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Abstract Gronwall’s function G is defined for n > 1 by G(n) = σ(n)
n log logn

where σ(n) is the sum of the divisors of n. We call an integer N > 1
a GA1 number if N is composite and G(N) ≥ G(N/p) for all prime fac-
tors p of N . We say that N is a GA2 number if G(N) ≥ G(aN) for all
multiples aN of N . In arXiv 1110.5078, we used Robin’s and Gronwall’s
theorems on G to prove that the Riemann Hypothesis (RH) is true if and
only if 4 is the only number that is both GA1 and GA2. Here, we study
GA1 numbers and GA2 numbers separately. We compare them with su-
perabundant (SA) and colossally abundant (CA) numbers (first studied by
Ramanujan). We give algorithms for computing GA1 numbers ; the smallest
one with more than two prime factors is 183783600, while the smallest odd
one is 1058462574572984015114271643676625. We find nineteen GA2 num-
bers ≤ 5040, and prove that a GA2 number N > 5040 exists if and only if
RH is false, in which case N is even and > 108576.
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1 Introduction

The sum-of-divisors function σ is defined by

σ(n) :=
∑

d|n

d.

For example, σ(4) = 7.
In 1913, Gronwall [7] found the maximal order of σ.

Theorem 1 (Gronwall) The function

G(n) :=
σ(n)

n log logn
(n > 1)

satisfies

lim sup
n→∞

G(n) = eγ = 1.78107 . . . ,

where γ is the Euler-Mascheroni constant.

In 1915, Ramanujan proved an asymptotic inequality for Gronwall’s func-
tion G, assuming the Riemann Hypothesis (RH). Ramanujan’s result was
shown in the second part of his thesis. The first part was published in 1915
[12] while the second part was not published until much later [13].

Theorem 2 (Ramanujan) If the Riemann Hypothesis is true, then

G(n) < eγ (n≫ 1).

Here, n≫ 1 means for all sufficiently large n.
In 1984, Robin [14] proved that a stronger statement about the function G

is equivalent to RH.

Theorem 3 (Robin) The Riemann Hypothesis is true if and only if

(1) G(n) < eγ (n > 5040).

The condition (1) is called Robin’s inequality. Table 1 gives the twenty-
six known numbers r for which the reverse inequality G(r) ≥ eγ holds (see
[17, Sequence A067698]), together with the value of G(r) (truncated). (The
“a(r)” column is explained in §4, and the “Q(r)” column in §7.1.)

In [14] Robin also proved, unconditionally, that

(2) G(n) ≤ eγ +
0.6482 . . .

(log logn)2
(n > 1)
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r SA CA GA1 GA2 Factorization σ(r)/r G(r) a(r) Q(r)
3 X 3 1.333 14.177 0
4 X X X 22 1.750 5.357 0 −0.763
5 X 5 1.200 2.521 0
6 X X X 2 · 3 2.000 3.429 0 4.134
8 X 23 1.875 2.561 0 2.091
9 32 1.444 1.834 4 7.726
10 X 2 · 5 1.800 2.158 0 1.168
12 X X X 22 · 3 2.333 2.563 0 2.090
16 24 1.937 1.899 3 1.348
18 X 2 · 32 2.166 2.041 0 1.679
20 22 · 5 2.100 1.913 3 2.799
24 X X 23 · 3 2.500 2.162 0 1.185
30 2 · 3 · 5 2.400 1.960 2 1.749
36 X X 22 · 32 2.527 1.980 0 1.294
48 X X 24 · 3 2.583 1.908 0 1.132
60 X X X 22 · 3 · 5 2.800 1.986 0 1.290
72 X 23 · 32 2.708 1.863 0 1.160
84 22 · 3 · 7 2.666 1.791 10 1.430
120 X X X 23 · 3 · 5 3.000 1.915 0 1.128
180 X X 22 · 32 · 5 3.033 1.841 0 1.078
240 X X 24 · 3 · 5 3.100 1.822 0 1.051
360 X X X 23 · 32 · 5 3.250 1.833 0 1.044
720 X 24 · 32 · 5 3.358 1.782 7 1.028
840 X 23 · 3 · 5 · 7 3.428 1.797 3 1.065
2520 X X X 23 · 32 · 5 · 7 3.714 1.804 0 1.015
5040 X X X 24 · 32 · 5 · 7 3.838 1.790 0 1.007

