n,a) = (p({n/2)))*+=0).
Theorem 3. Let s(a) denote the smallest positive integer which does not
divide a. For n > (2500)?2, s(a) > 40000 and

s 2 (s(@)? < a < o n(s(@) )
we have
Q(n, a) < exp(201n'/2(s(a))~/? log(s(a))) (1.8}
and
R(n,a) < exp(301n'/25(a)~1/2 log(s(a))}: (1.9)

Remark: By Lemma 1 below, (1.7) holds for all a’s such that
(7/10)a*%(log n)*? < a < (1/200)n(log n) L.

To give lower bounds for R(n,a) and Q(n,a), first -we note that if ¢ is
odd and n is even, then multiplying the parts of a partition of n/2 by 2 we
get a partition of n whose subsums are all even and thus different from a.
Hence

R(n,0) > p((n/2) (110

and

Q(n,a) > q([n/2]) (1.11) .

which show the exponent 1+ (1) in the above corollary to be best possible.
This argument can be extended, and yields:
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Theorem 4. Let h = h(n,a,m) be given by h =0 1Fm|ﬂ and
h=n (modm), if a<h<a+m.

Then

Q(n,0) > ¢ (W) (112)
and .
R(n,a)> p (—_" = "(s"(;‘;'s(“))) N (1.13)

Proof: When s(a) divides n, we consider all the partitions of n/s(a), and
we multiply their parts by s(a). In this way we obtain a partition of n
whose subsums are all divisible by s(a) and they cannot be equal to a.
When s{e) does not divide n, let us set A = h(n,a|s(a}). We consider
all the partitions of (n — h)/s(a), we multiply their parts by s(a), and we
complete them with a part equal to A to obtain a partition of n. As & > a,
the subsums of such a partition are all different from a.
Taking into account the results of Hardy and Ramanujan (cf. [9)):

i (35).
g(n) ~ Wexp (W\/g) ,

we observe that for a = o(n), the upper bounds given in Theorem 3 for
log Q(n,a) and log R(n, a) are of the same order of magnitude as the lower
bounds given in Theorem 4 (apart from a factor log s(a)). This shows that
the behavior of Q(n,a) and R(n,a) depends on the arithmetical structure
of a if a is large.

In [7], we gave bounds for R(n,a), and a lower bound for }(r, a) when
a is < A14/n. Here we will prove the following upper bound:

p(n) ~
(1.14)

Theorem 5. Fora < % n and n large enough, we have

Q(n,a) < g(n)exp (—alog % + é"(}%ﬁ) . {1.15)

The proof follows the same principle as in [7] for unrestricted partitions:
if a partition 7 does not represent a, then ¢ and & — i cannot belong simul-
taneously to #. So, for every i, 1 < { < af2, there are three possibilities:
ierandae—i¢midmanda—i€nmignmnandae—i¢ s, Whenais
even, and 7 = a2, there are only two possibilities. Therefore, the number




208 P. ERDOS, 1. L. NICOLAS, AND A. SARKOZY

of possible sets .4 of parts < e is at most 3%/2. For such a set A, there are
p(n—3 4% a+1) possibilities of completing A to a partition of n. As
already observed in [8], p(rn,m) is nondecreasing in n for n > m, is 0 for
1< m < n,and 1for n = 0. Thus we have

Q(n,a) < 3*%p(n,a +1).

From Theorem 1 of [8], we have

1 a?
pln,a+1) < p(n,e) < wzd\rt 7 )

and from Lemma 3 of [8] (which is an easy consequence of (1.14)),

wa?

8/3y/n

and Theorem 5 is proved. For a > 0.64+/7, the quantity in the exponent in
(1.15) is positive, and thus the trivial bound Q(n,e) < g(n) is better.

Now consider the case when a is of the order of magnitude /n. In [4],
Theorem 2.18 claims that if @ is odd and a ~ /n, then we have for n large
enough

aZ
q n+? ~ gq{n)exp

log R{n,a) > 2.0138/n. (1.16)

This result can be extended to the case when a is odd, & ~ Ay/n, and we
obtain

log R(n,a) > p(A}v/n (1.17}

for some function .

Our guess is that, when ¢ is odd, such a result is best possible. But when
a is even, we have no precise conjecture. J. Dixmier has proved (cf. [6])
that for € > 0 there exists § < 1 such that, for n large enough,

evn<a<n—e/n= R(nae) < {pn) (1.18)
for all n. The proof is short, and starts with the results of [7].

In the same way, it can be deduced from Theorem 5 above that for ¢ > 0,
there exists & < 1 such that, for n large enough,

e/ <a<n—e/n= Q(n,a)< (¢(n)’. (1.19)

The aim of [6] is to give a fairly good estimation of R(2n,n), and to
study R(=n,a) for Aan < @ < nf2, where A; is a fixed constant.
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The proofs of Theorems 1, 2 and 3 are based on results from additive
number theory (cf. [11] and [12]). In §2, we shall give some estimates

involving partitions. In §3, we shall prove some lemm
erties of dense sequences, from which, in §4, the proof ¢
will follow.

All these proofs are effective, but the constants are
did not attempt to optimize them.

A table of R(n,a) for n < 40 was given in {7]. Here
give a table of Q(n,a) for n < 40. It has been comput

as on additive prop-
f our three theorems

rather large and we

in the appendix, we
ed by M. DeLéglise,

and we are very pleased to thank him. For a fixed a, first he determines, by
a backtracking programming method, all the subsets 4 of {1,2,...,a — 1}

having no subsum equal to a. Then for all A such tha
smaller than n,

Qn,a) = Zp(n — 5(A),a+1).
A

As can be seen in (8], p(n, m) is easy to calculate.
‘We thank J. Dixmier for many helpful remarks, and
of Lemma 11 below.

