On the Asymptotic Behaviour of General Partition Functions

J.-L. NICOLAS jlnicola@in2p3.fr
Institut Girard Desargues, UPRES-A 5028, Université Claude Bernard (Lyon 1), Bât. 101, F-69622 Villeurbanne Cedex, France
A. SÁRKÖZY sarkozy@cs.elte.hu
Eötvös Loránd University, H-1088 Budapest, Múzeum krt. 6-8, Hungary

Received June 16, 1998; Accepted October 26, 1999

Abstract. For $A=\left\{a_{1}, a_{2}, \ldots\right\} \subset \mathbf{N}$, let $p_{A}(n)$ denote the number of partitions of n into a 's and let $q_{A}(n)$ denote the number of partitions of n into distinct a 's. The asymptotic behaviour of the quotient $\frac{\log p_{A}(n)}{\log q_{A}(n)}$ is studied.

Key words: partitions, generating functions, asymptotic estimate
1991 Mathematics Subject Classification: Primary-11P81, 11P82

1. Introduction

\mathbf{N} denotes the set of the positive integers. If $A=\left\{a_{1}, a_{2}, \ldots\right\}$ (with $a_{1}<a_{2}<\cdots$) is a set of positive integers, then $p_{A}(n)$ denotes the number of partitions of n into a 's, i.e., the number of solutions of the equation

$$
x_{1} a_{1}+x_{2} a_{2}+\cdots=n
$$

in non-negative integers x_{1}, x_{2}, \ldots, while $q_{A}(n, m)$ denotes the number of partitions such that each a occurs at most m times, i.e., the number of solutions with $x_{i} \leq m$ for all i. In particular, we write $q_{A}(n, 1)=q_{A}(n)$, so that $q_{A}(n)$ denotes the number of partitions of n into distinct a 's, i.e., the number of solutions of the equation

$$
a_{i_{1}}+a_{i_{2}}+\cdots=n \quad\left(i_{1}<i_{2}<\cdots\right)
$$

In [1], Bateman and Erdős gave a necessary and sufficient condition on A for $p_{A}(n)$ being increasing from a certain point on. They were probably the first authors to deal with a property of $p_{A}(n)$ other than the estimate of its magnitude. Some other properties of p_{A}, depending on A, are studied in $[2,3,7,8]$.

In this paper our goal is to study the connection between the partition functions $p_{A}(n)$ and $q_{A}(n)$ for general infinite sets A. (If A is finite, $q_{A}(n)=0$ for n large enough.) First we will show

Theorem 1. For every infinite set $A \subset \mathbf{N}$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log \left(\max \left(2, p_{A}(n)\right)\right)}{\log \left(\max \left(2, q_{A}(n)\right)\right)} \geq \sqrt{2} . \tag{1.1}
\end{equation*}
$$

Note that since it is well-known $[4,5]$ that

$$
\begin{equation*}
\log p(n)=(1+o(1)) \pi(2 / 3)^{1 / 2} n^{1 / 2} \tag{1.2}
\end{equation*}
$$

and

$$
\log q(n)=(1+o(1)) \pi(1 / 3)^{1 / 2} n^{1 / 2}
$$

(where $p(n)=p_{\mathbf{N}}(n)$ and $q(n)=q_{\mathbf{N}}(n)$ are the classical partition functions), we have

$$
\lim _{n \rightarrow+\infty} \frac{\log p(n)}{\log q(n)}=\sqrt{2}
$$

so that (1.1) cannot be improved without additional assumption on A. However, we will prove that if A is "thin" then the limit in (1.1) is infinite:

Theorem 2. If $A \subset \mathbf{N}$ is an infinite set with

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \frac{\log A(n)}{\log n}=0 \tag{1.3}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log \left(\max \left(2, p_{A}(n)\right)\right)}{\log \left(\max \left(2, q_{A}(n)\right)\right)}=\infty . \tag{1.4}
\end{equation*}
$$

We will show that Theorem 2 is best possible in the sense that (1.3) cannot be replaced by a weaker assumption. Indeed, for all $\varepsilon>0$ there is a set $A \subset \mathbf{N}$ such that the limit on the left hand side of (1.3) is $<\varepsilon$, and we even have

$$
\limsup _{n \rightarrow+\infty} \frac{\log A(n)}{\log n}<\varepsilon
$$

but the limit in (1.4) is finite:

