On the Asymptotic Behaviour of General Partition Functions, II

ANDRÁS SÁRKÖZY*
sarkozy@cs.elte.hu
Department of Algebra and Number Theory, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

In memory of Robert A. Rankin
Received February 21, 2001; Accepted September 13, 2002

Abstract

Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of positive integers and let $p_{\mathcal{A}}(n)$ and $q_{\mathcal{A}}(n)$ denote the number of partitions of n into a 's, resp. distinct a 's. In an earlier paper the authors studied large values of $\frac{\log \left(\max \left(2, p_{\mathcal{A}}(n)\right)\right)}{\log \left(\max \left(2, q_{\mathcal{A}}(n)\right)\right)}$. In this paper the small values of the same quotient are studied.

Key words: partitions, generating functions, asymptotic estimate

2000 Mathematics Subject Classification: Primary-11P81, 11P82

1. Introduction

\mathbb{N} denotes the set of positive integers. If $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ (with $a_{1}<a_{2}<\ldots$) is a set of positive integers, then $p_{\mathcal{A}}(n)$ denotes the number of partitions of n into a 's, i.e., the number of solutions of the equation

$$
\begin{equation*}
x_{1} a_{1}+x_{2} a_{2}+\cdots=n \tag{1.1}
\end{equation*}
$$

in non negative integers x_{1}, x_{2}, \ldots, while $q_{\mathcal{A}}(n)$ denotes the number of restricted partitions of n into a 's; in other words, $q_{\mathcal{A}}(n)$ is the number of solutions of (1.1) with $x_{i}=0$ or 1 for all i 's.

The main result of [10] is that for any infinite set $\mathcal{A} \subset \mathbb{N}$, we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log \left(\max \left(2, p_{\mathcal{A}}(n)\right)\right)}{\log \left(\max \left(2, q_{\mathcal{A}}(n)\right)\right)} \geq \sqrt{2} \tag{1.2}
\end{equation*}
$$

[^0]If $p(n)=p_{\mathbb{N}}(n)$ and $q(n)=q_{\mathbb{N}}(n)$ are the classical partition functions, it is well-known (cf. [8, 1]) that

$$
\begin{equation*}
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2}{3}} \sqrt{n}\right), \quad \pi \sqrt{\frac{2}{3}}=2.56 \ldots \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
q(n) \sim \frac{1}{4\left(3 n^{3}\right)^{1 / 4}} \exp \left(\frac{\pi}{\sqrt{3}} \sqrt{n}\right), \quad \frac{\pi}{\sqrt{3}}=1.81 \ldots \tag{1.4}
\end{equation*}
$$

It follows from (1.3) and (1.4) that

$$
\lim _{n \rightarrow \infty} \frac{\log p(n)}{\log q(n)}=\sqrt{2}
$$

so that (1.2) is best possible. It was also proved in [10] that if $A(x)=\sum_{a_{i} i \leq x} 1$, the counting function of \mathcal{A}, satisfies

$$
\begin{equation*}
\liminf _{x \rightarrow \infty} \frac{\log A(x)}{\log x}=0 \tag{1.5}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \frac{\log \left(\max \left(2, p_{\mathcal{A}}(n)\right)\right)}{\log \left(\max \left(2, q_{\mathcal{A}}(n)\right)\right)}=\infty \tag{1.6}
\end{equation*}
$$

In this paper, we shall deal with the inferior limit. In Section 2, we will prove
Theorem 1. There exists a set $\mathcal{S} \subset \mathbb{N}$ with

$$
\begin{equation*}
S(x)=\sum_{s \in \mathcal{S}, s \leq x} 1 \geq x^{3 / 16} \tag{1.7}
\end{equation*}
$$

and

$$
\liminf _{n \rightarrow \infty} \frac{\log p_{\mathcal{S}}(n)}{\log q_{\mathcal{S}}(n)}=1
$$

In Section 3, we shall prove:
Theorem 2. Let \mathcal{A} be a set of positive integers. Let us assume that

$$
\begin{equation*}
\alpha=\liminf _{n \rightarrow \infty} \frac{A(n)}{n} \tag{1.8}
\end{equation*}
$$

is positive. Then there exists $\eta=\eta(\alpha)>0$ such that

$$
\begin{equation*}
p_{\mathcal{A}}(n) \geq\left(q_{\mathcal{A}}(n)\right)^{1+\eta(\alpha)} \quad \text { for } n \geq n_{0} . \tag{1.9}
\end{equation*}
$$

The idea of the proof of Theorem 2 is to construct, from most of the restricted partitions of n into parts in \mathcal{A}, many unrestricted partitions of n.

In Section 4, we will prove the following theorem which shows that Theorem 2 is in some sense best possible:

Theorem 3. Let $f(x)$ be any non-increasing function of $x>0$ and tending to 0 as x tends to infinity. There is a set $\mathcal{A} \subset \mathbb{N}$ such that

$$
\begin{equation*}
\frac{A(n)}{n}>f(n) \quad \text { for } n>n_{0} \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log p_{\mathcal{A}}(n)}{\log q_{\mathcal{A}}(n)}=1 \tag{1.11}
\end{equation*}
$$

This result is much sharper than Theorem 1. The construction of the set \mathcal{A} in Theorem 3 is similar to the construction of the set \mathcal{S} in Theorem 1, however, here the construction is more complicated. The proof of Theorem 3 will be based mostly on Proposition 1 below. We will give only an outline of the proof of Proposition 1; a complete proof could be given, but it would be very lenghty and technical. Thus we have decided to give here (Section 2) a complete and precise proof of the weaker but much simpler version stated in Theorem 1.

Let $r(n, m)$ and $\varrho(n, m)$ denote the number of partitions of n into parts at least m, resp. into distinct parts at least m. (In other words, if $\mathcal{M}=\{n \in \mathbb{N}, n \geq m\}$, then $r(n, m)=p_{\mathcal{M}}(n)$ and $\varrho(n, m)=q_{\mathcal{M}}(n)$.)

It was proved in [5] and [11] that, for any $\lambda>0$, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log (r(n, \lambda \sqrt{n}))}{\sqrt{n}}=g(\lambda) \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log (\rho(n, \lambda \sqrt{n}))}{\sqrt{n}}=h(\lambda) \tag{1.13}
\end{equation*}
$$

Moreover the two functions g and h have the same asymptotic expansion as $\lambda \rightarrow \infty$:

$$
\begin{equation*}
g(\lambda), h(\lambda)=\frac{2 \log \lambda-\log \log \lambda+1-\log 2}{\lambda}+O\left(\frac{\log \log \lambda}{\lambda \log \lambda}\right) \tag{1.14}
\end{equation*}
$$

Let us define, for $1 \leq x \leq y, r(n ; x, y)$ and $\varrho(n ; x, y)$ as the number of partitions of n into parts belonging to the interval $[x, y[$, resp. into distinct parts belonging to $[x, y[$.

Proposition 1. There exist two continous functions $g_{2}(\lambda), h_{2}(\lambda)$ defined for $\lambda>0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log r(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})}{\sqrt{n}}=g_{2}(\lambda) \tag{1.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \max \{1, \varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})\}}{\sqrt{n}}=h_{2}(\lambda) . \tag{1.16}
\end{equation*}
$$

Moreover, as $\lambda \rightarrow \infty$, we have $g_{2}(\lambda) \sim h_{2}(\lambda)$ and both functions g_{2} and h_{2} satisfy the asymptotic expansion (1.14).

The sketch of the proof of Proposition 1 will be given in Section 4. More precisely, we shall consider only (1.16); the proof of (1.15) would be similar, and we do not need (1.15) in the proof of Theorem 3. The proof of (1.16) follows the proof of (1.13) in [11] and consists of two parts, the upper bound for $\varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})$ and the lower bound. The upper bound is stated in Lemma 6 below. We have not given the proof of the lower bound which can be obtained by the methods used in [5] or [11] or by applying the saddle point method to the generating series.