Notations: p(n,m) will denote the number of unres
n into parts < m (or into atmost m parts); here m i
integer.

IN is the set of positive integers {1,2

Ny ={1,2,...,M}.

tS(A) =3, (z is

for an improvement

tricted partitions of
s not necessarily an

)

If A is a finite set of not necessarily distinct integers, then |A| denotes

cardinality of A, A’ the set of distinct elements of A,

P(A):{Zena; =0 or I,ZE

acA a€A

the set. of the nonzero subsums of A,

LLA,d) ={i; 1 < i< d, there exist at least 2 el
which are =1 (mod d)}

and

L(A,d) = |C(A, d)).

5(A) = Toea e,

A0}

ernents of A
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2. Partition Lemmas

Lemma 1. Let s(m) be the smallest integer which does not divide m.
Then for all m > 2, we have '

s(m) < logm < 4.5log m. (2.1}

log 2
Proof: First, if m is odd, s(m) = 2 and (2.1} holds. So we may suppose
that m is even, and s(m)} > 3. Let ¢(z) denote the Chebychef function:

Piz) = Z log p.
pr<z
It follows from Chebychef’s results that for all integers n > 2,
¥(n)/n > (log2)/2.
Then

logm > (s(m) — 1) > l°§ 2(sm) - 1)

which implies
2logm 3-

s(m) <14 oz 2 < i—ggé-logm.
It can be shown similarly that
m > mo(e} = s(m) < (1 + ¢) logm. (2.2)
Lemma 2. Let « be a real number satisfying 0 < a < 1.05. For m < ay/7t
we have
p{n,m) < exp ((2& log %?-) \/ﬁ) . (2.3)

This inequality can be used to obtain upper bounds for p(n,m) and
r{n,m) since
plr,m) < rin,m) < p(n, [nfm]). (24)
Proof: From the classical inequality

mmen) |
m!p(r,m) < 2 )

m—1
it has been proved in 3] that for all & > 0, and m < a/n,

p(r,m) < exp ((¢®/2+ 20(1 — log @) /1) .

Observing that a < 1.05 implies a®/4 4 1 < log (3.6), (2.3) follows easily.
For a > 1.06, the obvious inequality p(r,m) < p(n) and (1.14} give a
better upper bound.
As p(n,m) is also the number of partitions of n with at most m parts,
(2.4} can be proved easily.
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Lemma 3. Let Y({n,t,m) denote the number of partitions of n into un-
equal parts such that at most t parts not exceeding m may occur. We

have
Y(n,t,m) < p(n,t + n/m).

Proof: A partition counted in ¥ (n,?,m) has at m
n/m parts > m. The right-hand side of {2.5) is certe
number of partitions of # with at most £ + n/m uneq

Lemma 4. Let Z(n,f,m) denote the number of u
of n such that at most ¢t distinct parts not exceedin
1<t <m< n we have

Z(n,t,m) < 6tn? (min(iﬁm/z}))p(n,i)p

proof: For A C {1,2,...,.m}, A={a; < ap < -+
denote the number of partitions of n with all the par
A, i.e., P{n, A, m) denotes the number of solutions o

n—m ‘

ap®y +-- -+ 8k, + Z(m+i)$s+f =n, (&>

i=1

Then we have

(2.5)

bst ¢ parts < m, and
ginly greater than the

ual parts.

nrestricted partitions

g m may occur. For

(n, nfmj. (2.6)

< a,}, let P(n,A,m)
ts not exceeding m in
f

0,1<i<n),  (2.7)

n
P(n,A,m) <> Pk, {1,2,...,5},m)
k=0
since replacing a; by j in (2.7), we have
. n—-m
o4 2ok ok szy D (Mt DTy =k (2.8)
i=1
for some k& < n. It follows that
] m n
Z(n,t,m)SZ( )ZP(k,{l,..‘,s},m) (2.9)
=0 $ k=0
since A with |4| = s can be selected in (7} ways from {1,...,m}. Hence
m n
Zn,t,m) < t+1( ) ) Pk {l,...,t},m). (2.10
() S 4Dy ) PO AL Bm) @10
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Now, counting the partitions according to the sum j of the parts not ex-
ceeding i, we obtain

k
P(k,{1,...,t},m) = Zp(j,t)r(k—j,m-i— 1)

< (k + Dp(k, )k, m + 1)

since it is easy to see that p(n,m) and r(n,m) are not decreasing in n.
Then {2.10) yields (2.6) observing that ¢ 4+ 1 < 24,

S (k+1) < 3n%,
k=0

and using (2.4).

