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On the parity of generalized partition
functions, II1

RESUME. Dans cet article, nous complétons les résultats de J.-L.
Nicolas [15], en déterminant tous les éléments de l’ensa’;zmble A=
A1+ 2427+ 2* + 2°) pour lequel la forction de partition p(A, n)

M ZEKRAQUI

(c-a-d le nombre de partitions de n en parts dans A

est paire

pour tout n > 6. Nous donnons aussi un équivalent asymptotique

4 la fonction de décompte de cet ensemble.

ABSTRACT. Improving on some results of J.-L. Nicolas [13}, the

elements of the set A = A(l + z + 22+ 2% 4 2°), for
partition function p(A, r) (i.e. the number of partition

which the
of n with

parts in .4) is even for all n > 6 are determined. An asymptotic
estimate to the counting function of this set is also given.

1. Imtroduction.

Let N {resp. Np) be the set of positive (resp. non-negative) integers. If
A = {ay,a9,...} is a subset of ¥ and n € N then p(A,n) is the number

of partitions of n with parts in .4, i.e., the number of]
diophantine equation

(1.1} 1%+ aa + ... =n,

in non-negative integers z1, Ty, .... As usual we set p{A4,0
The counting function of the set .4 will be denoted by A

(1.2) Alz) =|{n <z, ne A}]|.

Let Fy be the field with 2 elements, P = I4-€32' +...+en2]]
Although it is not difficult to prove (cf. [14], [5]) that there
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A = A(P} of N such that the generating function F(z) satisfies

(13)  F()=Fa) =[] ; _120 = Y plA )2t = P(z) (mod 2),
ac.A n>0

the determination of the elements of such sets for general P's seems to be

hard.
Let the decomposition of P into irreducible factors over Fo be
(1.4) P = PO per. P,
We denote by 8; = ord(#}, 1 <14 <, the order of B, that is the smallest

positive integer 5; such that Pi{z) divides 1+ z% in Fq[z]. It is known that
Bi is odd (cf. [13]). We set

(15) :lecm(ﬂlaﬁ%'“hgi)'

Let A = A(P) satisfy (1.3) and o(A,n} be the sum of the divisors of n
belonging to A, i.e.,
(1.6} a{A,n)= Z d= de(./—l,d),

dln, de.A din
where x(A, .} is the characteristic function of the set A, i.e, x{A,d) = 1
ifd<€ Aand x(A.d) =0ifd ¢ A It was proved in [6] (see also [4], [12])
that for all & > 0, the sequence (c(A4, 2%n) mod 2%*+1!),51 is periodic with
period 3 defined by (1.5), in other words,
(1.7)

m =ng (mod ) = Yk > 0, o(A,2%ny) = 0(A, 2ny) (mod 28+1).
Moreover, the proof of (1.7) in [6] allows to calculate (A, 2%n) mod 26+!
and to deduce the value of x(A, ») where n is any positive integer. Indeed,
let
(1.8)  Sa(m,k) = x(A,m) + 2x(A, 2m) + . .. + 2¥x(A, 2m).

If n writes » = 2%m with £ > 0 and m odd, (1.6) implies

(1.9) o(An) =o(A,2°m) = 3 dSa(d, k),
d|m

which, by Mébius inversion formula, gives

(110)  mSalmky= 3 ado(4,5) = 3 w(d)o(4,5),

dlm djm

where 7 = H p denotes the radical of m with T = 1.

plm
In the above sums, 3 is always a multiple of 2%, so that, from the values
of o(A, %), by (1.10), one can determine the value of Sa(m,k) mod 2k+?

and by (1.8), the value of x(A, 2'm) for all 4, i < k.
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Let 5 be an odd integer > 3 and (Z/5Z)* be the g
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oup of invertible

elements medulo 3. We denote by < 2 > the subgroup of (£/3Z)" generated
by 2 and consider its action * on the set Z/3Z given by a x z = ax for all

a € < 2> and x € Z/F7. The quotient set will be denote
and the orbit of some n in Z/FZ by Ofn). For P € Fyl

d by (Z/BZ)/ <2>
] with P{0) =1

and ord(P) = 8, let A = A(P) be the set obtained from {1.3). Property

(1.7) shows (after [3]) that if n; and ng are in the same orbit then
(1.11) (A, 2%01) = a( A, 2np) (mod 25%1), vk 3 0.

Consequently, for fixed %k, the number of distinct wvalues that

(0(A,2n) mod 2¥1),5; can take is at most equal t|
orbits of Z/8Z.

o the number of

Let y be the Euler function and s be the order of 2 modulo G, i.e., the

smallest positive integer s such that 2° = 1 (mod ). If
number then {Z/pZ)* is cyclic and the number of orbits

to 147 with+ = f@ = p;—l In this case, we have

{L.12) (Z/PT)]<2> = {O(g), O(g") ... O{g") = O(

3 = p is a prime
of Z/pZ is equal

1), O(p)},

where g is some generator of (Z/pZ)*. For r = 2, the sets A = A(P) were

completely determined by N. Baccar, F. Ben Said and J.-L
Moreover, N. Baccar proved in [1] that for all r > 2, the

Nicolas ([2], [8]).
elements of A of

the form 2%m, & > 0 and m odd, are determined by the 2- adic development
of some root of a polynomial with integer coefficients. Unfortunately, his
results are not explicit and do not lead to any evaluation of the counting
function of the set A. When r = 6, J.-L. Nicolas determined (cf. [15]) the

odd elements of A = A(1 + z 4 2% + 2* + 2%). His results (which will be

_counting function A(z) of A. Although, in this paper, {

stated in Section 2, Theorem 2.1) allowed to deduce a lower bound for the

counting function of A. In this paper, we will consider
which satisfies r = 6. In Folz], we have

L=2% _ pmp)_ pie)
. = pWpE
{1.13} i e
with
PO = 1442820425, PO = 142422420425, PO =

PO =1 42422+ 425 PO =14 22425 po
In fact, there are other primes p with r = 6. For instan

p=433.

In Section 2, for A = A(P), we evaluate the sum S4
lead to results of Section 3 determining the elements of t
4 will be devoted to the determination of an asymptoti

the case p = 31

+zz+za+z4+z5,
L § + 2% 4 25
ce, p = 223 and

(tn, k} which will
he set 4. Section

estimate to the
he computations
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are only carried out for P = PO the results could probably be extended
to any P, 1 <4 <6, and more generally, to any polynomial P of order p
and such that r = 6.