Theorem 3. Let $r, m \in \mathbf{N}$ and $A=A_{r}=\left\{1^{r}, 2^{r}, 3^{r}, \ldots\right\}$ be the set of the r th powers of the integers. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log p_{A_{r}}(n)}{\log q_{A_{r}}(n, m)}=\frac{1}{\left(1-\frac{1}{(m+1)^{1 / r}}\right)^{r /(r+1)}} . \tag{1.5}
\end{equation*}
$$

Due to the following asymptotic expansion as $r \rightarrow \infty$:

$$
\begin{equation*}
\left(1-\frac{1}{m^{1 / r}}\right)^{-r /(r+1)}=\frac{r}{\log m}+\left(\frac{1}{2}+\frac{\log \log m}{\log m}-\frac{\log r}{\log m}\right)+O\left(\frac{\log ^{2} r}{r}\right) \tag{1.6}
\end{equation*}
$$

the right hand side in (1.5) can be as large as we wish for m fixed, and r large enough.
We remark that the lim sup in (1.1) cannot be replaced by lim inf; to show this we shall have to consider sets A that are very irregularly distributed, similar to the counterexample given in [3]. We hope to return to this problem in a subsequent paper.

Finally, we remark that the results above can all be extended and generalized to the function $q_{A}(n, m)$ in place of $q_{A}(n)$. In particular, we can prove the following extension of Theorem 1:

Theorem 4. For any $m \in \mathbf{N}$ and for every infinite set $A \subset \mathbf{N}$ satisfying the condition

$$
\begin{equation*}
\text { for all } a \in A \text {, the } \mathrm{gcd} \text { of the elements of } A \backslash\{a\} \text { is } 1, \tag{1.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log \left(\max \left(2, p_{A}(n)\right)\right)}{\log \left(\max \left(2, q_{A}(n, m)\right)\right)} \geq \sqrt{\frac{m+1}{m}} \tag{1.8}
\end{equation*}
$$

(Again, as in the special case $m=1$, the case $A=\mathbf{N}$ shows that (1.8) is the best possible, cf. [2]. By the Bateman-Erdős theorem [1] the condition (1.7) implies that $p_{A}(n)$ is increasing from a certain point on.)

However, since the proofs of Theorems 1 and 4 are similar but the proof of the latter result is much more technical, we will give here a detailed proof of Theorem 1 and only sketch the proof of Theorem 4.

Let $n=n_{1}+n_{2}+\cdots+n_{r}\left(n_{1} \geq n_{2} \geq \cdots \geq n_{r}\right)$ be a partition Π of n. This partition is said to represent an integer a, if a can be written as a subsum $a=n_{i_{1}}+n_{i_{2}}+\cdots+n_{i_{j}}$ $\left(1 \leq i_{1}<i_{2}<\cdots<i_{j} \leq r\right)$ of the partition Π. We define the set $\mathcal{S}(\Pi)$ as the set of all integers a represented by Π. In [8] and [2], the number of distinct sets $\mathcal{S}(\Pi)$ generated by the $p_{A}(n)$ partitions of n (with parts belonging to A) is denoted by $\hat{p}_{A}(n)$. Erdős asked the following question: is it true that for all $A \subset \mathbf{N}$, there exists a number $\beta<1$ such that

$$
\hat{p}_{A}(n) \leq\left(p_{A}(n)\right)^{\beta}
$$

holds for n large enough? In [2] it is proved (the proof is easy) that if A is m-stable (i.e., $a \in A \Rightarrow m a \in A$) with $m \geq 2$ then

$$
\hat{p}_{A}(n) \leq q_{A}(n, 2 m-2)
$$

so that, by Theorem 4, the answer to Erdős's question is yes for all sets A satisfying (1.7) and which are m-stable for some $m \geq 2$.