Lemma 5. Given integers M > 2, D > 2, let V(n, M, D) denote the
number of partitions of n > M into distinct parts:

R=np+4- o+ (n1<-_--<n:)

with the set N = {ny,...,n} of parts of n having the following property:
there exists an integer d,

2<d< D, : (2.11)
and integers iy, ...,4a/9 satisfying
1<ip < - <igyg £ d, (2.12)

such that, if Ny = {n; :ny € N, d < ng < M, ng = i; med dfor some j},
the cardinality of the set Ny = {n; : ne € N\N1, ny < M} satisfies

[Nzl < 2D, {2.13)

then
V(n, M, D) < n*Pg([n/2))p(n,n/M). (2.14)

Proof: Let Ny = M\(MiUMN) = {ns:ne €N ng > M}
Let us fix d,i1,42,...,9/7) in {2.11), (2.12) and (2.13). By the defintion
of My, every element m of A can be written in the form

m = ij(m) + Ym)d

where .
L<iem) < [4/2] end 1< Kom). (2.15)
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To every m € Ny we assign the integer
m" = j(m) + (é(m) — 1)[d/2],
and write A7 = {m* : m € A;}. Clearly, {2.15) implies that to distinct
elements of A, distinct elements of A} are assigned. Furthermore, we have
m* = j(m) + (&{(m) — 1)[d/2] < {d/2] + (£&(m) - 1)[d/2]
= {(m)[df2] < £(m)d/2 < m/2 :

whence ) . 1
SV = Y, m< 3 S m= 5SM).
meENT meN
Thus writing S(N1) = u, the elements of A} form partition of an integer
v < u/2 into distinct parts, so that for fixed d,4y,.. .}, ij¢/9 and u, N} can
be selected in at most
fu/2]
3 av} < (/2] + Da(fn/2)) < na(ln/2)
v=0
ways.

Furthermore, the elements of A are selected from {1,2,..., M} and, by
(2.13), their number is at most 2D, so that Az can be chosen in at most
M?®P < n?P ways.

Finally, if d,y,. .. ,44s2; and u are fixed, then

- S(Ma) = (S(N1) + S(N2) + S(N3)) — S(N) — S(N2)
=n—u—SM)<n-u

z np =z

niEN;
is a partition of z(< n — u) into parts > M + 1. Thug As can be chosen in
at most

so that

z Pz, M+ 1} < (n+1)p(n, M) < nzp(n, M)
. z=0
ways (note that p{n, m) is non-decreasing function of| n for n > m).
Collecting the results above, we obtain that for fixed d, #1,...,4asq, the
partition A can be chosen in at most
R2P+3g([n/2)p(n, M)
ways. Furthermore, for fixed d, the numbers iy,1p,. .., i[gy9 in (2.12) can
be chosen in at most 27 ways, and summation over the d’s in (2.11) gives
Z 9 < 9P¥1 < nPH
<D
whence, by {2.4), the result follows.
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Lemma 6. With the notation of Lemma § but considering unrestricted
partitionsn = ny +---+ny (n; € --- < ny) of n 2 M, so that now parts in
N1 and N3 have to be counted according to multipficity, suppose here that

IV < 2D (2.16)

Then the number W(n, M, D) of unrestricted partitions of n that corre-
sponds to V(n, M, D) in Lemma § satisfies

Wn,M,D)< n'mﬁ([n/ﬂ)p(n,n/M).

Proof: Again first fix d, i1, 43, . .., 9472, and define N3, m™, N7 in the same
way as in the proof of Lemma 5. The same argument shows that, writing
S(M) = u, M can be chosen in at most

[w/4
> o) < np([n/2])

=0

ways.

Furthermore, the elements of A are selected from {1,2,..., M} and, by
(2.16), the number of distinct elements of A% is at most 217, so that they
can be chosen in at most M2? < n2P ways; and if we have selected the
distinct elements of A, then the multiplicity of each of them can be chosen
in at most n ways, so that the multiplicities of the distinct elements of A3
can be chosen altogether in at most n? ways. Thus A3 can be chosen in
at most n?P . n?0 = nD ways,

Finally, the same argument as in Section 2 shows that N3 can be chosen
in at most

n-u
Z r(z, M +1) < n%r(n, M)
z22(
ways.
Collecting the results above and using also (2.4}, we obtain that for fixed
d,f1,. .. ,igss), the partition A" can be chosen in at most
n*2+3p([n/2f)p(n, n/M)
ways. Finally, as in Lemma 5, d, 4y, . .,4(4j3 can be chosen in at most n?+!

ways whence the result follows.
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3. Additive Lemmas

First we need the following well known fact (see, d

Lemma 7. Ifd € IN and ny,ng,...,ng are integers,

.g- [12], Lemma 3).

then there is a sum of

the form ny, + -+ ny, (1 < 4; < -++ < iy £ d) such that d|(n;, +---+ ny,).

The next lemma is variant of Lemma 4 in [12].

Lemma 8. If N € IN, d € IN, and B is a finite
distinct positive integers such that

the elements of B do not exceed
then for every integer n such that 0 < n < L5(B) -

Ty in theset {In+1,n+2,...,n4+ N} such that dz,

Proof: It suffices to show the existence of integers g
0<y SN, 0<y—yit SN (fori=23,....,1%,
dy; € P(B) for i = 1,2,...,t. Afterwards we shall de

n for0€n<y,
zo={ % forpaSn<n(@<iL

w fory1<n<iS(B)-N.

We are going to define these integers y; by recursion

We may suppose that S{B) > dN which, by (3.1}
By C B, |[By| = d. Then by Lemma 7, there is a {nor
By such that d|S{B}); write S(B])/d = y1. Then d
0 <y, and ;

dyy =S(Bf)= ) b< > N=NIB}| <

beB;  bEBY

so that yy < N.
Assume now that yi,¥s2,...,¥%i-1 have been define

1
Yiel = ES(B) —N.

set of not necessarily

N, (3.1)

N there is a number
. € P(B).