Notation. We write o mod b for the remainder of the euclidean division
of @ by b. The ceiling of the real number x is denoted by

[zi =inf{n e Z, x <n}.

2. The sum Sa(m, k), A= AL+ 2+ 2%+ 2% + 25).
From now on, we take A = A(P} with
(2.1} P=PW=itr+2%42045

The order of P is 8 = 31. The smallest primitive root modulo 31 is 3 that
we shall use as a generator of (Z/31Z)*. The order of 2 modulo 31is s =5
s0 that

(2.2) (ZfRNZ) ] con = {O3), O(3%),..., O3%) = 0(1), O(31)},
with

(2.3) OB ={2¥, 0<k <4}, 1<j<6
and

(2.4) 0(31) = {31}.

For £ > 0 and 0 < j < 5, we define the integers ug; by
(2.5) ug; = o(A,2537) mod 25+

The Graeffe transformation. Let K be a field and K[[z}] be the ring of
formal power series with coefficients in K. For an element

fiz) =ap+a1z+a2d + .. Fazt+ ...
of this ring, the product
F2)f(=z) =bg+ b1z +boz + ..+ bp2™ + ..

is an even power series. We shall call G{f) the series

(2.6) GA )=ty +biz+bz® + ... b2 +....
1t follows immediately from the above definition that for f, g € K[iz]],
(2.7) G(fg) = G{H)g(9).

Moreover if g is an odd integer and f{z) = 1 — 29, we have G(f) = f. We
shall use the following notation for the iterates of f by G:

28 foy=F fuy=6) -y fuy = GUn-1y) =¥ ().

On the parily of generalized partition functions
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More details about the Graeffe transformation are given i [6]. By making

the logarithmic derivative of formula {1.3), we get (cf. [1

ad F'(z) P'(z)
no_ - .

(2.9) ;J(.A,n)z =z Fioy = 2P {mod 2
which, by Propositions 2 and 3 of [6], leads to
(2.10)

e Py

k R ) N v

;0(44,2 n)z" = Pl 1o (P(k)(Z)” (k)(z))
with Pf(z) = £ (Pyy(2)) and
(2.11) W(z) = {1 — 2)P{(2). _PEz),

1))

2

(mod 2"‘“),

Formula (2.10) proves (1.11) with 3 = 31, and the computation of the k-th
iterates Py and Wy, by the Graeffe transformation yields the value of

oA, 2n) mod 2. For instance, for & = 11, we obtain:

ugo = 1183, ug1 = 1598, ugo = 1654, wupa = 845, ugy =

264, g5 = 701.

A divisor of 2¥37 is either a divisor of 267137 or a multiple of 2%, There-
fore, from (2.5) and (1.6), ux; = uk—_1,; (mod 2%) holds and the sequence

(ukj)xzo defines a 2-adic integer U; satisfying for all k's:

(2.12) U; = ug,; (mod 2871), 0<j <5.

It has been proved in [1] that the Ujs are the roots of the
R(y) = 3% — y® + 3y* — 11 + 44y — 36y H

polynomial

32.

Note that R{y)® is the resultant in z of ¢a1(z) = 1+ &+ ... + 2% and

y+z+4 22424+ 28 21

Eet us set

It turns out that the Galois group of R{y) is cyclic of orde
the other roots Uy,...,Us of R(y) are polynomials in 6.
factorizing R(y) on Q{f] and using the values of u; ;, we

Up=0=1183 (mod 2")
Uy = %(3@5 +56% — 3667 + 84) = 1598 {mo

Us = - (—36° ~ 56° + 200% — 1008) = 1554 (f

1

32
3—12(—95 — 7% + 1267 — 440 + 32) = 845 (x
(—0° + 40% + 6% 1 240% — 686 + 96) = 264

Us =
L

Vs=1353

B=Up=1+2+22+25+29 42742104/ .

r 6 and therefore
With Maple, by
get

d 211)
od 21)
nod 2'1)

(mod 2')
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(2.13) Us= %(95 —20% +36° — 1067 + 480 — 48) = 701 (mod 2!7).
For convenience, if j € Z, we shall set
(2.14) Ui = Uj mod s

We define the completely additive function £: Z\ 31Z — Z/6Z by
{2.15) n)=3 if ne OF),

so that £(n1na) = &{n1) + £(ng} (mod 6). We split the odd primes different
from 31 into six classes according to the value of . More precisely, for
0<j<5

(216) peP; = Ep)=j <> p=2 (mod 31), k=0,1,2,3,4.

We take L: N\ 31N — Np to be the completely additive function defined
on primes by

(2.17) Lip) = £p).
We define, for 0 < j £ 5, the additive function w; : N — Np by
(2.18) wiln) = > 1= 3 1,

pln, peP; pln, &p)=j

and w(n) = wo{n}+...+ws(n) = 3, 1. We remind that additive functions
vanish on 1.

From (2.5), (2.3), (1.11) and (2.12), it follows that if n = 2¥m € O{3)
(so that j = £(n) = £(m)),

(2.19) o{A,n) = o(A,2m) = Upyny  (mod 2677),

We may consider the 2-adic number

(2.20) S(m) = Sa(m) = x(A,m) + 2x(A, 2m) + ... + 26x(A4, 26m) + ...
satisfying from (1.8),

(2.21) S(m) = Sa(m, k) (mod 2°F1).

Then (1.10) implies for ged(m,31) = 1,

(222) mS(m) = 2 [J(d)Ug(r_z_)
d|m

If 31 divides m, it was proved in (3, (3.6)] that, for all £'s,
(2.23) (A, 2*m) = —5 (mod 2%*1).