2. Proof of Theorem 1.

If the greatest common divisor, say d, of the elements of A is greater than 1 , then dividing every element of A by d we may reduce the problem to the case when the elements of A are coprime. Writing $A=\left\{a_{1}, a_{2}, \ldots\right\}$ (with $a_{1}<a_{2}<\cdots$), we may therefore assume that

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots\right)=1 . \tag{2.1}
\end{equation*}
$$

It follows that there is a $k \in \mathbf{N}$ with

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right)=1
$$

Then it is well-known that there is an $n_{0} \in \mathbf{N}$ such that if $n \geq n_{0}, n \in \mathbf{N}$, then there are non-negative integers x_{1}, \ldots, x_{k} with

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{k} x_{k}=n \quad\left(\text { for } n \geq n_{0}\right) . \tag{2.2}
\end{equation*}
$$

Write $n_{1}=n_{0}+a_{k+1}$. If $n \geq n_{1}, n \in \mathbf{N}$, then n has at least two different partitions into a 's: one partition is obtained by applying (2.2) to n, and a second partition is obtained by applying (2.2) to the number $n-a_{k+1} \geq n_{0}$ and adding the part a_{k+1}. Thus we have

$$
\begin{equation*}
p_{A}(n) \geq 2 \quad \text { for } n \geq n_{1} . \tag{2.3}
\end{equation*}
$$

By extending this method, or by using generating functions (cf. [1, Lemma 1], it can be shown that assuming (2.1), one has $\lim _{n \rightarrow \infty} p_{A}(n)=+\infty$.

We will prove (1.1) by contradiction: assume that

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log p_{A}(n)}{\log \left(\max \left(2, q_{A}(n)\right)\right.}<\sqrt{2} . \tag{2.4}
\end{equation*}
$$

Then there are numbers $\varepsilon>0, n_{2} \in \mathbf{N}$ such that for $n \geq n_{2}$ we have

$$
\begin{equation*}
\log q_{A}(n)>\left(\frac{1}{\sqrt{2}}+\varepsilon\right) \log p_{A}(n) \quad\left(\text { for } n \geq n_{2}\right) \tag{2.5}
\end{equation*}
$$

Denote the generating functions of the functions $p_{A}(n)$ and $q_{A}(n)$ by $F_{A}(x)$ and $G_{A}(x)$, respectively. Thus

$$
\begin{equation*}
F_{A}(x)=\sum_{n=0}^{+\infty} p_{A}(n) x^{n}=\prod_{a \in A} \frac{1}{1-x^{a}} \quad(|x|<1) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{A}(x)=\sum_{n=0}^{+\infty} q_{A}(n) x^{n}=\prod_{a \in A}\left(1+x^{a}\right) \quad(|x|<1) \tag{2.7}
\end{equation*}
$$

Then clearly we have

$$
F_{A}\left(x^{2}\right)=\prod_{a \in A} \frac{1}{1-x^{2 a}}=\prod_{a \in A} \frac{1}{1-x^{a}}\left(\prod_{a \in A}\left(1+x^{a}\right)\right)^{-1}=F_{A}(x)\left(G_{A}(x)\right)^{-1}
$$

whence

$$
F_{A}\left(x^{2}\right) G_{A}(x)=F_{A}(x)
$$

which, by (2.6) and (2.7), can be rewritten as

$$
\left(\sum_{r=0}^{+\infty} p_{A}(r) x^{2 r}\right)\left(\sum_{s=0}^{+\infty} q_{A}(s) x^{s}\right)=\sum_{t=0}^{+\infty} p_{A}(t) x^{t}
$$

It follows that

$$
\begin{equation*}
\sum_{\substack{2 r+s=t \\ r, s \geq 0}} p_{A}(r) q_{A}(s)=p_{A}(t) . \tag{2.8}
\end{equation*}
$$

Substituting $t=4 n$ and keeping only the (roughly maximal) term with $r=n, s=2 n$ on the left hand side, we obtain that

$$
p_{A}(n) q_{A}(2 n) \leq p_{A}(4 n) \quad(n \in \mathbf{N}) .
$$

By (2.3) and (2.5), it follows that for all $n \geq n_{3} \stackrel{\text { def }}{=} \max \left\{n_{1}, n_{2}\right\}$ we have $\log p_{A}(4 n) \geq \log p_{A}(n)+\log q_{A}(2 n)>\log p_{A}(n)+\left(\frac{1}{\sqrt{2}}+\varepsilon\right) \log p_{A}(2 n) \quad\left(n \geq n_{3}\right)$.