Table 1 – The set R = {r ≤ 5040 : G(r) ≥ eγ = 1.781 . . . }, which contains
the subset R2 = {N ≤ 5040 : N is GA2}.
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with equality for n = 12. This refines the inequality lim supn→∞G(n) ≤ eγ

from Gronwall’s theorem.
Recently, the authors [3] used Robin’s results to derive another reformu-

lation of RH. Before recalling its statement, we give three definitions and an
example.

A positive integer N is a GA1 number ifN is composite and the inequality

G(N) ≥ G(N/p)

holds for all prime factors p of N . The first few GA1 numbers are

N = 4, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, . . .

(see [17, Sequence A197638]), and (see §5.3) the smallest odd GA1 number is

N = 1058462574572984015114271643676625.

An integer N > 1 is a GA2 number if

G(N) ≥ G(aN)

for all multiples aN of N . The nineteen known GA2 numbers (see Theorem 5
and [17, Sequence A197369]) are

N = 3, 4, 5, 6, 8, 10, 12, 18, 24, 36, 48, 60, 72, 120, 180, 240, 360, 2520, 5040.

Every GA2 number > 5 is even. (Proof. If N is odd, then σ(2N) = 3σ(N),
and if N is also GA2, we get

3

2
≤ 3G(N)

2G(2N)
=

log log 2N

log logN

which implies N < 7.)

Finally, a composite number is extraordinary if it is both GA1 and GA2.

For example, the smallest extraordinary number is 4. To see this, we first
compute G(4) = 5.357 . . . . Then, as G(2) < 0, it follows that 4 is a GA1
number. Since Robin’s unconditional bound (2) implies

G(n) < eγ +
0.6483

(log log 5)2
= 4.643 . . . < G(4) (n ≥ 5),

we get that 4 is also GA2. Thus 4 is an extraordinary number.
We can now recall our results from [3, Theorem 6 and Corollary 8].
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Theorem 4 (Caveney-Nicolas-Sondow) (i). The Riemann Hypothesis is

true if and only if 4 is the only extraordinary number.

(ii). If there is any counterexample to Robin’s inequality, then the maximum

µ := max{G(n) : n > 5040} exists and the least number N > 5040 with

G(N) = µ is extraordinary.

If there exists an extraordinary number N > 4, then N is even (as 5 is not
GA1, and no GA2 number > 5 is odd) and N > 108576 (since no GA1 number
lies in the interval [5, 5040], and no GA2 number lies in [5041, 108576]—see
Corollary 1).

In the present paper, we study GA1 numbers and GA2 numbers separa-
tely.

Preliminary facts about GA1 numbers and GA2 numbers were given in
[3]. We recall two of them and make a definition.

Fact 1 (proved by elementary methods in [3, §5]). The GA1 numbers with

exactly two (not necessarily distinct) prime factors are precisely 4 and 2p,
for primes p ≥ 7.

We call such GA1 numbers improper, while GA1 numbers with at least
three (not necessarily distinct) prime factors will be called proper.

The smallest proper GA1 number is ν := 183783600 (see §5.3 and [17,
Sequence A201557]). The number ν was mentioned in [3, equation (3)] as
an example of a (proper) GA1 number that is not a GA2 number (because
G(ν) < G(19ν)).

Fact 2 (see [3, Lemma 10]). If n0 is a positive integer, then

lim sup
a→∞

G(an0) = eγ ,

which yields the implication

(3) N is GA2 =⇒ G(N) ≥ eγ .

An application is an alternate proof that any GA2 number N > 5 is even.
Namely, as 7 and 9 are not GA2, and as Theorem 2 in [4] says that an integer
n > 9 is even if G(n) ≥ eγ, the result follows from (3).