On the parity of generalized partition funclions

Remark 2.1. No element of A has a prime foctor in
result has been proved in [3], but we recall the proof on ol
assume that n. = 2m € A, where m is an odd integer
prime p in Py, in other words wo(m} > 1. (1.10) gives

mSam k) = 3" p(d)o (A, g) =3 wld)o (A,z

d|m d|m

= Z pld)o (A,Qk%) + Z wipd)o
4z 4| E
- d{% u(d) (g (A,Q‘“%) -0 (A, 2‘“1%

In the above sum, both T and p—":i are in the same orbit, so
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Po. This general
T example: let us
wwisible by some

kE)
d

that from (1.11),

o(A,2¢3) = J(A,Qkpﬂd) (mod 251} and therefore mS4{m, k) = 0 {mod

28FY) . Since m is odd and (cf. (1.8)}0 < S4(m, k) < 26+
0, so that by (1.8), 2"m & A, for all 0 < h < k.

In [15], J.-L. Nicolas has described the odd elements
obtained the following:

Theorem 2.1. ([15})

then Sa(m, k) =

of A. In fact, he

(a) The odd elements of A which are primes or powers of primes are of
the form p*, A > 1, satisfying one of the following four conditions:

peP and A=1,3,45 (mod 6)
pPEPy and A=0,1{mod 3)
pEPy and A=0,1{mod 3)
PEPs and A=0,2,3,4 (mod 6.

{b) No odd element of A is a multiple of 312. If m is
not a multiple of 31, then

mEA if and only if 3lm € A

odd, m # 1, and

(c) An odd element n € A satisfies wo(n) = 0 and wi(n) =0 or 1; in

other words, n is free of prime factor in Py end
prime factor in Ps.

has of most one

{d) The odd elements of A different from 1, not divisible by 31, which

are not primes or powers of primes are exactly th
such that (where 7 =[],np):
(1) wo(n) =0 and wa(n) =0 or 1.

e odd n's, n # 1,

(2) Ifws(n) =1 then é(n) +¢(m) =0 or 1 (mod 3).
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(3) Ifws(n) =0 and wi(n) + &(n) ~ £(7) is even then
2n) - ¥A)=2o0r 3ordor b (mod 6}
4) fw3(n) =0 and w(n) + €(n) — €(7) is odd then
28(n} - £(m)=0or 4 {(mod 6).

Remark 2.2. Point (b) of Theorem 2.1 can be improved in the Jollowing
way: No element of A is a multiple of 317, Indeed, from (1.10), we have
form odd, k2 0 and v > 2,

3UmSaA(BUm kY= Y u(d)o A,2k31TE"3)
dl317m

= Y uld)e (A,QkSIT%)

4]31#

=3 u(d) {cr (A, 2*3179) -0 (A, 2’*317*@)} .
ul d d
d|m
Since 31" F and 3171 % are in the same orbit O(31) then (1.11) and (2.23)
give o(A,283172) = 0(A,2k317_1%} = -5 (mod 251), so that we get
S54(31"m, k) = 0 (mod 2%F1). Hence, from (1.8), S4(317m, k) = 0 and for
al0<h<kandallT > 2, 2°31"m does not belong to A.

In view of stating Theorem 2.2 which will extend Theorem 2.1 , we shall
need some notation. The radical 7 of an odd integer m # 1, not divisible
by 31 and free of prime factors belonging to Py will be written
{(2.24)

W= L1... pwlpwl-}-} e pu1+u2pw1+w2+1 ----- phJ] +wetwztag+1 - . D,

where €(p;) = j for wy+...tw; +1 <4 < Wit twy, wi = wy(m) = wy{Ta)
and w = w(m) = w(7) > 1. We define the additive functions from Z \ 31Z
into Z,/127:

{2.25) a = a(m) = 2ws — 2u1 +wy — sy mod 12,

(2.26) e=alm) =ws —w) +wy —ws mod 12.

Let (v)icz be the periodic sequence of period 12 defined by

(2.27) =l 73 COSQG} lfz ?S odd
Zcos(ig) ifiis even.

The values of (v;);ez are given by:

[i= [O7T[2]8]2 5 [6 7 8

vi= 21| ;0-Tf-11-2]-1|-110] 1

w
-t
e
[y
[

On the parity of generalized partition functions

Note that
(2.28) Uy = — U,
_ o Vig1 if i is odd
(2.29) Ui T Vi = { v if i is even,
(2.30) vy = -2 (mod 3)
and
(2.31) U = Viga = vz (mod 2}
From the U;’s (cf. {2.12) and (2.13})), we introduce the |following 2-adic
integers:
5
(2.32) Es = viU;, i€ 8,
=0
5
(2.33) Fi=> vl i €Z,
=0
5 .
(2.34) -G =) (1Y
=0

From (2.28), we have

(2.35) Eie=—FEj, Fipio=F;, Fiue=-F, Fiipo=+ F.

From (2.29), it follows that, if 7 is odd,

{2.36) Ei+ Eipo=Eip1, Fi+ Fipp = Fyypy,
while, if ¢ is even,

(2.37) Ei+ Eig =3B, Fi+ Fiyp = 3F,

The values of these numbers are given in the following arr

Ay

59
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zZ Z mod 211
Eg = | £,(116° — 80T + 29¢° — 12467 4 5006 — 256) | 1157
E, = 15(36’5 20" + 96% — 2662 + 1360 - 64) 1533
Ey = |3E, - Ey 1394
Ey = | 2E — Fy 1909
E;=}{3E 2K, 237
Fs = - By 376
Fy =1 £(—30° — 216° - 3667 — 360 + 64) 1987
Fy = | 35{—36° — 46* — 136° 1 2402 — 280 — 64) 166
Fa= | 3F - F 559
F={2F—-F 393
Fy= | 3F - 2F, 620
F=|RA-F 227
G= [1(-6°+01 6% 11187 — 346 + 20) 1905

TABLE 1

Lemma 2.1. The polynomials (Ujlocj<s (cf. (2.13)) form a basis of Q[d].

The polynomials Ep, E1, Fy, F1, G, Uy form another basis of Q[6]. For
all's, E; and F; are linear combinations of respectively Eg and E; and Fy
and .

Proof. With Map[e, in the basis 1,0,...,85, we compute determinant

(Ua, ., Us) = g3 From (2.32), (2.33) and (2.34), the determinant of
(Bo, Br, Fo, F1,G,Up) in the basis Uy, Uy, ..., Us is equal to 12. The last
point follows from (2.36) and (2.37). 0

We have

Theorem 2.2. Let m # 1 be an odd integer not divisible by 31 with W of
the form (2.24). Under the above notation and the convention

w [ 1 ifw=0
(2:38) 0 “{o >0,

we have:
(1) The 2-adic integer S{m) defined by (2.20) satisfies

wg g

) 0 o
mS(m) = 28T E, gy + =351 F gy

(w2 +uy

(2.39) + ol 1)flmig.