2. An elementary counterexample

Lemma 1. Let n be a positive integer and x a positive real number. Let us denote by $p(n, x)$ the number of partitions of n into parts $\leq x$ (while $r(n, x)$ denotes the number of partitions of n into parts $\geq x$, as defined above). Then for $n \geq 1$ and $\lambda>0$ we have

$$
\log p(n, \lambda \sqrt{n}) \leq\left\{\begin{array}{cc}
(\lambda(3-2 \log \lambda)) \sqrt{n} & \text { for } \lambda \leq 1 \tag{2.1}\\
3 \sqrt{n} & \text { for } \lambda>1
\end{array}\right\} \leq 3 \sqrt{\lambda n}
$$

and

$$
\log r(n, \lambda \sqrt{n}) \leq\left\{\begin{array}{cc}
\left.\frac{2 \log \lambda+3}{\lambda}\right) \sqrt{n} & \text { for } \lambda \geq 1 \tag{2.2}\\
3 \sqrt{n} & \text { for } \lambda<1
\end{array}\right\} \leq \frac{3}{\sqrt{\lambda}} \sqrt{n} .
$$

Proof: The first inequality in (2.1), for $\lambda \leq 1$, is proved in [6], Lemma 2, where it is deduced from the classical result

$$
p(n, m) \leq \frac{1}{m!}\binom{n+\frac{m(m+1)}{2}-1}{m-1}, \quad m \in \mathbb{N}
$$

(see, e.g., [3]). For $\lambda>1$ the second inequality in (2.1) follows from $p(n, \lambda \sqrt{n}) \leq p(n)$ and from the upper bound $p(n) \leq \exp \left(\pi \sqrt{\frac{2 n}{3}}\right.$) which holds for all $n \geq 1$ (cf. [12], Theorem 15.5). The inequality $\lambda(3-2 \log \lambda) \leq 3 \sqrt{\lambda}$ for $\lambda \leq 1$ is a simple analysis exercise. Finally, (2.2) follows from (2.1) and from the relation $r(n, x) \leq p(n, n / x)$.

Lemma 2. Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of positive integers, with $a_{1}=1<a_{2}<\cdots$ Let us denote by $A(x)$ the number of a_{i} 's not exceeding x, and by $p_{\mathcal{A}}(n)$ the number of partitions
of n with parts in \mathcal{A}. Then, for $n \in \mathbb{N}$, we have

$$
p_{\mathcal{A}}(n) \leq n^{A(n)-1}
$$

Proof: If $1 \leq n<a_{2}$, this is obvious since $p_{\mathcal{A}}(n)=1$ and $A(n)=1$. If $n \geq a_{2}$, let us set $m=A(n) \geq 2$. Then $p_{\mathcal{A}}(n)$ is the number of solutions of

$$
x_{1}+x_{2} a_{2}+\cdots+x_{m} a_{m}=n
$$

The possible values for x_{i} are $0,1, \ldots,\left\lfloor n / a_{i}\right\rfloor$, and, when x_{2}, \ldots, x_{m} are fixed, there is only one possibility for x_{1}. Thus

$$
p_{\mathcal{A}}(n) \leq \prod_{i=2}^{m}\left(\left\lfloor\frac{n}{a_{i}}\right\rfloor+1\right) \leq\left(\left\lfloor\frac{n}{2}\right\rfloor+1\right)^{m-1} \leq n^{m-1} .
$$

Lemma 3. Let $\mathcal{B}=\left\{b_{1}, \ldots, b_{\beta}\right\} \subset \mathbb{N}$ and t a positive integer. There is a $u \in\left[t b_{1}, t b_{\beta}\right]$ such that $q_{\mathcal{B}}(u)$, the number of partitions of u into distinct parts belonging to \mathcal{B}, satisfies:

$$
q_{\mathcal{B}}(u) \geq \frac{1}{t\left(b_{\beta}-b_{1}\right)+1}\binom{\beta}{t}
$$

Proof: Let us consider the $\binom{\beta}{t}$ different choices $\beta_{i_{1}}, \ldots, \beta_{i_{t}}$; each of the sums $\beta_{i_{1}}+\cdots+\beta_{i_{t}}$ is between $t b_{1}$ and $t b_{\beta}$. Thus the most frequently occuring value will be obtained at least $\frac{1}{t\left(b_{\beta}-b_{1}\right)+1}\binom{\beta}{t}$ times.

Proof of Theorem 1: For $k \geq 1$ set

$$
t_{k}=2^{4^{k}}, \quad \beta_{k}=\frac{t_{k+1}}{t_{k}}=t_{k}^{3}=2^{3 \cdot 4^{k}}
$$

and

$$
\mathcal{S}_{k}=\left\{t_{k+1}-\beta_{k}+1, t_{k+1}-\beta_{k}+2, \ldots, t_{k+1}\right\}
$$

Then

$$
\left|\mathcal{S}_{k}\right|=\beta_{k}
$$

and since

$$
t_{k+1}-\beta_{k}=t_{k}^{4}-t_{k}^{3}=t_{k}^{3}\left(t_{k}-1\right)>t_{k}
$$

thus we have

$$
\left.\left.\mathcal{S}_{k} \subset\right] t_{k}, \ldots t_{k+1}\right]
$$

Now we define \mathcal{S} by

$$
\mathcal{S}=\{1\} \cup\left(\bigcup_{k \geq 1} \mathcal{S}_{k}\right)
$$

Recalling that $S(x)=\sum_{s \in S, s \leq x} 1$, for $k \geq 2$ we have

$$
\begin{align*}
\beta_{k-1} & \leq S\left(t_{k}\right)=1+\beta_{1}+\cdots+\beta_{k-1}=1+2^{12}+\cdots+2^{3 \cdot 4^{k-1}} \\
& \leq 1+2+2^{2}+\cdots+2^{3 \cdot 4^{k-1}}<2 \beta_{k-1}=2^{3 \cdot 4^{k-1}+1} \tag{2.3}
\end{align*}
$$

If $x>t_{2}=2^{16}$, then we define $l=l(x) \geq 2$ by $t_{l}<x \leq t_{l+1}$, which implies

$$
4^{l}<\frac{\log x}{\log 2} \leq 4^{l+1}
$$

and, from (2.3), we have

$$
S(x) \geq S\left(t_{l}\right) \geq \beta_{l-1}=2^{3 \cdot 4^{l-1}}=2^{\frac{3}{16} 4^{l+1}} \geq x^{3 / 16}
$$

which proves (1.7). (Similarly, it is not difficult to show that $S(x) \ll x^{3 / 4}$.)
Now we apply Lemma 3 with $\mathcal{B}=\mathcal{S}_{k}$ and $t=t_{k}$: there exist $u_{k} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left(t_{k}-1\right) t_{k+1}=\left(t_{k+1}-\beta_{k}\right) t_{k}<u_{k} \leq t_{k} t_{k+1} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\mathcal{S}}\left(u_{k}\right) \geq q_{\mathcal{S}_{k}}\left(u_{k}\right) \geq \frac{1}{t_{k}\left(\beta_{k}-1\right)+1}\binom{\beta_{k}}{t_{k}} \geq \frac{1}{t_{k} \beta_{k}}\binom{\beta_{k}}{t_{k}} . \tag{2.5}
\end{equation*}
$$

Now we will give an upper bound for $p_{\mathcal{S}}\left(u_{k}\right)$. Set $N=t_{k} t_{k+1}=t_{k}^{5}$. Since $1 \in \mathcal{S}$, thus $p_{\mathcal{S}}(n)$ is a non-decreasing function of n, so that from (2.4),

$$
\begin{equation*}
p_{\mathcal{S}}\left(u_{k}\right) \leq p_{\mathcal{S}}\left(t_{k} t_{k+1}\right)=p_{\mathcal{S}}(N) \tag{2.6}
\end{equation*}
$$