1,%2,. .., 4 such that
%S(B) — N <y and
fine z, by

t_l)s

r

implies [B} > d. Let
1-empty) subset B} of
% € P(B}) C P(By),

N|Bi] = Nd

1 and

(32)

By the definition of yi_1, there is a subset B}_, C B such that S(Bf_,) =

dy;_1. Then by (3.2) we have

S(B\B;_,) = S(B) — S(Bi_;) = 5(B) T di-s
> 5(B) - (S(B) — Nd) = Nd. (3.3)
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(3.1) implies that

SB\BLL)= 3, b< 3 N=NBBL

be(B\BI_,) bE(B\B?_,)
It follows from (3.3} and (3.4) that
IB\B_,| > d.

Thus there is a subset B; of B — B}_, with |8;| = d. By Lemma 7, there is
a (non-empty) subset B of B; such that 2|S(B;); let y; = y;—1 + d~1S(B1).
Then we have

Y1 <m =41 +dSB) =pi-1 +d D b
beE"

S +d Y N=gig+ Nd"IB’! < yie1 + Nd7Y B
B

=+ N
and
dye = dye_y + S(B}) = S(B]_,) + S(BY)

= > b+ ) beP®B

bEBL,  beB!

which completes the proof of the lemma.

Lemma 9. Let N € IN,
N > 2500, (3.5)

ACINy and
|A| > 100(N log N)Y/2, (3.6)

Then there exist integers d, y, z such that

1<d< 104 , 3.7
] (3.7)
1AL
> 2 0r (3.8)
N

<

1<y< 7104 T (3.9)
and

{yd, (y + 1), ..., zd} C P(A). (3.10)

Proof: This is Theorem 4 in [12].
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Lemma 10. Let N e IN, N < 2500, m € IN,

2
TNs(m}<m < IOas(N

3t

AC Ny
and ¥
[Al > 10“3—(;5.
Then we have
m e P(A).

Remarks: This lemma is non-trivial only when s{rn)
that m must be a multiple of all integers up to 10%, :
greater than 2500.

It is easy to see that, from Lemma 1, (3.11) hold:
such that N > 2500 and

83 Nlog N < m < 12 N%(log N)~%.

A slightly weaker version of this leroma follows fron
Freiman, Lipkin [1], [2], [10].
Proof: It follows from (3.13} and Lemma 1 that

N 10N

4
A2 10 s(m )24 -5logm’

Now by {3.11), logm < log(10°N?) < 3log N, and th

w0 N >8600\/m

Mz 335 I35logN — 135

(3.11)

(3.12)

(3.13)

(3.14)

> 10%, which implies
and N must be much

for every m and N

n.the results of Alon,

(3.15)

us (3.15) yields

because - N > 0.86y/NTog N for all N > 1. So (3. b) holds and ihus we
may apply Lemma 9. We obtain that there exist mtegers d, y, z, satisfying

(3.7), (3-8), (3.9) and (3.10). It follows from (3.7) an

d<10"N<104 N

VRS R

so that
djm.

1 (3.13) that

=

)

(3.16)
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Furthermore, by {3.10) we have zd € P(.A) whence

W< S(A)=)Y ag > N=N4 (3.17)

agA sEA

It follows from (3.9), (3.17), (3.13) and (3.11) that
. N JN? '
A0% e 2d < 7.10% 57— < < m. .
yd < 7.10 I-APZ <7.10 i.A]_TNS(m)"m (3.18)
Now, (3.8), (3.13) and (3.11) imply

A2 5 N?
-3 —_— .
zd22>7_104_10 o )22m, {3.19)

and (3.14) follows from (3.10), (3.16}, (3.18) and (3.19). This completes
the proof of the lemma. :

Lemma 11. Assume that N ¢ IN,

N> 10", (3.20)
& is a real number with 1
0<é< 5 (3.21)

A Is a finite set of (not necessarily distinct) integers not exceeding N,
A > 10361 V)34 (3.22)
and there is an integer m with
2- 1076 NA < m< (1-6)S(A) and mgP(A). (3.23)
Then there Is an integer d with
d<11-10% 'V 4! (3.24)

and
L{A,d) < df2. (3.25)

Proof: In a first step we shall prove Lemma 11 when § = 1/2. In this step
(3.21) should be read § = 1/2. |

Let D = 11-10%-IN[A|-'. To every d < D, i € L(A,d)}, we assign
two numbers a(d,i) € A, a'(d,i) € A, a(d,i) = a'(d,i) = i (mod d) so
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that either a({d, i) # ¢'(d,?), or a{d,i) = a'(d,i) an
multiplicity at least 2 in A. Let

Ao = Uagp Vigera,ay {o{d, i), a'(d,
Then cléa.riy we have
Mol <2 d<2D? <3101 2N?
d<p

(where in | 4g| we count the elements of Ap with multi
we have

S = SAY=Y a2 Y a>-;-

a€A  aglAl
It follows from (3.22), (3.26) and (3.27) that
S(A)= D a< Y N<|4N

acAg aEA,
<3106 IN3|A? < 310162 N3 A
= 6 - 10725(102 (67N PLA 1) S(A) < 10

Let us write (A\Ap) = {a1,4s,-..,a,} where a; <

d a(d,i) occurs with

)}-

A’ -2 (3.26)

plicity). Furthermore

AR, (3.27)

2. 25(A) A2

~18S(A).
(3.28)
ag < ++- < ay. (Here

and in what follows, A\.A, is defined so that the multiplicity of a in A\ 4q

is the difference of the multiplicities of ¢ in 4 and Ay, respectively.) By

(3.20), (3.21), (3.22), (3.26) and (3.28) we have

t=|(A\VA)Y] 2 |A'] - |AG]
> A= 3- 1019 INE A 72 = A (1 - 3 10105
> [A|(1 -3 10067 2N?1072(571 N) =)