By the method of [3, §5], one can prove two additional properties of GA1
numbers.

Fact 3. The only prime power GA1 number N = pk is N = 4.

Fact 4. A product of three distinct primes p1p2p3 cannot be a GA1 number.

(See §6.2 for a more general result proved by other methods.)
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The rest of the paper is organized as follows. The next subsection esta-
blishes notation. In §2 we recall the definitions of superabundant (SA) and co-
lossally abundant (CA) numbers and review some of their properties. In §3 we
prove six lemmas needed later. In §4 we give an analog of Theorem 4 for GA2
numbers ; in particular, if RH is false, then infinitely many GA2 numbers

exist, and any number N > 5040 for which G(N) = max{G(n) : n > 5040}
is both GA2 and CA. In the final four sections we study proper GA1 num-
bers : §5 compares them with SA and CA numbers, §6 is concerned with their
prime factors, §7 gives algorithms for computing them, and §8 estimates the
number of them up to x.

1.1 Notation

We let p always denote a prime.
Let vp(n) denote the exponent on p in the prime factorization

n =
∏

p

pvp(n).

For n ≥ 1, we denote the number of prime factors of n counted with

multiplicity by

Ω(n) :=
∑

p

vp(n).

For n > 1, we denote the largest prime factor of n by

P (n) := max{p : p | n} = max{p : vp(n) > 0}.

As usual, Chebychev’s function is defined as

θ(x) :=
∑

p≤ x

log p.

2 Review of properties of SA and CA numbers

Superabundant and colossally abundant numbers were first introduced
by Ramanujan, who called them generalized highly composite and generali-
zed super highly composite numbers, respectively (cf. [13, §59]). They were
rediscovered later by Alaoglu and Erdős [1].

A superabundant (SA) number is a positive integer N such that

σ(N)

N
>
σ(n)

n
(0 < n < N).

6



The first few SA numbers are (see [17, Sequence A004394])

N = 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, . . . .

A colossally abundant (CA) number is a positive integer N for which
there exists an exponent ε > 0 such that

(4)
σ(N)

N1+ε
≥ σ(n)

n1+ε
(n > 1).

Such an exponent ε is called a parameter of N . The sequence of CA numbers
(compare [17, Sequence A004490]) begins

N = 1, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, . . . .

From (4), it is easy to show that every CA number is also SA.
Now let N denote an SA or CA number. Then (see [1, Theorems 1 and 3]

or [13, §59])

(5) N = 2k2 · 3k3 · 5k5 · · · pkp =⇒ k2 ≥ k3 ≥ k5 ≥ · · · ≥ kp

with kp = 1 unless N = 4 or 36, and [1, Theorem 7]

(6) p = P (N) ∼ logN (N → ∞).

We recall some properties of CA numbers (see [1, 2, 3, 6, 9, 13, 14, 15]).
Note first that for any fixed positive integer k, the quantity

F (t, k) :=

log

(

1 +
1

t+ t2 + · · ·+ tk

)

log t

is decreasing on the interval 1 < t < ∞, and the function t 7→ F (t, k) maps
the interval onto the positive real numbers. Hence, given ε > 0, we may
define xk = xk(ε) > 1 by

(7) F (xk, k) = ε.

(See [14, p. 189] and [13, §61 and §69].) In particular, when k = 1 we set
x = x1 = x1(ε), so that

(8) F (x, 1) = F (x1, 1) =

log

(

1 +
1

x

)

log x
= ε.
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It is convenient to set x0 = +∞. From the decreasingness of F (t, k) with
respect to both t and k, it follows that the sequence (xk)k≥0 is decreasing.

If N is a CA number of parameter ε and p divides N with vp(N) = k,
then applying (4) with n = Np yields

ε ≥ F (p, k + 1) i.e. p ≥ xk+1

while, if k > 0, applying (4) with n = N/p yields

(9) ε ≤ F (p, k) i.e. p ≤ xk.