Now write

$$
\begin{equation*}
b=\min \left\{\log p_{A}\left(n_{3}\right),\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{-1} \log p_{A}\left(2 n_{3}\right)\right\} \tag{2.10}
\end{equation*}
$$

so that

$$
\begin{equation*}
b>0 \tag{2.11}
\end{equation*}
$$

by (2.3) and since $n_{3}>n_{1}$. We will prove by induction on k that

$$
\begin{equation*}
\log p_{A}\left(n_{3} 2^{k}\right) \geq b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k} \tag{2.12}
\end{equation*}
$$

for $k=0,1,2, \ldots$, Indeed, by (2.10), (2.12) holds for $k=0$ and $k=1$. Assume now that $k \geq 1, k \in \mathbf{N}$, and that (2.12) holds with $0,1, \ldots, k$ in place of k. Then by (2.9) it follows that

$$
\begin{aligned}
\log p_{A}\left(n_{3} 2^{k+1}\right) & \geq \log p_{A}\left(n_{3} 2^{k-1}\right)+\left(\frac{1}{\sqrt{2}}+\varepsilon\right) \log p_{A}\left(n_{3} 2^{k}\right) \\
& \geq b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k-1}+\left(\frac{1}{\sqrt{2}}+\varepsilon\right) b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k} \\
& =b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k-1}\left(1+\left(\frac{1}{\sqrt{2}}+\varepsilon\right)\left(\sqrt{2}+\frac{\varepsilon}{2}\right)\right) \\
& =b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k-1}\left(2+\left(\sqrt{2}+\frac{1}{2 \sqrt{2}}\right) \varepsilon+\frac{1}{2} \varepsilon^{2}\right) \\
& >b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k-1}\left(2+\sqrt{2} \varepsilon+\frac{1}{4} \varepsilon^{2}\right)=b\left(\sqrt{2}+\frac{\varepsilon}{2}\right)^{k+1}
\end{aligned}
$$

so that (2.12) also holds with $k+1$ in place of k. This completes the proof of (2.12).
By (2.11), it follows from (2.12) that for $k \rightarrow \infty$ we have

$$
\begin{equation*}
\log \log p_{A}\left(n_{3} 2^{k}\right) \geq(1+o(1)) k \log \left(\sqrt{2}+\frac{\varepsilon}{2}\right) \tag{2.13}
\end{equation*}
$$

On the other hand, clearly we have $p_{A}(n) \leq p(n)$, and thus it follows from (1.2) that for $k \rightarrow+\infty$ we have

$$
\log \log p_{A}\left(n_{3} 2^{k}\right) \leq \log \log p\left(n_{3} 2^{k}\right)=(1+o(1)) \log \left(n_{3} 2^{k}\right)^{1 / 2}=(1+o(1)) k \log \sqrt{2}
$$

which contradicts (2.13). This completes the proof of Theorem 1.

3. Proof of Theorem 2.

We will prove the Theorem by contradiction. Assume that an infinite set $A \subset \mathbf{N}$ satisfies (1.3), but (1.4) does not hold, i.e., there are numbers $M, n_{4} \in \mathbf{N}$ such that

$$
\begin{equation*}
p_{A}(n) \leq\left(q_{A}(n)\right)^{M} \quad\left(n \geq n_{4}\right) \tag{3.1}
\end{equation*}
$$

Using again (2.8), with $t=3 n$ and keeping only the term with $r=s=n$ on the left hand side, we obtain

$$
\begin{equation*}
p_{A}(n) q_{A}(n) \leq p_{A}(3 n) \quad(n \in \mathbf{N}) \tag{3.2}
\end{equation*}
$$

Writing $\delta=1 / M$, it follows from (3.1) and (3.2) that

$$
\begin{equation*}
p_{A}(3 n) \geq p_{A}(n)\left(p_{A}(n)\right)^{1 / M}=\left(p_{A}(n)\right)^{1+\delta} \quad\left(n \geq n_{4}\right) \tag{3.3}
\end{equation*}
$$