= |A|(1 - 3(EN 1)) > 14

and

--2N2’A.r|—-3)
(3.29)

S(A\A) = S(A)=5(Aa) > S(A)=10-265(A) = (1-10726)S(A). (3.30)
Let u = [§t]. It follows easily from (3.20), (3.21), (3.22) and {3.29) that

6t< <ét<t
0 ~t=g <y

Write A; = {al,ag, venstn}, A = (.A\.Ao)\Al 8o that

A\Ap = 41 U Ay

(3.31)

(3.32)
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{in the sense that the multiplicity of & in A\ Ap is the sum of the multiplic-
ities of a in .4, and Az}. Clearly,

SA)=Ya> 3 auZal

a€d  ae(A\AoY i=1

(3.33)
[t/u]-1 / u {t/u]-~1 '
) E ()
j=0 i=1 i= i=1

It follows from (3.29), (3.30), (3.31) and (3.33) that

Mol = > ot > A (3.34)
and

Sty < SA  2EA  giay. (3.35)

Tt/ t
By (3.21), (3.22) and (3.34) we have

M| > 5 IA V> S103(67 N > 908 A N > 75N/

so that (3.6) in Lemma 9 holds with .4; in place of .A. (Note that also (3.5)
holds by (3.20).) Thus by Lemma 9, there exist integers d, y, z satisfying
(3.7), (3-8), (3.9) and (3.10) (with A, in place of A) so that, in view of
(3.34), we have

1<d< 10"%-| < 11-10%- 1N AL, (3.36)
2
> M;L4 > 107762142, (3.37)
N
y< 7 10— AP < 1075-2N|A'|- (3.38)
and
{yd,(y +1)d,...,2d} CP(AL). (3.39)

This integer d satisfies (3.24) by (3.36). It remains to show that if there is
an m satisfying (3.23), then this implies (3.25). To show this, we start out
from the indirect assumption

L(A,d) > df2. (3.40)
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First we shall show that
veIN,y<r <(1~88(A)/d imply wvdeP(A1UA). (3.41)

It follows from (3.20), (3.21), (3.22), (3.37) and (3.38) that

z—y>2(1 = 10767IN A7)
> 1077 (6LA'[2(1 — 1076 2N (103(671N)/1)72)
> 107710364 N3/4Y2(1 — 10(5N)~2/2)
> 7. 107> N32(1 — 10(2N)"1/2) > 3. 1072N¥2 5 N

so that (3.39) implies
{vd,(y+1d,..., (y+ N - i)d} C R(A)- (3.42)
Thus (3.41) holds for y < v < y+ N. Assume now Lihat.
v+ N <w<(1-8)S(A)/d (3.43)
Let us write n = v — y — N. Then by (3.43) we havé V
0<n (3.44)

Furthermore, it follows from (3.30}, (3.32) and (3.35) that
S(Az) = S(A\An) — S(A1) > (1 — 10718)S(A) — §5(A)/4

(1 _ .z 5) S(A) > (1= §)S(A). (345)

(3.43) and (3.45) imply
n=v—y-N<v—N<(1-8S(A)/d~ N < S(A:2)/d— N. (346)

By (3.44) and (3.46), Lemma 8 can be applied withi A3 in place of B. We
obtain that there is a number z, € IN such that

nt+l<z, <n+N (347}

and
dz, € P{A2). (3.48)

(3.47) can be rewritten in the equivalent form

0<n+N—z, <N-1L . (3.49)
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Furthermore, we have
vezn={nty+N)—zo=y+{n+N-z,). {3.50)

By (3.49) and (3.50), (v — z,)d belongs to the arithmetic progression
{yd,(y + 1)d,...,(y + N — 1)d} and thus by (3.42) we have

(v z)d €P(A). (3.51)
It follows from (3.48) and (3.51) that
vd = dza + (v — 2,)d € P(AL UAs)

which proves (3.41).
Assume now that m satisfies (3.23). Let

Lm(Ad) ={m—i:i€L(Ad)]
The the elements of both £(4,d) and £..{A4,d) are pairwise incongruent

modulo d and, in view of the indirect assumption (3.40), the total number
of them is

[£(A, )] + | Cm(A, &) = 2L((A,d) > d.

Thus by the box pnm:1p1e there is a number #; in £{A4, d) which is congruent
to a number m — iy in £, (4, d) modulo d:

il =m-— iz (mod d)

whence
m—i —i3=0 (mod d). (3.52)

Let us write a,, = a(d, {;) and

. { od, iz) for iy # 42

™ L dd, i) = a'(d,da) for iy = iy
Then if follows from (3.52) that
dim —a,, — al, (3.53)
and from the definition of Ay that a,, € Ag, @), € Ag, and thus

O + ay, € P{Ag). (3.54)
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Furthermore, in view of (3.21) and (3.23) we have
m—am —a, <m<(1-8)5(A4) (3.55)

and

M=ty —ah, > 2 W06 ENE AT NN
= 2N(1076 N7 — 1)
> 2N(1076 2N A T — 53N A YY)
> 2N -5-10% 2N A1~ = 10762 N2 AL

(3.56)

It follows from (3.38), (3.39) and (3.56) that

yd < 10767 2N| A |7 %2d = 10767 2N | A'|"%(2d)
< W EN|ATH(|ALIN) < 076 2N A |72 AN (3.57)
=106 INA I < m—apm — df,,.

