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On the counting function of sets with even partition functions

By FETHI BEN SAID (Monastir) and JEAN-LOUIS NICOLAS (Villeurbanne)
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Abstract. Let ¢ be an odd positive integer and P € Fa[z] be of order g and such
that P{0) = 1. We denote by A = A(P) the unique set of positive integers satisfying
Pom o P{A,n)z" = P(2) (med 2), where p(A,n) is the number of partitions of n with
parts in A. In [5], it is proved that if A(P, z) is the counting function of the set A(P)
then A(P,z) < z(logx) ™/*@, where r is the order of 2 modulo g and ¢ is the Euler’s
function. In this paper, we improve on the constant ¢ = ¢(g) for which A(Pz) «
z(log )¢,

1. Introduction

Let N be the set of positive integers and A = {a1,a2,...} be a subset of N.
For n € N, we denote by p(A,n) the number of partitions of n with parts in A,
i.e. the number of solutions of the equation

a1y + agxz + 0 =N,
in non-negative integers xi,z2,.... We set p(A4,0) = 1.

Let IF> be the field with two elements and f =142+ --- 4+ enz¥ 4. €
Fs[[2]]. N1cOLAS et al. proved (see [13], [4] and [11}) that there is a unique subset
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A= A(fY of N such that

Zp(.A, n)z" = f(z} (mod 2). (1.1)

n=0

When [ is a rational fraction, it has been shown in [11] that there is a polynomial
U such that A{f) can be easily determined from A(U). When f is a general
power series, nothing about the behaviour of A(f) is known. From now on, we
shall restrict ourselves to the case f = P, where -

P=1+€1Z+"'+ENZN€]F2[Z]

is a polynomial of degree NV > 1.
Let A(P,z) be the counting function of the set A(P), i.e.

AP, zy=|{n:1<n <=z ne AP} (1.2)
In [10], it is proved that

logz  log(N +1)
log2 log2

A(P,z) > (1.3)

More attention was paid on upper bounds for A(P, ). In [5, Theorem 3], it was
observed that when P is a product of cyclotomic polynomials, the set A(P) is a
union of geometric progressions of quotient 2 and so A{P,z) = O(logx).

Let the decomposition of P into irreducible factors over Fz[z] be

P = PRS- PR

We denote by 8;, 1 < <, the order of P;(2), that is the smallest positive integer
such that P;{z) divides 1 4+ 2% in Fy[2}; it is known that §; is odd (cf. [12]). We
set : :

g =q(F) =lom(B1, Ba2,..., ). (1.4)
If g =1 then P(z) = 14 z and A(P) = {2, k > 0}, so that A(P,z) = O(logz).
We may suppose that ¢ > 3. Now, let

o(An)= Y d=)> dx(Ad), (1.5)

dln, deA dln
where x(A,.) is the characteristic function of the set A,

1 ifde A

0 otherwise.

x(A, d) = {



On the counting function of sets with even partition functions 689

In [6] (see also [3] and [2]), it is proved that for all k& > 0, q is a period of the
sequence (o{A,2%n) mod 2¥+1),5, ie.

ny = ng (mod g) = o(A,2Fn,) = 6(A4, 2°nz) (mod 25H1) (1.6)

and ¢ is the smallest integer such that (1.6) holds for all &'s. Moreover, if nq and
ng satisfy ny = 2%n; (mod g) for some a > 0, then

o(A,25ng) = o(A,2Pn;) (mod 25T1). (1.7)
Ifmisodd and k > 0, let
Sa(m, k) = (A, m) + 2x(A, 2m) + . .. + 2Fx (A, 26m). (1.8)
1t follows that for n = 2%m, one ﬁas

o(A,n) = o(A,2%m) = dSa(d, k), (1.9)
djm
which, by Mé&bius inversion formula, gives

mSa(m k) = u(do (.A, g) =S uld)e (A_, g) : (1.10)
djm. d|

where p is the Mabius’s function and 7 = [],,, p is the radical of m, with T=1."
In [7] and [9], precise descriptions of the sets A(1+2+2%) and A(1+z+2%+
z*-2°) are given and asymptotics to the related counting functions are obtained,

T

A4+ z4+ 280y~ T — 00, (1.11)

(logz)*’

T

A+ z+22+ 2+ 25 )~ 2 T - 00, (1.12)

(logz)t’
where ¢; = 0.937..., ca = 1.496.... In [1], the sets A(P) are considered when P
is irreducible of prime order ¢ and such that the order of 2 in (Z/¢Z)* is 95—1 This
situation is similar to that of A(1 + z -+ 2z®), and formula (1.11) can be extended
to A(P,z) ~ ¢z{logz) 3/, x —» 0o, for some constant ¢’ depending on P.
Let P = QR be the product of two coprime polynomials in Fafz}. In 4], the
following is given
AP z) < A(Q,z) + A(R, x) (1.13)

and
AP -ARDI< Y Al ;) (1.14)

O<iSiES
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As an application of (1.14), choosing Q =1+ z+2% R=14+2+2+2* +2°
and P = QR, we get from (1.11)-(1.14),
A(P,z) ~ A(R,z) ~ caz{logz) ™4, z — co.