The smallest element of \mathcal{S}_{k+1} is

$$
t_{k+2}-\beta_{k+1}+1>t_{k+2}-\beta_{k+1}=t_{k+2}\left(1-\frac{1}{t_{k+1}}\right)>\frac{t_{k+2}}{2}=\frac{t_{k+1}^{4}}{2}>t_{k+1} t_{k}=N
$$

Thus if for $k \geq 2$ we set $\mathcal{C}_{k}=\{1\} \cup\left(\bigcup_{j \leq k-1} \mathcal{S}_{j}\right)$, then we have

$$
\begin{equation*}
p_{\mathcal{S}}(N)=p_{\mathcal{C}_{k} U \mathcal{S}_{k}}(N)=\sum_{j=0}^{N} p_{\mathcal{C}_{k}}(j) p_{\mathcal{S}_{k}}(N-j) \tag{2.7}
\end{equation*}
$$

Now we apply Lemma 2 with $\mathcal{A}=\mathcal{C}_{k}, n=N, A(n)=S\left(t_{k}\right)$, which by (2.3) yields

$$
\begin{equation*}
p_{\mathcal{C}_{k}}(N) \leq N^{S\left(t_{k}\right)-1} \leq\left(t_{k} t_{k+1}\right)^{2 \beta_{k-1}} . \tag{2.8}
\end{equation*}
$$

Since $1 \in \mathcal{C}_{k}$, thus $p_{\mathcal{C}_{k}}(j)$ is a non-decreasing function of j, and thus it follows from (2.7) that

$$
\begin{equation*}
p_{\mathcal{S}}(N) \leq p_{\mathcal{C}_{k}}(N) \sum_{j=0}^{N} p_{\mathcal{S}_{k}}(N-j) \tag{2.9}
\end{equation*}
$$

If we denote the elements of \mathcal{S}_{k} by $s_{1}<s_{2}<\cdots<s_{\beta_{k}}$, then the sum above is the number of solutions of

$$
x_{1} s_{1}+\cdots+x_{\beta_{k}} s_{\beta_{k}} \leq N
$$

which, by

$$
x_{1} s_{1}+\cdots+x_{\beta_{k}} s_{\beta_{k}} \geq\left(x_{1}+\cdots+x_{\beta_{k}}\right) s_{1}
$$

is smaller, than the number of solutions of

$$
\begin{equation*}
x_{1}+\cdots+\beta_{k} \leq\left\lfloor N / s_{1}\right\rfloor \tag{2.10}
\end{equation*}
$$

since

$$
\frac{N}{s_{1}}=\frac{t_{k} t_{k+1}}{t_{k+1}-\beta_{k}+1}<\frac{t_{k} t_{k+1}}{t_{k+1}-\beta_{k}}=\frac{t_{k}}{1-1 / t_{k}}=t_{k}+1+\frac{1}{t_{k}}+\cdots<t_{k}+2
$$

thus $\left\lfloor N / s_{1}\right\rfloor \leq t_{k}+1$, so that the number of solutions of (2.10) is

$$
\leq\binom{ t_{k}+1+\beta_{k}}{\beta_{k}}=\binom{\beta_{k}+t_{k}+1}{t_{k}+1}
$$

Thus we have

$$
\begin{equation*}
\sum_{j=0}^{N} p_{\mathcal{S}_{k}}(N-j) \leq\binom{\beta_{k}+t_{k}+1}{t_{k}+1}=\frac{\beta_{k}+t_{k}+1}{t_{k}+1}\binom{\beta_{k}+t_{k}}{t_{k}} \leq \beta_{k}\binom{\beta_{k}+t_{k}}{t_{k}} \tag{2.11}
\end{equation*}
$$

It follows from (2.6), (2.8), (2.9) and (2.11) that

$$
\begin{equation*}
p_{\mathcal{S}}\left(u_{k}\right) \leq\left(t_{k} t_{k+1}\right)^{2 \beta_{k-1}} \beta_{k}\binom{\beta_{k}+t_{k}}{t_{k}} \tag{2.12}
\end{equation*}
$$

It remains to estimate $\binom{\beta_{k}}{t_{k}}$ and $\binom{\beta_{k}+t_{k}}{t_{k}}$. We have

$$
\binom{\beta_{k}}{t_{k}}=\frac{\beta_{k}\left(\beta_{k}-1\right) \ldots\left(\beta_{k}-t_{k}+1\right)}{t_{k}!} \geq \frac{\left(\beta_{k}-t_{k}\right)^{t_{k}}}{t_{k}^{t_{k}}}=\left(\frac{\beta_{k}}{t_{k}}\right)^{t_{k}}\left(1-\frac{t_{k}}{\beta_{k}}\right)^{t_{k}}
$$

and

$$
\begin{aligned}
\left(1-\frac{t_{k}}{\beta_{k}}\right)^{t_{k}} & =\exp \left(-t_{k} \log \left(1+\frac{t_{k}}{\beta_{k}-t_{k}}\right)\right) \geq \exp \left(-\frac{t_{k}^{2}}{\beta_{k}-t_{k}}\right) \\
& \geq \exp \left(-\frac{2 t_{k}^{2}}{\beta_{k}}\right) \quad \text { since } \beta_{k} \geq 2 t_{k} \\
& =\exp \left(-\frac{2}{t_{k}}\right) \quad \text { since } \beta_{k}=t_{k}^{3}
\end{aligned}
$$

so that

$$
\begin{equation*}
\binom{\beta_{k}}{t_{k}} \geq\left(\frac{\beta_{k}}{t_{k}}\right)^{t_{k}} \exp \left(-\frac{2}{t_{k}}\right) \tag{2.13}
\end{equation*}
$$

Similary, by using the weak form $n!\geq n^{n} e^{-n}$ of Stirling's formula:

$$
\begin{equation*}
\binom{\beta_{k}+t_{k}}{t_{k}} \leq \frac{\left(\beta_{k}+t_{k}\right)^{t_{k}}}{t_{k}!} \leq \frac{\beta_{k}^{t_{k}}}{t_{k}!} \exp \left(\frac{t_{k}^{2}}{\beta_{k}}\right) \leq\left(\frac{e \beta_{k}}{t_{k}}\right)^{t_{k}} \exp \left(\frac{1}{t_{k}}\right) \tag{2.14}
\end{equation*}
$$

From (2.5) and (2.13), we get for $k \rightarrow \infty$:

$$
\begin{equation*}
\log q_{\mathcal{S}}\left(u_{k}\right) \geq t_{k} \log \left(\frac{\beta_{k}}{t_{k}}\right)-\frac{2}{t_{k}}-\log \left(\beta_{k} t_{k}\right)=(1+o(1)) 2 t_{k} \log t_{k} \tag{2.15}
\end{equation*}
$$

and from (2.12) and (2.14)

$$
\begin{align*}
\log p_{\mathcal{S}}\left(u_{k}\right) & \leq t_{k} \log \left(\frac{e \beta_{k}}{t_{k}}\right)+\frac{1}{t_{k}}+2 \beta_{k-1} \log \left(t_{k} t_{k+1}\right)+\log \beta_{k} \\
& =2 t_{k} \log t_{k}+t_{k}+\frac{1}{t_{k}}+10 t_{k}^{3 / 4} \log t_{k}+3 \log t_{k}=(1+o(1)) 2 t_{k} \log t_{k} \tag{2.16}
\end{align*}
$$

Since, obviously, $q_{\mathcal{S}}\left(u_{k}\right) \leq p_{\mathcal{S}}\left(u_{k}\right)$, Theorem 1 follows from (2.15) and (2.16).