As in the proof of Theorem 1, we may assume that (2.1) and then also (2.3) holds. Write $n_{5}=\max \left\{n_{1}, n_{4}\right\}$. Then it follows from (2.3) and (3.3) by induction on k that

$$
\begin{equation*}
p_{A}\left(3^{k} n_{5}\right) \geq\left(p_{A}\left(n_{5}\right)\right)^{(1+\delta)^{k}} \geq 2^{(1+\delta)^{k}} \quad(k=0,1,2, \ldots) \tag{3.4}
\end{equation*}
$$

Consider a large integer n, and define the integer $k=k(n)$ by

$$
\begin{equation*}
3^{k} n_{5}+n_{1} \leq n<3^{k+1} n_{5}+n_{1} \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
k=\frac{\log n}{\log 3}+O(1) \quad(n \rightarrow+\infty) \tag{3.6}
\end{equation*}
$$

Define the integer $m=m(n)$ by

$$
3^{k} n_{5}+m=n
$$

so that $m \geq n_{1}$ by (3.5). Thus by (2.3) (which we have assumed) m has at least one partition into a 's. Fixing such a partition of m and combining it with distinct partitions of $n-m=3^{k} n_{5}$ into a 's, we obtain distinct partitions of n into a 's and thus, by (3.4),

$$
\begin{equation*}
p_{A}(n) \geq p_{A}(n-m)=p_{A}\left(3^{k} n_{5}\right) \geq 2^{(1+\delta)^{k}} \tag{3.7}
\end{equation*}
$$

for n large enough. It follows from (3.6) and (3.7) that

$$
\begin{equation*}
\frac{\log \log p_{A}(n)}{\log n} \geq \frac{k \log (1+\delta)+O(1)}{k \log 3+O(1)}=\frac{\log (1+\delta)}{\log 3}+o(1) \quad(n \rightarrow+\infty) \tag{3.8}
\end{equation*}
$$

On the other hand, if we write $A=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ with $\alpha_{1}<\alpha_{2}<\cdots$, and call $A(n)$ the number of elements of A up to n then $p_{A}(n)$ denotes the number of solutions of

$$
\begin{equation*}
x_{1} \alpha_{1}+x_{2} \alpha_{2}+\cdots+x_{A(n)} \alpha_{A(n)}=n \tag{3.9}
\end{equation*}
$$

in non-negative integers $x_{1}, x_{2}, \ldots, x_{A(n)}($ for all $n \in \mathbf{N})$. Here each $x_{i}(i=1,2, \ldots, A(n))$ is one of the $(n+1)$ integers $0,1, \ldots, n$. It follows that the number of solutions of (3.9) is

$$
p_{A}(n) \leq(n+1)^{A(n)} \leq(2 n)^{A(n)}
$$

whence

$$
\log \log p_{A}(n) \leq \log A(n)+\log \log (2 n)
$$

so that, by (1.3),

$$
\liminf _{n \rightarrow+\infty} \frac{\log \log p_{A}(n)}{\log n} \leq \liminf _{n \rightarrow+\infty}\left(\frac{\log A(n)}{\log n}+\frac{\log \log (2 n)}{\log n}\right)=0
$$

This contradicts (3.8), and the proof of Theorem 2 is complete.

4. Proof of Theorem 3.

Let us denote by $f_{r}(x)$ the generating function:

$$
f_{r}(x)=\sum_{n=0}^{\infty} p_{A_{r}}(n) x^{n}=\prod_{a \in A}\left(1-x^{a}\right)^{-1}
$$

At the end of their famous paper [5], Hardy and Ramanujan have written an asymptotic estimation for $p_{A_{r}}(n)$, without giving a complete proof, just saying that their method used to estimate $p(n)$ can be extended. A complete proof was given later by Wright in [9]. As far as we know, no asymptotic estimation for $q_{A_{r}}(n, m)$ has been published, though it is doable by using the generating function

$$
F(x)=\sum_{n=0}^{\infty} q_{A_{r}}(n, m) x^{n}=\prod_{a \in A}\left(1+x^{a}+x^{2 a}+\cdots+x^{m a}\right)=\frac{f_{r}\left(x^{m+1}\right)}{f_{r}(x)} .
$$

One can get an asymptotic estimate for $q_{A_{r}}(n, m)$ by using the estimate of $f_{r}(x)$ when $x \rightarrow 1^{-}$given in [5, Section 7.3], or in [9], and then applying the Tauberian theorem of Ingham (cf. [6]).