In [5}, a claim of NicoLAS and SArRkOzy [15], that some polynomials with
A(P,z) = x may exist, was disapproved. More precisely, the following was obta-
ined

Theorem 1.1. Let P € Fy[z} be such that P(0) = 1, A = A(P) be the
unique set obtained from (1.1} and ¢ be the odd number defined by (1.4). Let »
be the order of 2 modulo q, that is the smallest positive integer such that 27'=1
{mod q). We shall say that a prime p # 2 is a bad prime if

di, 0<i<r—1andp=2° (mod g). {1.15)
(i} If p is a bad prime, we have ged(p,n) =1 for all n € A.

(ii} There exists an absolute constant ¢z such that for all x > 1,

A(P,z) < T(cs)" (1.16)

(log2) 7"
where  is Euler’s function.

2. The sets of bad and semi-bad primes

Let ¢ be an odd integer > 3 and r be the order of 2 modulo ¢g. Let us call
“bad classes” the elements of

Elg) ={1,2,...,277 '} C (Z/qZ)*. (2.1)

From {1.15), we know that an odd prime p is bad if p mod ¢ belongs to £(g).
The set of bad primes will be denoted by B. The fact that no element of A(P) is
divisible by a bad prime (cf. Theorem 1.1 (i}) has given (cf. [5]) the upper bound
(1.16). Two other sets of primes will be used to improve (1.16) ¢f. Theorem 2.1
below.

Remark 2.1. 2 is not a bad prime although it is a bad class.

Definition 2.1. A class of (Z/g7Z)* is said semi-bad if it does not belong to
£(g) and its square does. A prime p is called semi-bad if its class modulo g is
semi-bad. We denote by £(g) the set of semi-bad classes, so that

p semi-had <= p mod g€ &'(q).
We dencte by |£'(¢)| the number of elements of £'(g).
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Lemma 2.1. Let ¢ be an odd integer > 3, r be the order of 2 modulo g and

1 if 2 is & square modulo g
g2 =
0 if not.

The number |£'(q)| of semi-bad classes modulo q is given by

1) = oul (|71 1) -
e@i=20 (|| +a3]) -r
_ {r(Z“’(‘i‘)—l —1) ifrisevenand gy =0

r(2949 —1)  otherwise,

(2.2)

where w(g) is the number of distinct prime factors of g and |z} is the floor of z.

ProoF. We have to count the number of solutions of the » congruences
Ei:22=2 (mod ¢), 0<i<r—1,

which do not belong to £(g). The number of solutions of Fy is 29@. The cont-
ribution of F; when 4 is even is equal to that of Ey by the change of variables
x = 2/2¢, so that the total number of solutions, in (Z/gZ)*, of the E!s for i even
is equal to | 2L |2(@),

The number of odd i's, 0 < i <7 —1, is equal to |5]. The contribution of
all the Es for these #’s are equal and vanish if g¢o = 0. When g, = 1, E} has 2w(a)
solutions in (Z/¢Z)*. Hence the total number of solutions, in (Z/9Z)*, of the Els
for 4 odd is equal to ¢o LEJ guie),

Now, we have to remove those solutions which are in £(g). But any element
28,0 <4 <71, from £(q) is a solution of the congruence 2% = %/ (mod g),
where 7 = 2¢ mod r. Hence

E@i=20 (|5 +a|5]) -+

The second formula in (2.2) follows by noting that go = 1 when r is odd. O

Definition 2.2. A set of semi-bad classes is called a coherent set if it is not
empty and if the product of any two of its elements is a bad class.

Lemma 2.2. Let b be a semi-bad class; then
Cp = {b,2b,...,27 b}

is a coherent set. There are no coherent sets with more than r elements.
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Proor. First, we observe that, for 0 < u < r — 1, 2%b is semi-bad and, for
0<u<v<r—1, (2%5)(2%h) is bad so that Cy is coherent.