3. The case $\lim \inf A(n) / n=\alpha>0$

First we shall prove (see [9], Theorem 16.1):

Lemma 4. Let \mathcal{A} be a set of coprime positive integers, α a positive real number such that $\lim \inf A(n) / n=\alpha$. Then for all $\varepsilon, 0<\varepsilon<\alpha$, there exist $n_{0}=n_{0}(\varepsilon)$ such that for $n \geq n_{0}$ the following inequality holds:

$$
\begin{equation*}
p_{\mathcal{A}}(n) \geq \exp (C \sqrt{(\alpha-\varepsilon) n}), \quad C=\pi \sqrt{\frac{2}{3}}=2.56 \tag{3.1}
\end{equation*}
$$

Proof: Let us call $\mathcal{P}(\mathcal{A})$ the property

$$
\begin{equation*}
\text { For all } a \in \mathcal{A} \text {, the g.c.d. of the elements of } \mathcal{A}-\{a\} \text { is } 1 . \tag{3.2}
\end{equation*}
$$

It follows from the Bateman-Erdős Theorem (cf. [2]) that, if \mathcal{A} possesses property $\mathcal{P}(\mathcal{A})$, then $p_{\mathcal{A}}(n)$ is increasing from a certain point on. First we assume that $\mathcal{P}(\mathcal{A})$ holds. If we write $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ with $a_{1}<a_{2}<\ldots$, then there exists $m_{1}=m_{1}(\varepsilon)$ such that

$$
\begin{equation*}
a_{m} \leq \frac{m}{\alpha-\frac{\varepsilon}{2}}, \quad m \geq m_{1} \tag{3.3}
\end{equation*}
$$

Let us define $m=m(n)$ by $a_{m} \leq n<a_{m+1}$. Then $S(n)=\sum_{i=0}^{n} p_{\mathcal{A}}(i)$ is the number of solutions of

$$
\begin{equation*}
x_{1} a_{1}+\cdots+x_{m} a_{m} \leq n \tag{3.4}
\end{equation*}
$$

and, for $m \geq m_{1}$, this is greater than the number of solutions of

$$
x_{m_{1}} a_{m_{1}}+\cdots+x_{m} a_{m} \leq n
$$

But then from (3.3), $S(n)$ is greater, than the number of solutions S^{\prime} of

$$
\begin{equation*}
m_{1} x_{m 1}+\cdots+m x_{m} \leq N=\left\lfloor\left(\alpha-\frac{\varepsilon}{2}\right) n\right\rfloor \tag{3.5}
\end{equation*}
$$

With any solutions of (3.5) we can associate at most $N^{m_{1}-1}$ solutions of

$$
\begin{equation*}
x_{1}+2 x_{2}+\cdots+m_{1} x_{m 1}+\cdots+m x_{m} \leq N \tag{3.6}
\end{equation*}
$$

By (3.3) (with $m+1$ in place of m) and $n<a_{m+1}$ we have $m+1>N$. Thus the number of solutions of (3.6) is $\sum_{i=0}^{N} p(i) \geq p(N)$, and we have from (1.3):

$$
\begin{equation*}
S(n) \geq S^{\prime} \geq \frac{p(N)}{N^{m_{1}-1}} \geq \frac{1}{10} \exp \left(C \sqrt{N}-m_{1} \log N\right) \tag{3.7}
\end{equation*}
$$

Since $p_{\mathcal{A}}(n)$ is increasing, thus we have $p_{\mathcal{A}}(n) \geq S(n) / n$ which together with (3.7) and the value of N given in (3.5) proves Lemma 4 when $\mathcal{P}(\mathcal{A})$ holds.

Let us assume now that $\mathcal{P}(\mathcal{A})$ does not hold. Then there exists $a_{i 1}$ such that the g.c.d. of the elements of $\mathcal{A}_{1}=\mathcal{A}-\left\{a_{i 1}\right\}$ is $g_{1} \geq 2$. If $\mathcal{P}\left(\frac{1}{g_{1}} \mathcal{A}_{1}\right)$ does not hold, then there exists $a_{i 2} \geq g_{1}$ such that the g.c.d. of the elements of $\mathcal{A}_{2}=\mathcal{A}_{1} \backslash\left\{a_{i 2}\right\}$ is $g_{2} \geq 4$, and so on. This process is finite, othervise for any k, we had a sequence $a_{i 1}, \ldots a_{i k} \geq 2^{k-1}$, so that the elements of $\mathcal{A}_{k}=\mathcal{A} \backslash\left\{a_{i 1}, \ldots a_{i k}\right\}$ have a g.c.d. $g_{k} \geq 2^{k}$. Then $A\left(2^{k-1}\right) \leq k$ for any k and $\lim _{\mathrm{n} \rightarrow \infty} \frac{A(n)}{n}=0$, which contradicts our hypothetis.

We may now assume that for some $k, \mathcal{P}\left(\mathcal{B}_{k}\right)$ holds, with $\mathcal{B}_{k}=\frac{1}{g_{k}} \mathcal{A}_{k}=\left\{b_{1}, b_{2}, \ldots\right\}$. We have $\lim \inf \frac{B_{k}(n)}{n}=\alpha g_{k}$. The numbers $a_{i 1}, a_{i 2}, \ldots, a_{i k}$ and g_{k} are coprime (any common divisor would divide all elements of \mathcal{A}). It is well-known that then there is n_{0} such that any
$n \geq n_{0}$ can be written in the form

$$
n=x_{0} g_{k}+x_{1} a_{i 1}+\cdots+x_{k} a_{i k}, \quad x_{j} \geq 0
$$

For n large, let us write $n=n^{\prime}+n_{0}+g$ where $0 \leq g<g_{k}$ and n^{\prime} is a multiple of g_{k}. We have

$$
p_{\mathcal{A}}(n) \geq p_{\mathcal{B}_{k}}\left(\frac{n^{\prime}}{g_{k}}\right)
$$

But, from the first part of our proof, as $\mathcal{P}\left(\mathcal{B}_{k}\right)$ holds, we have:

$$
p_{\mathcal{B}_{k}}\left(\frac{n^{\prime}}{g_{k}}\right) \geq \exp \left(C \sqrt{\alpha g_{k}-\varepsilon} \sqrt{\frac{n^{\prime}}{g_{k}}}\right)
$$

and since $n-n^{\prime}=O(1)$, this completes the proof of Lemma 4.

Let us prove now:
Lemma 5. Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots\right\}$ be a set of positive integers and $\beta=\lim _{\sup _{n \rightarrow \infty}} \frac{A(n)}{n}$. Then for all positive ε and n large enough, the following inequality holds:

$$
\begin{equation*}
q_{\mathcal{A}}(n) \leq \exp \left(\frac{\pi}{\sqrt{3}} \sqrt{(\beta+\varepsilon) n}\right) \tag{3.8}
\end{equation*}
$$

Proof: We shall follow the proof of Theorem 16.1 of [9]. First there exists $m_{2}=m_{2}(\varepsilon)$ such that

$$
\begin{equation*}
m \geq m_{2} \Rightarrow a_{m} \geq \frac{m}{\beta+\varepsilon / 2} \tag{3.9}
\end{equation*}
$$

Let us set $\mathcal{A}_{1}=\left\{a_{1}, a_{2}, \ldots, a_{m_{2}}\right\}$ and $\mathcal{A}_{2}=\left\{a_{m_{2}+1}, a_{m_{2}+2}, \ldots\right\}$; we have $\mathcal{A}_{1} \cap \mathcal{A}_{2}=\emptyset$, $\mathcal{A}_{1} \cup \mathcal{A}_{2}=\mathcal{A}$ so that

$$
\begin{equation*}
q_{\mathcal{A}}(n)=\sum_{m=0}^{n} q_{\mathcal{A}_{2}}(m) q_{\mathcal{A}_{1}}(n-m) . \tag{3.10}
\end{equation*}
$$

Further, $q_{\mathcal{A}_{1}}(n)$ is the number of solutions of $x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{m_{2}} a_{m_{2}}=n$, with $x_{i}=0,1$; thus, for any $n \geq 0$,

$$
\begin{equation*}
q_{\mathcal{A}_{1}}(n) \leq 2^{m_{2}} . \tag{3.11}
\end{equation*}
$$