(2) The 2-adic integer S(31m) sutisfies
(2.40) S{(3lm) = —31718(m),

On the parity of genevalized pertition funciions 61
where 317 4s the inverse of 31 in Zy. In particular, for all k €
{0,1,2,3,4}, we have

*me A = 31-2%me A,
since the inverse of 31 modulo 251 is —1 for k <

Proof of Theorem 2.2 (1). From (2.22), we have

e

(2.41) mS(m) = Y wldUumy = > p(d)Usgim)—eily
d|m d|m
Further, (2.41) becomes
5
(2.42) Z (0 Wty ZT(m em) — )U;,
with
(2.43) T(m,j) = T(m,j) = > pa(d}.

d|m, #d}=j { mod &)
Therefore (2.39) will follow from (2.42) and from the following lemma. O

Lemma 2.2. The integer T(m,j) defined in (2.43) with the convention
(2.38) and the definitions (2.18) and (2.24)-(2.27), for m|# 1, is equal to

watwy
2

3 = gua-igl 1] 0% rg-m
T(m,7) =273 V25 + 73 2 0 — 47

{2.44) + (2t (-1 gw—1
3

Proof of Lemma 2.2. Let us introduce the polynomial
(2.45) fIX)=(1-X)(1 - X2 (1— X3 = D f,X~.
>

If the five signs were plus instead of minus, f(X) would be the generating
function of the partitions in at most wy parts equal to 1l ..., at most ws
parts equal to 5. More generally, the polynomial

W
=[J(1+aX™) =" f.x"
i=1 v>0
is the generating function of
Jo = Z H ad.
el {01, 0 eibpmy i1

To the vector ¢ = (61, . €y) € By, we associate
W

d= Hp wld) = TT(-1)%, L(d) = 3 estlbs)
i=1

i=1
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where L is the arithmetic function defined by (2.17) and we get

(2.46) = S uld)

dif, Lid)=1r

Consequently, by setting £ = exp(%"’), (2.43), (2.45) and (2.46) give

Tmi) = 3 > uld)

v. v=j (mod 6) djf, L{d)=v

> b

v=j { mod 6)

13
= gZE—”f(ﬁl)
i=0

il

1.2 L
=5 3 EIAE
i=1

5
(247) = Do - (1 - 4R — £ (1 - €Y (1 - £
i=1
By observing that

-6 =8 1-=p= \/g(cos%—asm 6)
the sum of the terms in ¢ = 1 and ¢ = 5 in (2.47), which are conjugate, is
equal to

(2.48)
2 . Qw3
ER(EMJ@WI gRERGLs) = ?\/ng-l-w cos %(2w5 — 2wy + wy - wp — 24},

1-8 =2, 1-¢" =3, 1-¢8 =0,

Now, the contribution of the terms in ¢ =2 and i = 4 is

1 -t g Hws
2R g gy =T

6 3
X cos%(wg + ws — w1 — wy — 4F)
(2.49) = o2 ‘/fw cos %(wg F s — wy —wy — 47).

Finally, the term corresponding to i = 3 in (2.47) is equal to
(. 50)

_( 1)32w10w22w30w42w5 — 0w2+w4( l) gutuatws _ e ﬂgw
6 .
Consequently, by using our notation (2.24)-(2.26), (2.47) becomes

2ws w
T{m,j) = "g\/gwﬁ * cos %(a - 29) + 0“’3? cos%(a —47)

On the parity of generalized partition functions 63

(2.51) e 61) 2.
Observing that a — 24 has the same parity than wy + wjjand similarly for
a — 47 and w (when wy = wg = 0), via (2.27), we get (2.44). O
Proof of Theorem 2.2 (2). For all k > 0, from (1.10), we fhave
3mSa(31m k) = 3 p(d)o(A4,31 zk = 3 pld)o(A,31 z’f%)
d]{3lm d d|31m
= 3 Md)o(A,31- 227y - 5 pld)o(l, 287
d ~ d

d|m dlF
(2.52) =3 u(d)o(A,31- ok’ d) mS4(m, k)

d|m

Since for all d dividing 7, 31 - 25™ ¢ O(31) then, from (2.23), o(A4,31 -
26 = (4,31 -2%) = —5 (mod 25*!), so that (2.52) gives
(2.53) 31mS4(31m, k) + mSa(m, k) = =5 3 p(d) |(mod 2°¥1).

d|m
Since 1 # 1, 31mS4(31m, k) +mSa{m, k) =0 (mod 2811}, Recalling that
m is odd, by using (2.20), (2.21} and their similar for S(31m), we obtain
the desired result. O

3. Elements of the set A = A(1+ z + 2% +i{z? + 25).

In this section, we will determine the elements of the set A of the form
n = 2%317m, where 7 # 1 satisfies (2.24) and 7 € {0, 1}, since from Remark
2.2,28317m ¢ AforallT > 2. The elements of the set A(1+2+2%+42442%)
of the form 3172%, 7 = 0 or 1, were shown in [1] to be sblutions of 2-adic
equations. More precisely, the following was proved in that paper.

1) The elements of the set A(l + z + 2% + 2* + 25) of the form 2%, &k > @,
are given by the 2-adic solution
S ox(A4,22f =5 =Up=1+2+22+25 + 21 4+ 2712104 21 4
k>0
of the equation
y® — o+ 3yt — 11y + 44y? — 36y + 32 =
Note that S{1) = Uy follows from (2.22).

2) The elements of the set A(1+ z+ 2% + 2* +2°) of the form 31-2%, k > 0,
are given by the solution

S x(A31-252F = 531y =y =22+ 28 + 21 + ...
k>0

e
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of the equation
31%° +31°° +13 - 31%y* + 91 3134° + 364 - 31%y% + 796 - 31y + 752 = 0,
since, from (2.53} with m = 1, we have 315(31) = ~5 — Ug, so that

54U
1-32

Theorem 3.1. Let m 5 1 be an odd integer not divisible by any prime
p € Po (cf. (2.16)) neither by 312. Then the sum S{m) defined by (2.20)
does not vanish. So we may introduce the 2-adic valuation of S(m):

5(31) = =444 Up)1+25+20 4 y =045 4ol 4

(3.1) ¥ = y(m) = va(S(m}).
Then, if 31 does not divide m, we have
(3.2) (31m) = ~v(m).