By (3.53), (m—am —a;,)/d = v is an integer. It follows from (3.41), (3.55)
and (3.57) that
vd:m—am—a:n € P{A1 U A,).

Thus
m=vd + (am + al,)

where vd € P(A, U Ay} and, in view of (3.54), am + @, € P{Ap). This
implies
meP(A; U A, U.Au) = P(A)

which contradicts {3.23) and this completes the proot of the lemma., when
in (3.21) it is assumed § = 1/2.

In a second step, we have to prove Lemma 11, w1fh 0<6<1/2 Let

us refer to the particular case of Lemma 11 with § =i§, &ef 1/2 as Lemma

11,. So, Lemma 11, has been proved. We assert that Lemma 11 is an easy -
consequence of Lemma 11,. i
Since & < g, one has:
|A] > 103(85 1N Y34
If m < 15(A), one has:

2. 10765 NP A" < m < (1 - 64)S(A).
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If m > $5(A) replace m by m’ = S(A)— m (use the symmetry of P(A4)).
Then m' < (1 — §,}5(A). Since m < (1 — 8)5(.A4), one has (see proof of
(3:27))

]
m' > 65(A) > %6|A’|2 > 2610°8-3/2N2 = SN2

Now, by (3.20}, (3.21), and (3.22),

(DW086-V2N2 1 254 ar1/4
0 INIAT — 100 AT 0N

> 10%5; 5/ N4 > 75000 > 1
whence Lemma 11, can be applied with either m or m'. We get 4 with
d < 11-10%; P NLA|Y < 11- 104 N | A !
and L(.A,d)rs d/2, and Lemma 11 is completely proved.
4. Proofs of Theorems 1, 2, and 3
To every (unequal or unrestricted) partition
n=ny+ne+---+n;

of n which does not represent e, we assign the set N = {n;,n;, ..., n;}
(so that in case of unrestricted partitions the parts are taken with mul-
tiplicity). For an M which will be defined later, let Ay denote the set
of the parts not exceeding M, and let M denote the set of the distinct
parts not exceeding M (so that, in case of unequal partitions, we have
M =AM =NMn{L2,... M}

To prove Theorem 1, we shall choose
M = [10"3(an)V/3]. (4.1)

We have to distinguish two cases.
CASE 1: Assume that

VI > 8-107 Mm% & B (4.2)

We are going to show that, if n is large enough, then in this case, Lemma
11 can be applied with M, Ny, Nj, 1/2 and a in place of N, A, A’, §, and
m, respectively.
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In fact, (3.20) follows from (1.1) and (4.1) for n large enough, and (3.21)

holds trivially. Furthermore, it follows from {1.1),
large n we have

VG > 8- 107 M2 = (4 10°M% 4~ 1)(2 1
> 3-10%(1073(an) /?)3/

> 3G—Tfl2n5[12103(6—1 M

>3- 103671 Mm)>

and thus (3.22} is verfied. The left-hand side ineq
immediately from (4.2), and by (1.1), (4.1) and (4.
1 1 1 Wl

- T AR :

(1 S(6) = 55) > S 2 5 3

> 16104 M=% > 10 101

= 10328343,

> 10%(n®7)~3/34/3, — 103y}

Thus all the assumptions in Lemma 11 hold so
applied. We deduce that there is an integer d with

d<11-10%-2. M - N?

and

L{MN,,d) < d/2.
It follows from (4.1), (4.2) and (4.3) that, if we set

D = 4a?/3p=1/3,

then
d< 22 10°M(8-10°M%a 1)1 < 3.10-

(4.1) and (4.2) that for

5M3’.4)
a~103(67  a)/H
3/4

S

uality of (3.23) follows
2), we have for large n
Al

4
10—3(an)1/3)4a-2

g

/7a>a.

that the lemma can be

-(4.3)

(4.4)

M la < D (4.5)

Now let {i1,..., #4759} be any set containing L(Ny,d) and such that

1 <4 <-+- <idgyy £d. As in Lemma 5 or 6, we
and it follows from the definition of £(Np, d) that

Wal S (@d—1)+d—[d/2] <2 <

can define M} and N3,

20,

Therefore the number of partitions of n which do not represent a and

satisfy (4.2) is smaller than V(n, M, D) or W(n, M,

D).
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CASE 2: Assume that
VI <8-107M2%~ ' B (4.6)

With the notation of Lemma 3 or 4, the total number of partitions of n is
certainly smaller than Y{n, B, M) ot Z(n, B, M).
So, we have proved that

Qn,a) < V(n,M,D)+Y(n, B, M) (4.7)
and
R(n,a) < W(n,M,D)+ Z(n, B, M). (4.8)
By Lemma 3 and Lemma 5, {4.7) yields
Q(n, e) < p(n, B+ n/M) + 252 ¢([n/2])p(n, n/M). (4.9)

Now, by (4.1) we have
n/M < (3/2)10%a~ 13t/ /n,
20a~3n2/? < B < 80a=1/3n%3, (4.10)

and if we set @ = 2-10%°a~1/3n"/®, we have
n/M + B < ay/n.
By (1.1), we have & < 1, so that we may apply Lemma 2. We obtain
Qln, a) < 20°Pq(fn/2Ap(n, a/F)
< ¢{[n/)ezp (5D logn +log2+ (2a log 3:6—) \/E) .