Let

$$
m=a_{k_{1}}+a_{k_{2}}+\cdots+a_{k_{r}}, \quad m_{2}<k_{1}<k_{2}<\cdots<k_{r}
$$

be a restricted partition of m with parts in \mathcal{A}_{2}; to this partition we associate the restricted partition

$$
v=k_{1}+k_{2}+\cdots+k_{r}, \quad m_{2}<k_{1}<k_{2}<\cdots<k_{r}
$$

and, from (3.9), $v \leq m(\beta+\varepsilon / 2)$. This establishes a one-to-one mapping from restricted partitions of m with parts in \mathcal{A}_{2} to restricted partitions of integers ν less than $m(\beta+\varepsilon / 2)$. Since the restricted partition function $q(n)$ is non decreasing, we have

$$
q_{\mathcal{A}_{2}}(m) \leq \sum_{0 \leq \nu \leq m\left(\beta+\frac{\varepsilon}{2}\right)} q(\nu) \leq\left(1+\left\lfloor m\left(\beta+\frac{\varepsilon}{2}\right)\right\rfloor\right) q\left(\left\lfloor m\left(\beta+\frac{\varepsilon}{2}\right)\right\rfloor\right)
$$

It follows from (3.10) and (3.11) that

$$
q_{\mathcal{A}}(n) \leq 2^{m_{2}} \sum_{m=0}^{n} q_{\mathcal{A}_{2}}(m) \leq 2^{m_{2}}(n+1)\left(1+\left\lfloor n\left(\beta+\frac{\varepsilon}{2}\right)\right\rfloor\right) q\left(\left\lfloor n\left(\beta+\frac{\varepsilon}{2}\right)\right\rfloor\right)
$$

which, with (1.4), implies (3.8) and the proof of Lemma 5 is completed.

Proof of Theorem 2: If the greatest common divisor, say d, of the elements of \mathcal{A} is greater than 1 , then dividing every element of \mathcal{A} by d we may reduce the problem to the case when the elements of \mathcal{A} are coprime.

First we remark that, writing $\beta=\lim \sup _{n \rightarrow \infty} \frac{A(n)}{n}$, Lemma 5 implies

$$
\begin{equation*}
q_{\mathcal{A}}(n) \leq \exp \left(\frac{\pi}{\sqrt{3}} \sqrt{(\beta+\varepsilon) n}\right) \tag{3.12}
\end{equation*}
$$

for any $\varepsilon>0$ and n large enough. Since we have assumed that the elements of \mathcal{A} are coprime, it follows from Lemma 4 that, for any $\varepsilon>0$ and n large enough,

$$
\begin{equation*}
p_{\mathcal{A}}(n) \geq \exp \left(\pi \sqrt{\frac{2}{3}} \sqrt{(\alpha-\varepsilon) n}\right) \tag{3.13}
\end{equation*}
$$

Inequalities (3.12) and (3.13) prove Theorem 2 when $\beta<2 \alpha$. However, this simple argument cannot be used for $\beta \geq 2 \alpha$, so we need a different proof which covers all values of β. From Lemma 4, for n large enough we have.

$$
\begin{equation*}
p_{\mathcal{A}}(n) \geq \exp (2.5 \sqrt{\alpha n}) \tag{3.14}
\end{equation*}
$$

So, we may assume that, for n large enough,

$$
\begin{equation*}
q_{\mathcal{A}}(n) \geq \exp (2.4 \sqrt{\alpha n}) \tag{3.15}
\end{equation*}
$$

since othervise (1.9) holds with $\eta(\alpha)=25 / 24$.

Now we claim that if (3.15) holds for some n, then there exist $c_{2}=c_{2}(\alpha)>0$ and $c_{3}=c_{3}(\alpha)>0$ such that for more than

$$
\begin{equation*}
\frac{1}{2} q_{\mathcal{A}}(n) \tag{3.16}
\end{equation*}
$$

restricted \mathcal{A}-partitions π of n we have

$$
\begin{equation*}
\sum_{\substack{a \in \pi \\ a<c_{3} \sqrt{n}}} a>c_{2} n \tag{3.17}
\end{equation*}
$$

Indeed, the number of exceptions is less than

$$
\sum_{a=0}^{c_{2} n} q(a) \varrho\left(n-a, c_{3} \sqrt{n}\right) \leq q\left(c_{2} n\right) \sum_{a=0}^{c_{2} n} r\left(n-a, c_{3} \sqrt{n}\right)
$$

and by (1.4) and Lemma 1, this is smaller than

$$
n \exp \left(\frac{\pi}{\sqrt{3}} \sqrt{c_{2} n}\right) \exp \left(\frac{3}{\sqrt{c_{3} \sqrt{\frac{n}{n-a}}}} \sqrt{n-a}\right) \leq n \exp \left(\frac{\pi}{\sqrt{3}} \sqrt{c_{2} n}+3 \sqrt{\frac{n}{c_{3}}}\right)
$$

so that for c_{3} large enough, and c_{2} small enough, it is, in view of (3.15), smaller than $\frac{1}{2} q_{\mathcal{A}}(n)$. One can choose

$$
\begin{equation*}
c_{2}=\frac{\alpha}{4} \quad \text { and } \quad c_{3}=\frac{9}{\alpha} \tag{3.18}
\end{equation*}
$$

Now, consider all the restricted \mathcal{A}-partitions π of n satisfying (3.17). Let $\varepsilon=\varepsilon(\alpha)$ be small enough in terms of α and to be fixed later. Divide the interval ($0, c_{3} \sqrt{n}$] into k equal parts where k is an integer which will be fixed later (in (3.25)). Then for $1 \leq j \leq k$, the length of each interval $I_{j}=\left((j-1) \frac{c_{3} \sqrt{n}}{k}, j \frac{c_{3} \sqrt{n}}{k}\right.$] is $\frac{c_{3} \sqrt{n}}{k}$. For each of the partitions π satisfying (3.17) let $I(\pi)$ denote that interval I_{j} for which $\sum_{a \in I_{j}} a$ is maximal, so that

$$
\begin{equation*}
\sum_{a \in I(\pi)} a>\frac{c_{2}}{k} n . \tag{3.19}
\end{equation*}
$$

By (3.16) and the pigeon hole principle, there is a $h \in\{1,2, \ldots, k\}$ so that

$$
\begin{equation*}
I(\pi)=I_{h} \tag{3.20}
\end{equation*}
$$

holds for at least $\frac{1}{2 k} q_{\mathcal{A}}(n)$ of the partitions π satisfying (3.17). Let P denote the set of the restricted \mathcal{A}-partitions satisfying (3.17) and (3.20), so that

$$
\begin{equation*}
|P| \geq \frac{1}{2 k} q_{\mathcal{A}}(n) \tag{3.21}
\end{equation*}
$$

To each $\pi \in P$ assign the partition

$$
\pi^{\prime}=\pi \backslash\left(\left\{a: a \in I_{h}\right\} \cup\{a: a \leq \varepsilon \sqrt{n}\}\right)
$$

Since, for all j, I_{j} contains at most $1+\frac{c_{3} \sqrt{n}}{k}$ integers, thus $\left\{a: a \in I_{h}\right\}$ can be chosen in at most

$$
2^{1+c_{3} \sqrt{n} / k}<2^{2 c_{3} \sqrt{n} / k}
$$

ways. It follows that writing

$$
P^{\prime}=\left\{\pi^{\prime}: \pi \in P\right\}
$$

we have

$$
\begin{equation*}
\left|P^{\prime}\right|>|P| 2^{-2 c_{3} \sqrt{n} / k} 2^{-\varepsilon \sqrt{n}}=|P| 2^{-\left(\varepsilon+2 c_{3} / k\right) \sqrt{n}} . \tag{3.22}
\end{equation*}
$$

Now, write

$$
M=\left\lfloor\frac{\alpha}{2} \varepsilon \sqrt{n}\right\rfloor
$$

so that, by (1.8), for n large enough

$$
\begin{equation*}
a_{1}<a_{2}<\cdots<a_{M} \leq \varepsilon \sqrt{n} \tag{3.23}
\end{equation*}
$$