Let us assume now that m is coprime with 31. We shall use the quantities
wi = wi(m) defined by (2.18), £(m), @ = a{m), a = a(m) defined by (2.15),
{2.25) and (2.26),

(3.3)

o' = a'(m) =a—20(m) mod 12 = 2ws — 2w +wy —ws — 28(m) mod 12,

(3.4) o' = a'(mm) = a—4€(m) mod 12 = ws—w) +wy—wy—4£(m) mod 12,

t = t(m) = [w1 + w5 + wo + Wy _1“ _ [wz-;-m —l]

2
(3.5) = { {w{iw;rw_a . ﬁj: wtws= watwy=1 (mod 2)
s if not.
We have:

(1) if ws # 0 and wy + wq # 0, the value of v = y(m) is given by

wy i o =2 (mod 6)
w3+2 if o =5 (mod 6).

(i) ffwr+ws =0 and w3 > 1, we set & = & + 66(m) mod 12 and
8(1) = (B + 22B)GY and we have

if w +ws < vz(Ean), then v=wsz—1+w +ws,
if w)+ws= ’Ug(Eaﬂ), then vy=ws—1++ (5(0(”),
i ow +ws > 'n‘.)‘g(Ea"), then ~y=ws—1+ vz(Ean).
{iii) Ifws =0 and ws +wy # 0, we have
¥ =—1 +".'..'2(Euf =+ StFﬂf).

{w;;—l if o =0,1,3,4 (mod 6)
’)’:
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(iv} [fws =we =wy =0 and w) +ws # 0, we have
v = =1 4 va( By + 3 Fpr + 21795 (—1)HmI ).
Proof. We shall prove that S(m) # 0 in each of the four cases above.

Assuming S(m) # 0, it follows from Theorem 2.2, {2} that S(31m) # 0 and
that v(31m) = v(m), which sets (3.2).

Proof of Theorem 3.1 (i). In this case, formula (2.39) reduces ta
mS(m) = g 13451
Since E,r 5 0, S{m) does not vanish; we have
v =u{5(m)) = w3 — 1+ v2(Far)
and the result follows from the values of Eu modulo 2! given in Table 1.

|
Proof of Theorem 3.1 (ii). If wy + wg = 0 and w3 # 0, formula (2.39)
becomes (since, cf. (2.35), Fiyg = —F; holds)

w3—1

mS(m) = (Ba + 21425 (<1)M G

E(m) 2W3—1 ) s
=(-1) T(EQH-E-Q G .

As displaid in Table 1, E; is a linear combination of Ey and E so that, from
Lemma 2.1, S(m) does not vanish and v = wy ~ 1 + vo {Egv + 2017453,
whence the result. The values of v3(F;) and §(%) calculated from Table 1
are given below.

i [011[2]3]4][56]6]7/8|0]10]11
va(B) 0i0|1,0/0/3[0]0 1]0] 073
5) (1]1|2|1/1i8|2/2/4|2|2]4

Proof of Theoremn 3.1 (i4i). If w3 = 0 and ws +wy # 0 it follows, from (2.39)
and the definition of ¢ above, that
1 watw,
mS(m) = - 3T -1 By + 3UE,).

But F; and F; are non-zero linear combinations of, respectively, Ep and
E) and Fp and Fi; by Lemma 2.1, Ey + 3'F, does not vanish and « =
"'1 + U?(Ea' + BtFaf).

Proof of Theorem 8.1 (). f wa = wy = wy = 0 and m # 1, formula
{(2.39) gives

mS(m) = + (B + 3B + 21~ 1)),

From Lemma 2.1, we obtain Ey + 318, + 2“’1'“"5(_1)‘? MG = 0, which
implies S(m) # 0 and 7 = =1 + v (B + 8 F + 2795(-1)™G). O
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Theorem 3.2. Let m be an odd integer salisfying m # 1, ged(m, 31) = 1,
and with m of the form (2.24). Let v = ~v(m) as defined in Theorem 3.1
and Z(m) be the odd part of the right hand-side of (2.58), so that

(3.6) mS(m) = 27 Z(m).

(i) If k<, then 2%m ¢ A and 2831m ¢ A.
{ii) Ifk =+, then 2*m € A and 2¥31m € A.
(iii) Ifk =y +r, r > 1, then we set S, = {27 + 1,27 + 3,...,,2711 — 1}
and we have
2""med = 3leS, m=I1"1Z4(m) (mod2?),
23 Ime A <= 3le8, m=—-(31)"120m) (mod 2"}

Proof of Theorem 5.2, {i). We remind that m is odd and {cf. 2.21) S(m) =
Sa(m, k) mod 26+1). It is obvious from (3.6) that if ¥ > k then Sa(m, k) =
O(mod 2*t1), So that from (1.8), Sa(m,k) = 0 and 2*m ¢ A, for all
h, 0 < h < k. To prove that 2¥31m ¢ A, it suffices to use this last result
and (2.40) modulo 2%*1,
Proaf of Theorem 8.2, (i). I v+ = k then the same arguments as above
show that
mS(m, k) = 25Z(m)(mod 2°*1).

So that, by using Theorem 3.2, (i} and {1.8), we obtain

2%y (A, 25m) = 28 Z(m)(mod 2F+!).

Since both m and Z(m) are odd, we get x{A,2*m) = 1(mod 2), which
shows that 28m € A. Once again, to prove that 2%31m € A, it suffices to
use this last result and (2.40) modulo 2%+,
Proof of Theorem 8.2, (iii). Let us set k = v+ 7, » > 1. (3.6) and (2.21)
give
(3.1 mSa{m, k) = 27 Z(m)(mod 27HH).
So that, by using Theorem 3.2, (i) and {ii), we get
m(2TE27 (A, 27 ) 42T (A, 27 m)) = 27 Z(m)( mod 27T,
which reduces to

m(1+ 2¢(A, 27 ) + L+ (A, 27 m)) = Z(m)(mod 271,
By observing that 27t"m ¢ A if and only if I = 1+ 2x(A, 27 Im) + ... +
2"%(A,2"7"m) is an odd integer in &;, we obtain

Mmed > m=I1"'Z(m) (mod 27, L€ S,

To prove the similar result for 27*"31m, one uses the same method and
(2.40) modulo 2841, a
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4. The counting function.
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In Theorem 4.1 below, we will determine an asymptotic estimate to the
counting function A(z) (cf. {1.2)) of the set A = A(l -+ 4+ 2° + 2% + 2.