But, from (4.4) and (1.1) we have D = O(n!/7), and
a> 2. 103114
and thus, for n large enough, {1.2) is proved.
It remains to deduce (1.3} from (4.8). We are going to apply Lemma 4.
First observe that by (4.1) and (1.1) we have
B=8-10"Ma™'M < 8-10%a~*3n /301 <8.1072M < M/2,

and thus
Z(n,B,M) < 6B (fg) a’p(n, B)p(n,n/M). " (4.11)
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By (1.1) and (4.10), one has
B <8.-10~%n/2, - (4.12)

so that Lemma 2 gives

p(n, B) < exp(2-1073/n). (4.13)

Now, using Stirling’s formula, (4.1} and (4.10), we% have

M MB MeNE "10~%e(an)l/3 5 2/3__1/3\B
(B) <Er = (F) s (206:‘1/3112/3) <@
< exp(80n*/3a~"/3 log(a?/3n~1/?)).

But, the above quantity is a decreasing function of aifor a > €3,/7, so that
by (1.1),

(g) < exp(8 - 1075%/nlog(10'%)) < exp(3 - 150‘3\/5). (4.14)
Therefore, for n large enough, (1.14), (4.11), (4.12), (4.13) and (4.14) give
Z(n, B, M) < pl[n/2])p(n,n/M),

and by Lemma 6, (4.8) gives

R(n,a) < 20" p(In/2)p(n, n/M

S

The end of the procf of (1.3) is similar to the end of the proof of (1.2).
To prove Thecrem 2, we shall choose

M = [n1%/%8) (4.15)

and .
§=10% a1/ : (4.16)

Again we start to prove (1.5) and (1.6) simultancously. Define M, Ny, A}
in the same way as in the proof of Theorem 1, and also write A™* = &' — A}
(so that N'* is the set of the parts greater than M). We have to distinguish
three cases.

CASE 1: Assume that

(1 - 8)S(N) < n/2 (4.17)
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whence, for large n,

n 1 1
S(Ns) € 21-4 < (§ + &)n.

If we fix S(Ny) = k, then in the case of unequal partitions, Ay can be
chosen in at most g(k) ways, while A* = N — Ay can be chosen in at
most p(n — k, M + 1) ways (since S{N™*) = S(N) — S(Mg) = n — k, and
the elements of A'* are greater than M). Therefore the total number of
unequal partitions with property (4.17) is at most

TE 3 qB(n—kM+1). (4.18)
k<(i46)n

Similarly the total number of unrestricted partitions with property (4.17)
is at most

UE 3 pk)r(n~ kM +1). (4.19)
k<(3+én
We have
P(n1 M) =< r(nlM) < p(n,n/M), (420)
and by Lemma 2,
p(n,n/M) < exp((3n1/? log 3.6n/*%)/n) {4.21)

Now, from (1.14) and for n large enough, we have:

1 T 1 T [n -
q({(§ + 8)n]) < exp (ﬁ (§ + 6) nj <exp (ﬁ\/;(l + 6)) )
< ralfnf2exo (F=6VF)
From (4.18), (4.20), (4.21) and (4.22), we have

T < ng(I(} + Do, M) < aln/A)exp(n/24%%)  (423)

for n large enough.
Similarly, from (4.19) we obtain

U < p([n/2)) exp(ni/2-1%). (4.24)

" bounded above by Y(n, B, M) ot Z(n,B, M).
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CASE 2: Assume that
% < (1— 8)S(No)
and )
INZ] > B € 103513/t > 5"

We are going to show that, if » is lérge enough, th
applied with M, Ao, A} and a in place of N, A, A’
and with § = 104n—1/28,

(4.25)

. (4.26)

ien Lemma 11 can be
and m, respectively,

In fact, {3.20) and (3.21) hold trivially, while (3.22) holds by (4.26).

Furthermore by {1.4), (4.15), (4.16) and (4.25), we h
2. 1076 2 M2|AD| " < 2- 107 - 10~ Fn 2/ 28430/28-3/

The assumption (3.23) fellows from (4.25) and (4.
11 can be applied. We obtain that there is an integer

d<11-10% *MNY|!

and

L{No, d) < dJ2.

1t follows from (4.15), (4.16), (4.26) and (4.28) that

d<11-10% 1M - 2037 < 22517

Therefore, as in the proof of Theorem 1, the nu
n which do not represent ¢ and satisfy {4.25) and {
Vin, M, D) or W(n, M, D).

CASE 3: Assume that
Vgl < B =n3",

As in Case 2 in the proof of Theorem 1, the numbe
So we have proved that, under the assumptions of
Qn,a)<T+V(n,M,D)+Y(n,B

and
R(n,a) < U+ W{n,M,D)+ Z(n,B

We have
B+ n/M < B+ Mm% < 3p13/2

ave for large =
"<n® <a  (4.27)

27), and thus Lemma
d with

(4.28)

= p. (4.29)

mber of partitions of
4.26), is smaller than

(4.30)

er of partitions of n is
Theorem 2, we have

\ M) (4.31)

M), (4.32)

3
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and by Lemmas 2 and 3,
Y{(n, B, M) < p(n, B + n/M) < exp(n!/?-1/29) (4.33)

for n large enough.
Moreover, by Lemma 5, (4.21) and (4.29),

V{n, M, D) < ¢([n/2]) exp(n”z_llzg), (4.34)

and by (4.23), (4.31), {4.33) and (4.34), (1.5) holds.
Similarly, from Lemma 4, using

(5)s

and since p(n, B) < p(n,n/M) by B < nfM, we have
Z(n, B, M) < exp(nl/2-1/79), (4.35)
From Lemma 6, we have
W(n, M, D) < p{[n/2]} exp(n'/2-1/2%), (4.36)