Let

$$
T=\left\lfloor\frac{2 c_{2}}{c_{3}} \frac{1}{\varepsilon}\right\rfloor
$$

For some $\pi^{\prime} \in P^{\prime}$, consider all the sums

$$
\begin{equation*}
\sum_{a \in \pi^{\prime}} a+\sum_{i=1}^{M} x_{i} a_{i} \quad \text { with } \quad 0 \leq x_{1}, \ldots, x_{M} \leq T \tag{3.24}
\end{equation*}
$$

It follows from (3.19), (3.23) and (3.24) that

$$
\sum_{i=1}^{M} x_{i} a_{i} \leq T M \varepsilon \sqrt{n} \leq \frac{2 c_{2}}{c_{3}} \cdot \frac{1}{\varepsilon} \cdot \frac{\alpha}{2} \varepsilon \sqrt{n} \cdot \varepsilon \sqrt{n}=\frac{c_{2}}{c_{3}} \alpha \varepsilon n<\sum_{a \in I(h)} a
$$

by choosing k so that

$$
\begin{equation*}
k=\left\lfloor\frac{c_{3}}{\alpha \varepsilon}\right\rfloor \geq \frac{c_{3}}{2 \alpha \varepsilon} \tag{3.25}
\end{equation*}
$$

It follows that the sum in (3.24) is smaller than n so that this sum forms an unrestricted partition of some m with $m<n$. Since for each $\pi^{\prime} \in P^{\prime}$ there are

$$
\left|P^{\prime}\right|(T+1)^{M}>\left|P^{\prime}\right|\left(\frac{2 c_{2}}{c_{3}} \cdot \frac{1}{\varepsilon}\right)^{\left\lfloor\frac{\alpha}{2} \varepsilon \sqrt{n}\right\rfloor}>\left|P^{\prime}\right| \exp \left(\frac{\alpha}{4} \varepsilon\left(\log \frac{2 c_{2}}{c_{3} \varepsilon}\right) \sqrt{n}\right)
$$

partitions of form (3.24), we have from (3.21), (3.22) and (3.25):

$$
\begin{aligned}
\sum_{m \leq n} p_{\mathcal{A}}(m) & \geq\left|P^{\prime}\right| \exp \left(\frac{\alpha}{4} \varepsilon\left(\log \frac{2 c_{2}}{c_{3} \varepsilon}\right) \sqrt{n}\right) \\
& \geq \frac{1}{2 k} q_{\mathcal{A}}(n) \exp \left\{\left(\frac{\alpha}{4} \varepsilon\left(\log \frac{2 c_{2}}{c_{3} \varepsilon}\right)-2 \frac{c_{3}}{k}-\varepsilon\right) \sqrt{n}\right\} \\
& \geq \frac{1}{2 k} q_{\mathcal{A}}(n) \exp \left\{\varepsilon\left(\frac{\alpha}{4} \log \frac{2 c_{2}}{c_{3} \varepsilon}-(4 \alpha+1)\right) \sqrt{n}\right\} .
\end{aligned}
$$

By choosing $\varepsilon=\frac{2 c_{2}}{c_{3}} \exp \left(-17-\frac{4}{\alpha}\right)$, for all large n it follows

$$
\begin{align*}
\sum_{m \leq n} p_{\mathcal{A}}(m) & >\frac{1}{2 k} q_{\mathcal{A}}(n) \exp \left\{\left(\frac{2 c_{2}}{c_{3}} \frac{\alpha}{4} \exp \left(-17-\frac{4}{\alpha}\right)\right) \sqrt{n}\right\} \\
& >q_{\mathcal{A}}(n) \exp \left\{\left(\frac{c_{2}}{c_{3}} \frac{\alpha}{4} \exp \left(-17-\frac{4}{\alpha}\right)\right) \sqrt{n}\right\} \tag{3.26}
\end{align*}
$$

It follows from (1.4) and (3.26) that

$$
\begin{equation*}
\sum_{m \leq n} p_{\mathcal{A}}(m)>q_{\mathcal{A}}(n) q(n)^{2 \eta} \geq q_{\mathcal{A}}(n)^{1+2 \eta} \tag{3.27}
\end{equation*}
$$

with, from (3.18),

$$
\eta=\frac{c_{2}}{c_{3}} \frac{\alpha}{16} \exp \left(-17-\frac{4}{\alpha}\right)=\frac{\alpha^{3}}{576} \exp \left(-17-\frac{4}{\alpha}\right)
$$

Since now property $\mathcal{P}(\mathcal{A})$ in (3.2) is assumed, thus we have $p_{\mathcal{A}}(n+1)>p_{\mathcal{A}}(n)$ for n large enough, whence

$$
\begin{equation*}
(n+1) p_{\mathcal{A}}(n) \geq \sum_{0 \leq m \leq n} p_{\mathcal{A}}(m) \tag{3.28}
\end{equation*}
$$

and (1.9) follows from (3.27) and (3.28).
If $\mathcal{P}(\mathcal{A})$ does not hold, then we have seen in the proof of Lemma 4 that \mathcal{A} can be written in the form $\mathcal{A}=\mathcal{A}^{\prime} \cup \mathcal{A}^{\prime \prime}, \mathcal{A}^{\prime} \cap \mathcal{A}^{\prime \prime}=\emptyset, \mathcal{A}^{\prime}$ finite, $\mathcal{A}^{\prime \prime}=g \mathcal{B}$, where g is the g.c.d. of the elements of $\mathcal{A}^{\prime \prime}$. In the constuction of π^{\prime} we keep the parts belonging to \mathcal{A}^{\prime}, we remove those parts from $\mathcal{A}^{\prime \prime}$ which are either smaller than $\varepsilon \sqrt{n}$ or belong to I_{h}, and we replace them by the elements a_{1}, \ldots, a_{M} belonging to $\mathcal{A}^{\prime \prime}$. All the sums obtained in (3.24) are congruent to $n \bmod g$, and since $\mathcal{P}(\mathcal{B})$ is true thus (3.28) follows, and we can conclude similarly.

4. Proof of Proposition 1

We will prove (1.16), the proof of (1.15) is similar. The proof follows the proof of (1.13) as given in [11]. We use the notation and the results of [11]:

$$
\begin{align*}
F(x)= & \int_{x}^{\infty} \frac{u}{1+e^{u}} d u, \tag{4.1}\\
F(x)= & \frac{\pi^{2}}{12}-\frac{x^{2}}{4}+O\left(x^{3}\right) \quad \text { as } x \rightarrow 0, \tag{4.2}\\
F(x)= & (x+1) e^{-x}+O\left(x e^{-2 x}\right) \quad \text { as } x \rightarrow \infty, \tag{4.3}\\
G(x)= & \frac{x}{\sqrt{F(x)}} \text { is increasing for } x \geq 0, \tag{4.4}\\
& H \text { is the inverse function of } G, \tag{4.5}
\end{align*}
$$

and for $\lambda \rightarrow \infty, \mathrm{H}$ satisfies

$$
\begin{equation*}
H(\lambda)=2 \log \lambda-\log \log \lambda-\log 2+O\left(\frac{\log \log \lambda}{\log \lambda}\right) \tag{4.6}
\end{equation*}
$$

Finally $h(\lambda)$, defined in (1.13), is equal to:

$$
\begin{equation*}
h(\lambda)=\frac{2 H(\lambda)}{\lambda}-\lambda \log \left(1+e^{-H(\lambda)}\right) \tag{4.7}
\end{equation*}
$$

Here for $x \in \mathbb{R}$ we define

$$
\begin{equation*}
F_{2}(x)=F(x)-F(2 x)=\int_{x}^{2 x} \frac{u}{1+e^{u}} d u \tag{4.8}
\end{equation*}
$$

(note that, for $x>0, F_{2}(-x)=3 x^{2}-F_{2}(x)$ and $F_{2}(-x) \geq 0$) and

$$
\begin{equation*}
G_{2}(x)=\frac{x}{\sqrt{F_{2}(x)}} \tag{4.9}
\end{equation*}
$$