The following lemmas will be needed.

Lemma 4.1. Let K be any positive integer and © > 1 be
We have (K

l{n<z: ged{n, K) =1} | TSDT)x,
where © 1s the Fuler function.

Proof. This is a classical result from sieve theory: see T
[11].

Lemma 4.2. {Mertens’s formula} Let 8 and 1 be two

ony real number.

heorems 3 — 5 of
O

positive coprime

integers. There erists an absolute constant C such that, ffor all z > 1,
1 Ch
w(z; 8,m) = H (1--)< .
pSa, p=6( mod #) P (logzpta

Progf. For § and 7 fixed, Mertens’s formula, follows from the Prime Number
Theorem in arithmetic progressions. It is proved in [9] that the constant C

is absolute,

Lemma 4.3. Fori€ {2,3,4}, let

K; = Ki(z) = H = H

p<x, Lp)e{0,i} p<z, pEPYUPE

where £, Py and P; are defined by (2.15)-(2.16). Then fo

[{n:1<n<z, ged(n, K) =1} |=(9( b

Proof. By Lemma 4.1 and {2.16}, we have

K
[{n:n<z ged(n, K;) =1} | < 7:3(’0—(!2_—2—)

1

=Tz H

0<j<4, re{0,i}

(logz)

il

p!

r x large enough,

)

PRI

I a-2.

P, P

p=2737( mod 31)

So that by Lemma 4.2, for all ¢ € {2,3,4} and z large encugh,

7010
i{n:n <z, ged(n, K;) = 1} [ lig__=(’3(
(logm}w(i’ﬂ)

)
(logz)3 )
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Lemma 4.4. Let r,u € No, £ and o' be the functions defined by (2.15)
and (5.3}, w; be the edditive function given by (2.18). We take £ to be a
Dirichlet character modulo 27+ with &, as principal character and we let o
be the completely multiplicative function defined on primes p by

[0 ifé(p)=0o0rp=231
(4.1) olp) = { 1 otherwise.

Ify and = are respectively some 2%-th and 12-th roots of unity in C, and if
z is a real number > 1, we set

(4.2) Syzelz) = Z Q(n){(n)y‘“z(")+”4(")z°f’(“).
Suwg (”)ngx

Then, when x tends to infinity, we have

o If & # Lo,
log logr)
4. =
(4.3) Sy‘z,g(fc) o ( (logz)
¢ If§ =14,
x Hy 2 6,{1)C5 2 loglogx
4.4)  Syaelz) = 1240 y‘+0( "),
( ) Y, xED( ) (logm)lffylz(l) ( F(fy'z(l)) lggg;
where I is the Buler gamma ﬁmction,
(4.5) Fya(s) = 31 D Giwel
1<3<5
8 7 2
(46  gua() =2 g =wds gsea(s) =35
94:3;.3(3) = yzss 95,3;,2(3) = 241

= 9imz($)(P) _&p) 95,1,2(5)
(47 Hy.e(s)= [I 11 (1+;;"—E—;%) (1 - ) ,

1=7=5 p, &p)=7

(4.8) Cyz H { H {1-— p “Q:yz(l)n 1 _l —L"——z“)}'

1295 \p, £lp)=j

Proof. The evaluation of such sums is based, as we know, on the Selberg-
Delange method. In [7], one finds an application towards direct results on
such problems. In our case, to apply Theorem 1 of that paper, one should
start with expanding, for complex number s with Rs > 1, the Dirichlet

series
By ze (s)= Z

n>1

)y )/
(2“-'3(”)11,)
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in an Euler product given by

|
4
2
—
[
-
1l

H H (l N Z (p (™ ) Heg P’")Za’(p“’])
1< p f(p)=] ma=1 Qws ) pin)®

g},_,', (s)€(p)
I (i)

12755 p, i(p)=]

il

which can he written

_gj,yqz(s)
Fyeels) = Hyzels) ][I T 7(1—5—(?) ;

P

where g4 .(s) and H,; ¢(s) are defined by (4.6) and (4.7)| To complete the
proof of Lemma. 4.4, one has to show that H,, ; ¢(s)} is holomorphic for Rs >
% and, for y and z fixed, that H, ;{(s) is bounded for Rs > o¢ > %, which
can be done by adapting the method given in [7] (Preuve du Théoréme 2,
p. 235). O

Lemma 4.5. We keep the above notation and we let G be the set of integers
of the form n = 293" m with the following conditions:

e m odd and ged{m, 31) = 1,

* m = mymamamyms, where all prime factors p ofymy; satisfy £(p) =

i

If G(x) is the counting function of the set G then, when 2 tends to infinity,
C log 1

(49) . G =y (1 +0 (M))

{log z) logz

where

F{fLi(1))

Hj16(1), C1,1 and F1.1(1) are defined by (4.7),(4.8) and (4.5).

Proof. We apply Lemma 4.4 with y = 2z = 1, { = £o|and remark that
G(z) = S1,1,4(x). By observing that (1 + —1—1)(1 - %) = |, we have

o= J1 ()03 - 11 (-3 (-

pePa pePsy
= 1.000479390466,

(4.10} C= = 0.61568378...,
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Go-pm T (-0 (=D ()
= lim ( , ; 5
PEPIUPUPLUPs, pePs, psx
pix pET

3
q

== ().75410767606.

The numerical value of the above Eulerian products has been computed by
the classical method already used and described in {7]. Since T'(f1,1{1}} =
F(%) = 1.225416702465..., we get (4.10).