Further, let F be a set of semi-bad classes with more than r elements; there
exists in F two semi-bad classes a and b such that ¢ & Cp. Let us prove that
ab is not bad. Indeed, if ab = 2* (mod g¢) for some u, we would have o =
2ub~L (mod ¢). But, as b is semi-bad, b? is bad, ie. * = 2¥ (mod g¢) for
some v, which would imply b = 2*b! (mod ¢), b~! = 627" (mod ¢), a =
2%~ vh (mod ¢) and a € {4, a contradiction. Therefore, F is not coherent. O

Lemma 2.3. Ifw(g) =1 and @{q)/r is odd, then £'(q) = §; while if p(q) /7
is even, the set of semi-bad classes £'(q) is a coherent set of r elements.
Ifw(q) = 2, then £'(q) # 0 and there exists a coherent set C with |C| =r.

ProOOF. If w(g) =1, g is a power of a prime number and the group (Z/qZ)"
is cyclic. Let g be some generator and d be the smallest positive integer such
that g% € £(q), where £(g) is given by (2.1). We have d = ©(g)/r, since d is the
order of the group (Z/gZ)"/¢(q;- The discrete logarithms of the bad classes are
0,d,2d,...,{r—1)d. The set £'(g) UE(q) is equal to the union of the solutions of
the congruences

z% = ¢*  (mod q) (2.3)
for 0 < a < r — 1. By the change of variable z = g%, (2.3) is equivalent to
2t =ad {(mod v(g)). (2.4)

Let us assume first that d is odd so that 7 is even. If a is odd, the congruence
(2.4) has no solution while, if e is even, say a = 2b, the solutions of (2.4) are
t = bd (mod @(g)/2) ie

t=bd (mod (g)) or i=bd+ (r/2)d (mod w{g)),

which implies

EUEW = {g°g%....a" ) = Ea)
and £ (g) = 0.

Let us assume now that d is even. The congruence (2.4) is equivalent to
t=ad/2 (mod p(g)/2)
which implies £(g) U &(g) = {g°%?,0 < @ < 2r — 1} yielding
E'(g) = {g%.6°%,...,. gV} =,

(with b= (9%)), which is coherent by Lemma 2.2.
If wig) = 2, then, by Lemma 2.1, £'{g) # 0. Let b ¢ £'(g); by Lemma 2.2,
the set Cp is a coherent set of r elements. O
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Let us set

3
= it & i
elg) = {2 @7 (2.5)
1 if&(g) =0

We shall prove

Theorem 2.1. Let P € Falz] with P(0) = 1, g be the odd integer defined
by (1.4) and r be the order of 2 modulo q. We denote by A(P) the set obtained
from (1.1) and by A(P,z) its counting function. When = tends to infinity, we

have
T

—_——, 2.6
(log :L.)C(Q)mj ( )

A(P':"E) <<'?

where ¢(q) Is given by (2.5).

_ When P is irreducible, ¢ is prime and r = 9;—1, the upper bound (2.6) is best
possible; indeed in this case, from [1], we have A(P, z) = W. As c,_o(q) [r=2,
Lemma 2.3 implies £(q) # 0 so that ¢ = 3/2 and in (2.6), the exponent of log
is 3/4. Moreover, formula (1.12) gives the optimality of (2.6) for some prime
(g = 31) satisfying 7 = 2.

Theorem 2.2, Let P ¢ Fa[2] be such that P{0) =1 and P = PP, --- F;,
where the PJs are irreducible polynomials in Falz]. For 1 < @ < j, we de-
note by q; the order of P;, by r; the order of 2 modulo g, and we set ¢ =
min <i<; ¢(q:)7s/w(a:), where e(g;) is given by (2.5). When z tends to infinity,
we have .

where the symbol < depends on the gis, 1 <4 < j.

Let C be a coherent set of semi-bad classes modulo ¢g. Let us associate to C
the set of primes S defined by

peS < p mod gel. (2.8

We define wg as the additive arithmetic function

wsfm)= Y 1L (2.9)

plr, pES

Lemma 2.4. Let m be an odd positive integer, not divisible by any bad
prime. If ws(m) = k+ 2 > 2 then 2"m ¢ A(P) for all h, 0 < h < k. In other
words, if 2"m € A(P), then h > ws(m) — 1 holds.
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PrROOF. Let us write m=m'm”, w1th m'=T]
From (1.10), if n = 2%m then

mSa(m, k) = Z,u(d)cr( ) Z Z (d") ,u(d”)ar( d:ji”)' (2.10)

&'|m! dlm

pimpes P a0d =],z asp.