Here, it is enough to have an asymptotic estimate for the logarithms of $p_{A_{r}}(n)$ and $q_{A_{r}}(n, m)$ and we shall use the Tauberian theorem of Hardy and Ramanujan [4]. It is proved in [4] that

$$
\begin{equation*}
\log f_{r}(x) \sim \Gamma\left(\frac{1}{r}+1\right) \zeta\left(\frac{1}{r}+1\right)\left(\log \frac{1}{x}\right)^{-1 / r} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\log p_{A_{r}}(n) \sim(r+1)\left(\frac{1}{r} \Gamma\left(\frac{1}{r}+1\right) \zeta\left(\frac{1}{r}+1\right)\right)^{r /(r+1)} n^{1 /(r+1)} \tag{4.2}
\end{equation*}
$$

Thus, by (4.1), it follows that the generating function of $q_{A_{r}}(n, m)$ verifies

$$
\log F(x) \sim \Gamma\left(\frac{1}{r}+1\right) \zeta\left(\frac{1}{r}+1\right)\left(1-\frac{1}{(m+1)^{1 / r}}\right)\left(\log \frac{1}{x}\right)^{-1 / r}
$$

The Tauberian theorem of Hardy and Ramanujan says that, if $\log F(x) \sim D\left(\log \frac{1}{x}\right)^{-\alpha}$, then

$$
\begin{equation*}
\log \left(\sum_{n=0}^{N} q_{A_{r}}(n, m)\right) \sim B N^{\alpha /(1+\alpha)} \tag{4.3}
\end{equation*}
$$

with $B=D^{1 /(1+\alpha)} \alpha^{-\alpha /(1+\alpha)}(1+\alpha)$. It follows easily from (4.3) and the fact that $q_{A_{r}}(n, m)$ is an increasing function of n that

$$
\log q_{A_{r}}(n, m) \sim(r+1)\left(\frac{1}{r} \Gamma\left(\frac{1}{r}+1\right) \zeta\left(\frac{1}{r}+1\right)\left(1-\frac{1}{(m+1)^{1 / r}}\right)\right)^{r /(r+1)} n^{1 /(r+1)}
$$

This, together with (4.2), yields (1.5).

5. Sketch of the Proof of Theorem 4.

It follows from (1.7) that (2.1) and (2.3) hold. Again we proceed by contradiction: assume that for some $\varepsilon>0$ and $n \geq n_{6}$ we have

$$
\begin{equation*}
\log q_{A}(n, m)>\left(\sqrt{\frac{m}{m+1}}+\varepsilon\right) \log p_{A}(n) \quad\left(n \geq n_{6}\right) \tag{5.1}
\end{equation*}
$$

Denote the generating function of $q_{A}(n, m)$ by $G_{A}(x, m)$:

$$
G_{A}(x, m)=\sum_{n=0}^{\infty} q_{A}(n, m) x^{n}=\prod_{a \in A}\left(1+\sum_{j=1}^{m} x^{j a}\right)=\prod_{a \in A} \frac{1-x^{(m+1) a}}{1-x^{a}} \quad(\text { for }|x|<1) .
$$

Then we have

$$
F_{A}\left(x^{m+1}\right) G_{A}(x)=F_{A}(x)
$$

so that

$$
\left(\sum_{r=0}^{+\infty} p_{A}(r) x^{(m+1) r}\right)\left(\sum_{s=0}^{+\infty} q_{A}(s, m) x^{s}\right)=\sum_{t=0}^{+\infty} p_{A}(t) x^{t}
$$

whence

$$
\sum_{\substack{(m+1) r+s=t \\ r, s \geq 0}} p_{A}(r) q_{A}(s, m)=p_{A}(t)
$$

Substituting $t=(m+1)^{2} n$, and keeping only the term with $r=n, s=m(m+1) n$ on the left hand side, we obtain that

$$
\begin{equation*}
p_{A}(n) q_{A}(m(m+1) n, m) \leq p_{A}\left((m+1)^{2} n\right) \quad(\text { for all } n \in \mathbf{N}) \tag{5.2}
\end{equation*}
$$