O

Lemma 4.8. We keep the notation introduced in Lemmas 4.4 and 4.5. If
(w,2) € {(1,1),{-1,=1)}, we have

Cox loglog =
Syz6(2) = W (1 + O( logz )) ’

while, if (y,2,£) & {{1,1,&),(~1,—1,&)}, we have

X
(4.12) Sy,z5(x) = Or (W) :

Proof. For y = z = 1, Formula (4.11) follows from Lemma 4.5. For y =
z = —1 (which does not occur for v = 0), it follows from (4.4) and by
observing that the values of g;.(s), fy 2(s}, Hy - £(5), Cy,» do not change
when replacing ¥ by —y and z by —z.

Let us define

My = R(fa (1)) = gRESE + 2704 5+ yle+271).

When & # £, (4.3) implies {4.12) while, if £ = &, it follows from (4.4) and
from the ineguality to be proved

: 3 1
(413) My,z < ‘_L - W,

(4.11)

(ya Z) ¢ {(11 1)? ('—1: '"1)}'

To show (4.13), let us first recall that z is a twelfth root of unity.

If 2 # %1, 6fy,.(1) is equal to one of the numbers ~3/2::yv/3, ~1/24y,
3/2 s0 that

1/3 3 1
My, < |fy:(1 £ g (5 + \/3—1) <0.55 < 1 g

for all u > 0, which proves (4.13).

If z=1 and y # 1 (which implies © > 1), we have

2T

2n g W 2
S‘Eygcosz—u=1——25m —2—E§1—2(;2—u) =1

8
~ oz

and b 1 3 8 3 1
Mys =gy sg—gom <3~ s

-
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Ifz=—landy # —1, (4.13) follows from the preceding
that fy.z(1) = f—y.~2(1), which completes the proof of (4.

71

case by observing
13}). O

Lemma 4.7. Let G be the set defined in Lemma 4.5, D)j and o' be the

Sfunctions given by (2.18) and (8.3). For 0 < j <11, r,
that t is odd, we let Gipuns be the set of integers n = 24
the following conditions:
e o'(m) = j (mod 12),
o wa(m} -+ wy(m) = A (mod 24},
e m=1¢ (mod 2"1).
If p is the function given by (4.1), the counting function C
set Girnag 95 equal o

Giruarslt) = Z

2@3tmim<e, m=t (mod 271}
of{m)=j (mod 12), wa(m)+wa(m)=r (mod

fuz1and X # j (mod2), Gjrua is empty while, if
when z tends to infinity, we have

C = !
G i ” = |1 O\ 7—m7=
k2 ,u,/\,t(-l:) 6. artu (logﬁ)% ( + ({108 $}27‘

where C' is the constant given by (4.10).
If u=0, then
o z

1
Girp0{%) = oo _(log Y (1 +0 (%(log oy

Proof: If u 2 1, it follows from (3.3} that &'(m) = wa(m)
therefore, if § 2 A (mod 2), then G; ., 5, is empty. Let us
"C:e%‘l—r’ p,:ezl!_;
By using the relations of orthogonality:
1

o

. At € Ny such
M in G with

Ciruae(z) of the

p(m).
24)
A =7 {mod 2),

L))
)

wq{m} {mod 2};
set

~—

A (mod 2%)

d 2+

S el =i = {12 i @' = f (mod 13
j2=0” # 0 if not,
-1 :
Z (N g (wa(m)+oa(m)) _ 2% ifwy(m) + wa(m) =
= 0 if not,
- [ e@tHY =2 ifm =t (md
> EWélm) = { 0 if not,
£ mod 2r+!
we get
{ oy
Giraat(z) = 12 9r+u Z Z Z §()¢ )m‘u LZSC’@.#”,E(:‘C)'

£rmod 27+l j1=0 j,=0
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In the above triple sums, the main contribution comes from S1,1,6,(z) and
S_1.-1/(), and the result follows from {4.11} and (4.12).
If v = 0, we have

11
1 N
Gj,r,D,O,t(I) = ﬂ Z Z f(t)# ”251,#12,5(@
£mod 2711 j2=0
and, again, the resuit follows from Lemma 4.6. O

Theorem 4.1. Let A= A(l + 2z 4 2% + 2* + 2°) be the set given by (1.3)
and A(x) be its counting function. When x - oo, we have

T
(loga)s’

where K = %C’ = 1.469696766... and C is the constant of Lemma 4.5
defined by (4.10).

Alz) ~ x

Proof. Let us define the sets A;, Ag, Az and A4 containing the elements
n = 28m (m odd) of A with the restrictions:
Ar: wi(m) # 0 and wa{m) + we{m) #0
Ag: wy(m) # 0 and we(m) = wy(m) =0
Az wi(m) =0 and wylm) +wy(m) #0
Ay walm) = wa(m) = wy(m) = 0.
We have
(4.14) Az) = A1(z) + Az(z) + Aa(z) + Ag{x).

Further, fori = 2, 3, 4, it follows from Lemma 4.3 that 4;(z) = O((l “ }é )
og 2

and therefore

(4.15) A(z) :Al(x)—l—O( i )

(log )3
Now, we split .4; in two parts 5 and B by putting in B the elements n € A;
which are coprime with 31 and in B the elements n € A; which are multiples

of 31. Let us recall that, from Remark 2.2, no element of A is a multiple of
312, Therefore,

(4.16) Ay (z) = B(z) + B(x)
with
(417)  Blz)= > p(m), B(z) = > p(m).

n=2"me A1, n<z n=2k31meA;, n<2
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Let us consider B{z}; the case of B will be simiiar. We ddfine

—1 it i=40,1, 3,4
(4.18) vy=v{E)~1=¢ 0 if i=2 (modf
2 if i=5 (mod6

{mod 6)

)

so that, if E is the odd part of E; (cf. (2.32) and Table ]!), we have

(4.19) E, =27i"%E;,
In view of Theorem 3.1 (i), if ¢ = ¢/(m} mod 12 then

(4.20) y{m) — ws{m) = ;.