Let us write d’ = p;, - -~ p;; and take some ps from S. If j is even then u(d') = 1
and, from the definition of a coherent set, d’ = 2¢ (mod g¢) for some ¢ (depending
on d’), 0<t<r—1. Whereas, if j is odd then u(d')= —1 and &'= 2! p5* (mod g)
for some ' (depending on d'}, 0 < < — 1. From (1.7), we obtain

p(d)o (.A, W) =g (A, ?) (mod 2%t1) if 7 is even, (2.11)
w(dNa (A, %) = —0 (.A nj;,s) (mod 281) if 7 is odd. (2.12)

Since a = wg(m) = k + 2 > 0, the number of &’ with odd j is equal to that with
even j and is given by

(=) e

From (2.10), we obtain
mSa(m k) =220 3 (@) (o (4,2) —o (4, ZE)) (mod 2+, (2.13)

d" |m))
which, as @ = ws(m) = k+2, gives Sa{m, k) =0 (mod 2F*1), so that from (1.8),
x(A,m) =x(A4,2m) =--- = x(4,25m) = 0. (2.14)

|

Let us assume that £'(g) # @ so that there exists a coherent set C with
semi-bad classes modulo g; we associate to C the set of primes § defined by (2.8)
and we dencte by @ = Q{g) and A = N (g) the sets

Q= {pprime, p| g} and N = {pprime, p& BUS and ged(p, 2¢q) =1},
so that the whole set of primes is equal to BUSUN U QU{2}. Forn > 1, let us
define the multiplicative arithmetic function

() = {1 ifp|n=>pgB (le.pecSUNUQU{2})

0 otherwise.

and for > 1,

Vig)=Vy@)= ~ >,  dn). (2.15)

n>l, n2us{n <y
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Lemma 2.5. Under the above notation, we have

V(a':) = V;J(-'L') = Oq (Ebgg)—-_%q)_}ﬁf) , (2.16)

where ¢(q) is given by (2.5).
PROOF. To prove (2.16), one should consider, for complex s with R(s) > 1,

the series 5 (
n
Z ooy (2.17)

This Dirichet series has an Euler’s product given by
1y 1
= - — 14 —— 2.1
ro= T (1-5) O{iap—g) ©®
peENUCU{2} pES
which can be written as
1\ 1\ 7%
F(sy=H(s) [[ (1 - —3) 11 (1 - *3) ) (2.19)
peEN p P :
where
1\ ! 1 1\ %
His= ]] (1— —) 11 (1+-;-;-——) (1-—) . (2.20)
pEQU{2} v pes 22(p° - 1) P

By applying Selberg—Delange’s formula (cf. [8], Théoréme 1 and [9], Lemma 4.5),
we obtain some constant ¢g such that

' z zlog logm)
vV = — 4+ . 2.21
(@)= c4 {log m)c{q) ol ! ( logz (2:21)

The constant c4 is somewhat complicated, it is given by
CH(1)

=2 9.22
= T = @)y (222)
where T is the gammea, function,
. 1
2q 1 1V 2
71 =] (1 + _) (1 - —) (2.23)
vla) s 2(p-1) p
and o )t
1 -1 1N T 1 e\ ey
C= 1--= 1—-= 1—- ,
(-3) M0-5) 1(-3)
pEN pES P

where in the third product, p runs over all primes. [
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3. Proof of the results

PROOF OF THEOREM 2.1. If r = ©{q) then 2 is a generator of (Z/¢Z)*, all
primes are bad but 2 and the prime factors of ¢; hence by Theorem 2 of [5],
A(P,z) = O((logz)y®) for some constant s, so that we may remove the case

= ¢(g)-

If £'(g) = 9, from (2.5), ¢ = 1 holds and (2.6) follows from (1.16).

We now assume £'(g) # @, so that, from Lemma 2.2, there exists a coherent
set C satisfying |C| =r. We define the set of primes S by (2.8). Let us write V (2)
defined in (2.15) as

with Viz)=V'(z) + V" (), (3.1)

- Vi) = Z d(n) and .V”(m)= Z d(n).

n>1, n2vs M <a, ws(n)=0 n=1, n2%sM <z, ws(n)Z1
Similarly, we write A(P, %) = 3_,c a(p), acr 1 = A’ + A7, with
A= > 1 and A" = > 1.
acA(P), aLz, ws(a)=0 a€A(P), a<z, ws(a)>1
Axn element a of A{P) counted in A’ is {ree of bad and semi-bad primes, so that
A <V {(z) < V'{21). (3.2)

By Lemma 2.4, an element a of A(P) counted in A” is of the form n2#s() 1 with
ws(n} = ws(a) > 1; hence
A" < V(%) (3.3)

Therefore, from (3.1)(3.3), we get
AP,z =A"+ A" <V'(2z) + V" (2x) = V(22)

and (2.6) follows from Lemma 2.5. =N
ProOOF OF THEOREM 2.2. Just use Theorem 2.1 and (1.13). O
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