It follows from (4.2) and (4.8) that $G_{2}\left(0^{+}\right)=\frac{2}{\sqrt{3}}$. Now, we observe that if

$$
\sum_{\lambda \sqrt{n} \leq m<2 \lambda \sqrt{n}} m<n,
$$

then we have $\varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})=0$. Hence, for $\lambda<\sqrt{\frac{2}{3}}$, (1.16) holds with $h_{2}(\lambda)=0$. Further we set, for $s \in \mathbb{R}$,

$$
\begin{equation*}
F_{2}(x, s)=\int_{x}^{2 x} \frac{u d u}{1+e^{u s}}=\frac{1}{s^{2}} F_{2}(s x) \tag{4.10}
\end{equation*}
$$

Clearly, for x fixed, $F_{2}(x, s)$ is a decreasing function of s, and

$$
\lim _{s \rightarrow-\infty} F_{2}(x, s)=\frac{3 x^{2}}{2}, \quad F_{2}(x, 0)=\frac{3 x^{2}}{4} \quad \text { and } \quad \lim _{s \rightarrow+\infty} F_{2}(x, s)=0
$$

So, for $x \geq \sqrt{\frac{2}{3}}$, there is a unique value $s=s(x)$ such that $F_{2}(x, s(x))=1$. For $\lambda \geq \sqrt{2 / 3}$, we define

$$
\begin{equation*}
H_{2}(\lambda)=\lambda s(\lambda) \tag{4.11}
\end{equation*}
$$

so that, from (4.10), we have

$$
\begin{equation*}
F_{2}\left(H_{2}(\lambda)\right)=\frac{H_{2}(\lambda)^{2}}{\lambda^{2}} \tag{4.12}
\end{equation*}
$$

It follows from (4.9) and (4.12) that, for $H_{2}(\lambda)>0$ (i.e. for $\lambda>\frac{2}{\sqrt{3}}$) we have

$$
\begin{equation*}
G_{2}\left(H_{2}(\lambda)\right)=\lambda \tag{4.13}
\end{equation*}
$$

and since $G_{2}(x)$, defined by (4.9), is increasing for x large enough, G_{2} and H_{2} are inverse in a neighborood of $+\infty$.

Since, from (4.3), for x large $F(2 x)$ is much smaller than $F(x), G_{2}(x)$ is close to $G(x)$, and it could be shown by a little computation (we leave the details to the reader) that $H_{2}(\lambda)$ satisfies the same asymptotic expansion as $H(\lambda)$ if $\lambda \rightarrow \infty$:

$$
\begin{equation*}
H_{2}(\lambda)=2 \log \lambda-\log \log \lambda-\log 2+O\left(\frac{\log \log \lambda}{\log \lambda}\right) \tag{4.14}
\end{equation*}
$$

Finally, for $\lambda>\sqrt{\frac{2}{3}}$ we set

$$
\begin{equation*}
h_{2}(\lambda)=\frac{2 H_{2}(\lambda)}{\lambda}+2 \lambda \log \left(1+e^{-2 H_{2}(\lambda)}\right)-\lambda \log \left(1+e^{-H_{2}(\lambda)}\right), \tag{4.15}
\end{equation*}
$$

and, from (4.14), $h_{2}(\lambda)$ is asymptotic to (1.14) as $\lambda \rightarrow+\infty$. Note that expression (4.15) appears in formula (50) in [11]. When $\lambda \rightarrow \sqrt{2 / 3}$, with $\lambda>\sqrt{2 / 3}$, then $H_{2}(\lambda) \rightarrow-\infty$, and a simple calculation shows that $h_{2}(\lambda) \rightarrow 0$.

We now prove:

Lemma 6. Let $\lambda>\sqrt{2 / 3}$, and $h_{2}(\lambda)$ defined by (4.15). For $n \geq 2$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{\log \varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})}{\sqrt{n}} \leq h_{2}(\lambda) . \tag{4.16}
\end{equation*}
$$

Proof: It is the same proof as the proof of Proposition 1 in [11]. We start from the generating function:

$$
\sum_{n=0}^{\infty} \varrho(n ; x, 2 x) z^{n}=\prod_{x \leq m<2 x}\left(1+z^{m}\right)
$$

which for real positive z yields

$$
\varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n}) \leq z^{-n} \prod_{\lambda \sqrt{n} \leq m<2 \lambda \sqrt{n}}\left(1+z^{m}\right)
$$

and

$$
\log (\varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})) \leq-n \log z+\sum_{\lambda \sqrt{n} \leq m<2 \lambda \sqrt{n}} \log \left(1+z^{m}\right)
$$

Here we chose z as

$$
z=\exp \left(-\frac{H_{2}(\lambda)}{\lambda \sqrt{n}}\right)
$$

By comparing the above sum to the corresponding integral, we can show exactly in the same way as in [11] that, when $H_{2}(\lambda) \geq 0, \log \varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n}) \leq h_{2}(\lambda) \sqrt{n}+1$, while, if $H_{2}(\lambda)<0$ (i.e., for $\sqrt{\frac{2}{3}}<\lambda<\frac{2}{\sqrt{3}}$), by a slightly different argument it can be shown that $\log \varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n}) \leq h_{2}(\lambda) \sqrt{n}+3\left|H_{2}(\lambda)\right|+1$. In both cases, (4.16) follows, and the proof of Lemma 6 is completed.

To prove (1.16), from Lemma 6 we need to show

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\log \varrho(n ; \lambda \sqrt{n}, 2 \lambda \sqrt{n})}{\sqrt{n}} \geq h_{2}(\lambda) \tag{4.17}
\end{equation*}
$$

As mentionned in the introduction, (4.17) can be proved by the methods of [5] or [11], Section 3 or 5 , or by analytical methods.

Finally, from (4.14) and (4.15), it follows that, for $\lambda \rightarrow \infty$, the asymptotic expansion of $h_{2}(\lambda)$ is (1.14).

5. Proof of Theorem 3

Let $\left(\lambda_{k}\right)_{k \geq 1}$ be a non-decreasing sequence of integers satisfying $3 \leq \lambda_{1} \leq \lambda_{2} \leq \ldots$. With this sequence we associate the sequence $n_{0}=1, n_{k}=\lambda_{k} n_{k-1}$ for $k \geq 1$.

The set \mathcal{A} is defined as

$$
\mathcal{A}=\{1\} \cup \bigcup_{k \geq 1}\left\{n_{k}, n_{k}+1, \ldots, 2 n_{k}-1\right\}
$$

In order to satisfy (1.11), we chose $\lambda_{1}, \lambda_{2}, \ldots$ by induction so that for k large enough, $\lambda_{k+1}<\frac{1}{2 f\left(n_{k}\right)}$. Indeed, then for $2 n_{k} \leq n<2 n_{k+1}$ we have

$$
n f(n) \leq 2 n_{k+1} f\left(n_{k}\right)=2 \lambda_{k+1} n_{k} f\left(n_{k}\right)<n_{k} \leq A(n)
$$

whence (1.10) follows.
Let λ a fixed, but large, positive real number. We now choose, for $k \rightarrow \infty$, an integer $N=N_{k}$ defined as

$$
\begin{equation*}
N=N_{k}=\left\lfloor\frac{n_{k}^{2}}{\lambda^{2}}\right\rfloor . \tag{5.1}
\end{equation*}
$$

A simple calculation shows that, for k large enough, $n_{k}-\frac{1}{2}<\lambda \sqrt{N} \leq n_{k}$ holds, and we have

$$
q_{\mathcal{A}}(N) \geq \varrho\left(N ; n_{k}, 2 n_{k}\right)=\varrho(N ; \lambda \sqrt{N}, 2 \lambda \sqrt{N})
$$

and, from (5.1), Proposition 1 and (1.14), we can choose λ large enough so that, for k large enough, we have

$$
\begin{equation*}
\log q_{\mathcal{A}}\left(N_{k}\right)=\log q_{\mathcal{A}}(N) \geq\left(\frac{2 \log \lambda-\log \log \lambda}{\lambda}\right) \sqrt{N} \tag{5.2}
\end{equation*}
$$