Further, an element n = 2m (m odd) belonging to A; is said of index

r>0ifk=~y(m)+r. Forr>0and 0 <i<11,
(4.21)

= Y am)= >

n=27MMrme Ay, nga

o'(m)=i (mod 12) a'{m)=i (mo

p(m)

=21 m) T me A, 232 Vig

12

will count the number of elements of .4; up to z of index r and satisfying

o'(m) =i (mod 12}, so that

1l
(4.22) Biz)=% 5 T9().

r=> =0

Since y(m)} > 0, from the first equality in (4.21}), each n dounted in T (z)

is a multiple of 27, hence the trivial upper bound

11

(0 z,
(4.23) ;Tr () < 5

Since »; = —1, the second equality in (4.21) implies

(4.24) iT}ﬂ(m) < Q{24 Tx)
i=0

with (7 defined in Lemma 4.5. Moreover, from Lemma 4!
absolute constant K such that, for x > 3,

(4.25) Glz) < K—=

(log @)t
Now, let R be a large but fixed integer; R’ is defined

o' -1 < /7 < 2% and R” = ll%g—;. Since T.%(z) is a non

5, there exists an

in terms of x by
-negative integer,
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{4.23) implies that i3 (z) = 0forr > R”. 1[ z is large enough, R < R’ < R” which, by use of (4.20), gives
holds. Setting .
R 1l T3 (z) = > plm).
] walm) “Yir, waF0, 3
(120 B = 3. 3. e R Sl
from {4.22), we have But, at the cost of an error term (9( - ), Lemma 4.3 allows us to
(log =
B(z) — Br(z) = §' + 57, remove the conditions wy # 0, we +wa 7 0, and to get from the second part
with of Lemma 4.7,
& il ; z z
_ S S, s - S ST e )—020001(2%)4'@( l)
r=R+1i=0 r=RI+1i-0 (logz)3
The definition of B and (4.23) yield (4.28) _¢ T : (1 " O( 1 - ) _
P o 12 94 (log 7)1 {log z)
x x x
5 < — < B
—_ Z’ 2..,, —_ Z’ 2?' 2Rn‘ -— ‘/EQ )
r=R+1 r=R'+1 Calculation of 7" {xz) for r > 1.
. y .
while (4.24), (4.25) and the definition of R’ give Under the conditions ws # 0 and we + wy # 0, from (3.6}, (2.39), (3.3},
Z i’ oK {(4.19) and (4.20), we get
G ( r—1 ) = R g w
r=R+1 2 r=R+1 2;— (]Og 2}5"1)4 Z(m) — 3[-—22—4-—1]Eaf(m).
9% Kke B sKz From (4.21), it follows that
ST or ST -
(logz)t 2 2 2R(loga)k T(z) = 3 olom).

2T me A n<e, waA0, wytwyF0

so that, for z large enough, we have o (m)=i (mod 12}

3Kz
(4.27) 0 < B(z) - Br(z) < vz + ————1 2R Now, by Theorem 3.2, we know that 27(™*+"m belongs to |4 if there is some
(oga:) ' le& ={27+1,. 2’"""1 — 1} such that m = ["1Z(m) mod 2"+!. Note
We now have to evaluate Tr(i) (); we shall distinguish two cases, r = 0 that the order of 3 modulo ortl 35 971 if + > 2 and 27 if r = 1. We choose
and r > 1. u=r4+1
() wy
Calculation of 15" (z)- s0 that ws +wy = A (mod 27+1) implies 3Ms-1 = 3l -1 (mod 27t1).
From {4.21), we have Therefore, we have
i r+1_
w= ¥ em= > pom). =T 3 5 m)
n=27Mknpe Ay, n<z n=2Y " me A, n<e, w30, wytwa 0 v P )
o (m)=i (mod 12} o/ (m)=i (mod 12} lesr A=0 23 (M <2 Vi~ T e, wa#0, wa a0
o'(m)=i  (mod 12), wetws=Ai (mod 27+1)
From Theorem 3.2, we know that 27" € A. Hence, m=t-13/ 31 E,  (mod 27+1)
Téi}(m) = Z plm), As in the case r = 0, we can remove the conditions w3 # 0 and wy+wy # Oin
2Mm <, wa#0, watwiFD the last sum by adding a @ [ —&—1 | error term, and we get by Lemma 4.7
o'{m)=i (mod 12) {logx)d
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for r fixed
rt x x
T (1) = & Aoge (—) + o(——)
rezs, ,\Z=En frrri 133 T E, \ Qe (log 7)3
A=i ( nwod 2)

C z 1
429) == 14+ O | —== ] |
(4.29) 24 guiim(log 2} ( ((log;:u:)2 2 ))
From {4.26), (4.28), (4.29) and (4.18), we have

Oz o 1 &1 1

37 Czx 3 1 1
“5ﬁmﬁﬁ(5'ﬁ)o+o(m%ﬂ””J)'

By making R going to infinity, the above equality together with (4.27) show
that

3T Cx

(4.30) Blz) ~ 15 - 0.

1 F
(logz)
In a similar way, we can show that B(z) defined in (4.17) satisfies

o 1 37 z
Bla} ~ 578 ~ 5750 (log )4

which, with {4.16) and (4.15), completes the proof of Theorem 4.1 with

37 1 74
T (1 + ﬁ) C = 7€ = 1.469696766....

O

Numerical computation of A(z).

There are three ways to compute A(z). The first one uses the definition
of A and simultaneously calculates the number of partitions p(A,n) for
n < x; it is rather slow. The second one is based on the relation (1.10)
and the congruences (2.19) and (2.23) satisfied by o(A,n). The third one
calculates wj(n), 0 < j < 5, in view of applying Theorem 2.2 . The two
last methods can be encoded in a sieving process

The following table displays the values of A(z), A1{z), ..., A4(z) as de-
fined in (4.14) and also

i 1
oy = Aozl Ai@)(loga)}
x x
It seems that c(z} and ¢ (x) converge very slowly to » = 1.469696766 .. .,
which is impossible to guess from the table.

On the parity of generalized partition functions 77
z | Alx) e(z) Ai(z) | ea(z) | Az(z) | Aslx) Ag(z)
103 | 480 0.7782 | 20 0.032 | 44 233 183
10% | 4543 0.7914 | 361 0.063 | 532 2294 1356

10° | 43023 0.7925 | 5087 0.004 | 5361 218%10 10765
10° | 411764 0.7939 | 60565 0.117 | 52344 208|633 90222
107 | 3981774 | 0.7978 | 680728 | 0.136 | 506199 200|7168 787679
108 | 38719773 | 0.8022 | 7403138 | 0.153 | 4887357 | 19390529 | 7038749
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