By (2.3), (5.1) and (5.2) we have for large n

$$
\begin{equation*}
\log p_{A}\left((m+1)^{2} n\right)>\log p_{A}(n)+\left(\sqrt{\frac{m}{m+1}}+\varepsilon\right) \log p_{A}(m(m+1) n) \quad\left(n \geq n_{7}\right) . \tag{5.3}
\end{equation*}
$$

By a result of Bateman and Erdős [1] it follows from (1.7) that, for n large enough, $p_{A}(n)$ is increasing:

$$
\begin{equation*}
p_{A}(n)<p_{A}(n+1) \quad\left(n \geq n_{8}\right) . \tag{5.4}
\end{equation*}
$$

Now it follows from (2.3), (5.3) and (5.4) by induction on N that if $\delta, \varepsilon^{\prime}(>0)$ are small enough and N_{0} is large enough in terms of $m, \varepsilon, n_{1}, n_{7}, n_{8}$, then we have

$$
\begin{equation*}
\log p_{A}(N)>\delta N^{(1 / 2)+\varepsilon^{\prime}} \quad\left(N \geq N_{0}\right) \tag{5.5}
\end{equation*}
$$

Indeed, observe first that if $N_{0} \geq n_{1}$ then, by (2.3), (5.5) holds for $N=N_{0}, N_{0}+1, \ldots$, $(m+1)^{2} N_{0}$, provided δ is small enough. Next we assume that $N>(m+1)^{2} N_{0}$ and that (5.5) holds for all N^{\prime} with $N_{0} \leq N^{\prime} \leq N-1$. Our goal is to show that (5.5) also holds for $N^{\prime}=N$. To prove this, define the positive integer n by

$$
\begin{equation*}
(m+1)^{2} n \leq N<(m+1)^{2}(n+1) \tag{5.6}
\end{equation*}
$$

so that

$$
\begin{equation*}
n \geq N_{0} \tag{5.7}
\end{equation*}
$$

and, by (5.4) and (5.6),

$$
\begin{equation*}
p_{A}(N) \geq p_{A}\left((m+1)^{2} n\right) . \tag{5.8}
\end{equation*}
$$

We can obtain a lower bound for the right hand side of (5.3) by using the induction hypothesis in both terms; by (5.8), this is also a lower bound for $\log p_{A}(N)$. A simple computation shows that if ε^{\prime} is small enough and N_{0} is large enough, then this lower bound for $\log p_{A}(N)$ is greater than the right hand side of (5.5), and this completes the proof.

Acknowledgment

Research partially supported by Hungarian National Foundation for Scientific Research Grant No. T017433, MKM fund FKFP 0139/1997, by the French-Hungarian cooperation Grant Balaton 98.009 and by C.N.R.S. Institut Girard Desargues, UPRES-A-5028.

References

1. P.T. Bateman and P. Erdős, "Monotonicity of partition functions," Mathematika 3 (1956) 1-14.
2. P. Erdős, M. Deléglise et J.-L. Nicolas, "Sur les ensembles représentés par les partitions d'un entier n," Discrete Math. 200 (1999) 27-48.
3. P. Erdős and J.-L. Nicolas, "On practical partitions," Collectanea Math. 46 (1995) 57-76.
4. G.H. Hardy and S. Ramanujan, "Asymptotic formulae for the distribution of integers of various types," Proc. London Math. Soc. 2(16) (1917) 112-132. Collected Papers of S. Ramanujan, 245-261.
5. G.H. Hardy and S. Ramanujan, "Asymptotic formulae in combinatory analysis," Proc. London Math. Soc. 2(17) (1918) 75-115. Collected Papers of S. Ramanujan, 276-309.
6. A.E. Ingham, "A Tauberian theorem for partitions," Ann. of Math. 42 (1941) 1075-1090.
7. J.L. Nicolas, I. Ruzsa, and A. Sárközy (with an annex of J.P. Serre), "On the parity of additive representation functions," J. Number Theory 73 (1998) 292-317.
8. J.L. Nicolas and A. Sárközy, "On two partitions problems," Acta Math. Hung. 77 (1997) 95-121.
9. E.M. Wright, "Asymptotic partition formulae III. Partitions into kth powers," Acta Math. 63 (1934) 143-191.