Further,

$$
\begin{equation*}
p_{\mathcal{A}}(N)=\sum_{N^{\prime}+N^{\prime \prime}+N^{\prime \prime \prime}=N} P_{1} P_{2} P_{3} \tag{5.3}
\end{equation*}
$$

where
P_{1} is the number of partitions of N^{\prime} into parts in \mathcal{A} and less than n_{k},
P_{2} is the number of partitions of $N^{\prime \prime}$ into parts in \mathcal{A} and between n_{k} and $2 n_{k}$,
P_{3} is the number of partitions of $N^{\prime \prime \prime}$ into parts greater than n_{k+1}.
From the definition of \mathcal{A}, we have

$$
P_{2}=r\left(N^{\prime \prime} ; n_{k}, 2 n_{k}\right) \leq r\left(N^{\prime \prime}, n_{k}\right)=r\left(N^{\prime \prime}, \lambda \sqrt{N}\right)=r\left(N^{\prime \prime} ; \lambda^{\prime \prime} \sqrt{N^{\prime \prime}}\right)
$$

with $\lambda^{\prime \prime}=\lambda \sqrt{\frac{N}{N^{\prime \prime}}} \geq \lambda$, and thus from Lemma 1:

$$
\begin{equation*}
\log \left(P_{2}\right) \leq \frac{2 \log \lambda^{\prime \prime}+3}{\lambda^{\prime \prime}} \sqrt{N^{\prime \prime}} \leq \frac{2 \log \lambda+3}{\lambda} \sqrt{N^{\prime \prime}} \leq \frac{2 \log \lambda+3}{\lambda} \sqrt{N} \tag{5.4}
\end{equation*}
$$

holds. Further, we have

$$
P_{1} \leq p\left(N^{\prime}, 2 n_{k-1}\right)=p\left(N^{\prime}, \frac{2 n_{k}}{\lambda_{k}}\right) \leq p\left(N^{\prime}, \frac{2 \lambda \sqrt{N}}{\lambda_{k}}\right)=p\left(N^{\prime}, \lambda^{\prime} \sqrt{N}^{\prime}\right)
$$

with $\lambda^{\prime}=\frac{2 \lambda}{\lambda_{k}} \sqrt{\frac{N}{N^{\prime}}}$. Therefore, from Lemma 1,

$$
\begin{equation*}
\log P_{1} \leq 3 \sqrt{\lambda^{\prime} N^{\prime}}=3 \sqrt{\frac{2 \lambda}{\lambda_{k}} \sqrt{N N^{\prime}}} \leq 3 \sqrt{\frac{2 \lambda}{\lambda_{k}} N} \leq 5 \sqrt{\frac{\lambda}{\lambda_{k}}} \sqrt{N} \tag{5.5}
\end{equation*}
$$

Finally, since $n_{k+1}=\lambda_{k+1} n_{k} \geq \lambda \lambda_{k} \sqrt{N}$, we have

$$
P_{3} \leq r\left(N^{\prime \prime \prime}, n_{k+1}\right) \leq r\left(N^{\prime \prime \prime}, \lambda \lambda_{k} \sqrt{N}\right)=r\left(N^{\prime \prime \prime}, \lambda^{\prime \prime \prime} \sqrt{N^{\prime \prime \prime}}\right)
$$

with $\lambda^{\prime \prime \prime}=\lambda \lambda_{k} \sqrt{\frac{N}{N^{\prime \prime \prime}}} \geq \lambda \lambda_{k}$. So, from Lemma 1,

$$
\begin{equation*}
\log P_{3} \leq \frac{3}{\sqrt{\lambda^{\prime \prime \prime}}} \sqrt{N^{\prime \prime \prime}} \leq \frac{3}{\sqrt{\lambda \lambda_{k}}} \sqrt{N^{\prime \prime \prime}} \leq \frac{3}{\sqrt{\lambda \lambda_{k}}} \sqrt{N} \tag{5.6}
\end{equation*}
$$

holds. Since the number of terms in the sum (5.3) is $\binom{N}{2} \leq N^{2}$, it follows from (5.3), (5.4), (5.5) and (5.6) that

$$
\begin{equation*}
\log p_{\mathcal{A}}\left(N_{k}\right)=\log p_{\mathcal{A}}(N) \leq\left(\frac{2 \log \lambda+3}{\lambda}+5 \sqrt{\frac{\lambda}{\lambda_{k}}}+\frac{3}{\sqrt{\lambda \lambda_{k}}}\right) \sqrt{N}+2 \log N \tag{5.7}
\end{equation*}
$$

which together with (5.2) yields, for k large enough,

$$
\frac{\log p_{\mathcal{A}}\left(N_{k}\right)}{\log q_{\mathcal{A}}\left(N_{k}\right)} \leq \frac{\left(\frac{2 \log \lambda+3}{\lambda}+5 \sqrt{\frac{\lambda}{\lambda_{k}}}+\frac{3}{\sqrt{\lambda \lambda_{k}}}\right) \sqrt{N_{k}}}{\left(\frac{2 \log \lambda-\log \log \lambda}{\lambda}\right) \sqrt{N_{k}}}+\frac{2 \log N_{k}}{\left(\frac{2 \log \lambda-\log \log \lambda}{\lambda}\right) \sqrt{N_{k}}}
$$

When $k \rightarrow \infty, \lambda_{k} \rightarrow \infty$ and we have

$$
\liminf _{n \rightarrow \infty} \frac{\log p_{\mathcal{A}}(n)}{\log q_{\mathcal{A}}(n)} \leq \frac{2 \log \lambda+3}{2 \log \lambda-\log \log \lambda}
$$

But λ can be choosen as large as we wish so that (1.11) holds, and the proof of Theorem 3 is completed.

References

1. G.E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison Wesley, 1976.
2. P.T. Bateman and P. Erdős, "Monotonicity of partition functions," Mathematika 3 (1956), 1-14.
3. L. Comtet, Analyse Combinatoire, Vol. 1, PUF, Paris, 1970.
4. J. Dixmier and J.-L. Nicolas, "Partitions without small parts," Coll. Math. Soc. J. Bolyai 51 (1987), 9-33.
5. J. Dixmier and J.-L. Nicolas, "Partitions sans petits sommants," in A Tribute to Paul Erdös (A. Baker, B. Bollobás, and A. Hajnal, eds.), Cambridge University Press, 1990, pp. 121-152.
6. P. Erdős, J.-L. Nicolas, and A. Sárközy, "On the number of partitions without a given subsum II," in Analytic Number Theory (B. Berndt, H. Diamond, H. Halberstam, and A. Hildebrand, eds.), Birkhäuser, 1990, pp. 205-234.
7. G.H. Hardy and S. Ramanujan, "Asymptotic formulae for the distribution of integers of various types," Proc. London Math. Soc. 16(2) (1917), 112-132 and Collected Papers of S. Ramanujan 245-261.
8. G.H. Hardy and S. Ramanujan, "Asymptotic formulae in combinatory analysis," Proc. London Math. Soc. 17(2) (1918), 75-115 and Collected Papers of S. Ramanujan, 276-309, Cambridge University Press, 1927, reprinted by Chelsea, New-York, 1962.
9. M.B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, No. 195, Springer-Verlag, 2000.
10. J.-L. Nicolas and A. Sárközy, "On the asymptotic behaviour of general partition functions," The Ramanujan Journal 4 (2000), 29-39.
11. J.-L. Nicolas and A. Sárközy, "On two partition problems," Acta Math. Hungar. 77 (1997), 95-121.
12. J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1975.

[^0]: *Research partially supported by the Hungarian National Foundation for Scientific Research, Grant No. T029759, by CNRS, Institut Girard Desargues (UMR 5028) and by French-Hungarian exchange program Balaton No. 02798NC.