(4.24), (4.32), (4.35) and (4.36) yield (L.6).
To prove Theorem 3, we choose

M =[107%/n s(a)}. {4.37)

To a partition of n which does not represent a, we associate A, Ny, M}
in the same way as in the proofs of Theorems 1 and 2. We apply Lemima
10 with a, M, Nj in place of m, N, A, respectively. By n > (2500)? and
s(a) > 40000, (4.37) yields M > 2500. It is easily seen that (1.7) implies
(3.11), and we conclude that

M| < 10°M/s(a) < 102y/n/s(a) & ¢. (4.38)
So, with the notation of Lemmas 3 and 4, we have
Q(n,a) < ¥ (n,t, M) (4.39)

and
R(n,a) < Z(n,i, M) (4.40)
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As M > 2500, from (4.37) we deduce that n/AM < 101./r/s(c). By Lemma

3, (4.39) gives

Q(n, 8) < p(n,t + n/M) < p(n, 201/575(a),

and Lemnma 2 yields {1.8).
Now, by Lemma 4 and (4.40), we have

Rin,a) < 6tn? (t{) p(n, )p(n, n/M)

since

t/M < 2-10%s(a) < 1/2.

From {4.38) and Lemma 1, we have

n = 107%2s(a} < (4.5) - 107%? loga < (4.5)10 %2 log n
< 2 log(n'/®) < $2n1/3,

whence n < ¢? and

6tn? < 6t7 = exp(log 6 + Tlogt) < exp(log6 +|7(t — 1)) < ™.

By Stirling’s formula, (4.37) and (4.38), we have

ﬁtnz-(ﬂtl ) <e" (#)' = (e3Mt™1)" < (107 15(a))! < s(a)!

and (4.41) and Lemma 2 give (1.9).

(4.41)

(4.42)
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TABLE OF Q(n,a)

wlgn)|e=1]2|3]4]5]6]7]8]9]10
i 1] 0

2] 1 | 1

32 | 1

4] 2 [ 1 |2

5] 3 1 2 |2

6] 4 2 |23

7] 5| 3 [3]3

8| 6 3 [4]3]5

51 8 5 |5[4]s

10]10] 5 [6]5]6]7

12| 7 |7]7[7]7

12] 15| 8 |0]8|8|8|11

13718 | 10 [1t]10]10[10]10

14| 22 | 12 |13{11|13|11|12|15

15] 27 | 15 |16]14|15]13| 15|15

16] 32 | 17 1191619 |16|17|16]23

17| 38 | 91 j22]20]21]20]20]20]20

18] 46 | 25 2723|2623 (23|23 |25]30

19| 54 | 20 |32(28|29|28{28]27]28|28
20] 64 | 35 |37|32|35]32 34 31]34[31]43
21] 76 | 41 |44 138 |41 |38 |38 |35[38/37]38
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n|gln) [a= 2134|5617 8]9]10
11 1213|1416} 16| 17| 18 [ 19| 20
221 89 gg 52 | 44 | 48 | 43 | 46 | 42| 45 | 42 | 45
231 104 g? |60 | 52|86 | 50 | 52 | 51, 50 | 49 | 50
24| 122 | 66 | 70 | 60 | 66 | 58 | 62 | 57!{ 57 | 55 | 5¢
57 | 79
95142 | 76 |82 170|765 | 68 |70 ; 67y 69 | 65 | 67
67 | 67
96| 165 | 89 | 95 | Bl | 88 | 77T | 81 j 76i| 8L [ 73 | 77
74 | 78 | 102 -
97192 [ 103 | 110) 94 (101 | 91 | 93 | 89|[ 91 | 81 | 88
88 |88 | 90 )
281 922 | 119 |127 108|116 | 104107 101|106 | 97 | 99
96 | 99 | 97 | 138
29| 256 | 137 |146[124]134{119]123 | 116|119 {114 | 114
110 1131114114
30| 206 | 159 [169]143]154 | 137|140} 131|139 | 127 | 126
126 | 1331127133 (174
31| 340 | 181 | 194|164 |176 [ 157|161 | 150 | 156 | 147 | 150
144 {145(145 | 147 | 149
321390 | 209 {221 (188202177 184|170 1180164173
160 | 166 [ 161|166 | 162232
331 448 | 239 [254 214231204209 (196201 | 189|194
177 | 187]185 | 188 [ 188 | 191
34| 512 | 273 201245262 (232|239 219|229 | 211 | 221
210 | 212|203 | 2132051215192
35| 585 | 312 | 331279300262 271251 | 2568 | 241 [ 247
241 | 239|233 | 2401232239 | 242
36| 668 | 356 | 377 318(340{209]307 (2841204 {272 (281
267 | 260 | 260 | 267|259 1271 | 265 | 375
37| 760 | 404 |[429|360 386|340 (348 (321|333 306|314
305 | 3081203299293 |298] 302 303
38| 864 | 480 |[487 |409 (438 [ 383|394 | 363|373 | 341 | 357
337 (350 (327334322336 329 341 | 471
391 982 | 522 {553 (463|496 1434 (445 412|424 | 387|399
385 1387|356 | 376|364 | 375} 375 | 376 | 386
40 {1113 | 591 | 626 | 5256 | 560 | 491 | 501 | 460 | 476 | 433 | 451
427 | 439|417 1420 | 402|423 | 410 | 420 | 415 | 6062
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