Let K be the largest integer such that xK ≥ 2. Then from (9), for all p’s we
have 2 ≤ p ≤ xk and

k = vp(N) ≤ K.

Now define the set

E := {F (p, k) : p is prime and k ≥ 1}.

Its largest element is

max E = F (2, 1) =
log(3/2)

log 2
= 0.5849 . . . ,

and its infimum is
inf E = lim

k→∞
F (p, k) = 0

for any fixed prime p.
If ε /∈ E , then no xk is a prime number and there exists a unique CA

number N = N(ε) of parameter ε; moreover, N is given by either of the
equivalent formulas

N =
∏

p<x

pkp with xkp+1 < p < xkp

or

(10) N =

K
∏

k=1

∏

p<xk

p.

In particular, if ε > max E , then x = x1 < 2, K = 0 and N(ε) = 1.
If ε ∈ E , then some xk is prime, and it is highly probable that only one xk

is prime. But (see [6, Proposition 4]), from the theorem of six exponentials
it is only possible to show that at most two xk’s are prime. (Compare [9,
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p. 538].) Therefore there are either two or four CA numbers of parameter ε,
defined by

(11) N =
K
∏

k=1

∏

p≤xk
or

p<xk

p.

Here, if xk is a prime p for some k, then p may or may not be a factor in the
inner product. (This can occur for at most two values of k.) In other words,
if xk−1 < p < xk, then the exponent vp(N) of p in N is k, while if p = xk, the
exponent may be k or k − 1. In particular, if N is the largest CA number of
parameter ε, then

(12) F (p, 1) = ε =⇒ P (N) = p.

Note that, since if ε /∈ E , then xk is not prime, formula (10) gives the same
value as (11). Therefore, for any ε, formula (11) gives all the possible values
of a CA number N of parameter ε. (Thus N is a product of “primorials” [17,
Sequence A002110].)

3 Six lemmas

The case k = 2 of the following lemma was proved in [14, p. 190].

Lemma 1 For k ≥ 2, we have the upper bound

xk < (kx)1/k.

Proof. Since the function t 7→ F (t, k) is strictly decreasing on 1 < t <∞, to
prove xk < z := (kx)1/k, it suffices to show F (z, k) < F (xk, k). As (7) and
(8) imply F (xk, k) = ε = F (x, 1), this reduces to showing F (z, k) < F (x, 1).

Since z > 1 and k ≥ 2, we have

F (z, k) = log

(

1 +
1

z + z2 + · · ·+ zk

)

1

log z

<
1

(z + z2 + · · ·+ zk) log z
=

k

(z + z2 + · · ·+ zk) log kx

<
k

(k − 1 + zk) log x
≤ k

(

k
2
+ kx

)

log x
=

1
(

x+ 1
2

)

log x

< log

(

1 +
1

x

)

1

log x
= F (x, 1),

9



using the lower bound log
(

1 + 1
t

)

>
(

t + 1
2

)−1
, valid for t > 0. This proves

the desired inequality. �

In the proof of Theorem 5 (iii), we will need the following result (see [11,
Lemma 4]).

Lemma 2 Given a CA number N0 of parameter ε0, let N > N0 be a number

satisfying

(13) n ≥ N0 =⇒ σ(n)

n1+ε
≤ σ(N)

N1+ε

for some fixed ε > 0. Then N is CA of parameter ε.

Proof. Since N0 is CA of parameter ε0, we have

σ(N)

σ(N0)
≤

(

N

N0

)1+ε0

.

On the other hand, (13) yields

σ(N)

σ(N0)
≥

(

N

N0

)1+ε

.

Hence ε ≤ ε0.
In view of (13), to prove that N is CA of parameter ε, we only need to

show that

n < N0 =⇒ σ(n)

n1+ε
≤ σ(N)

N1+ε
·

If n < N0, then since N0 is CA and (13) holds, we have

σ(n)

n1+ε
=
σ(n)nε0−ε

n1+ε0
≤ σ(N0)n

ε0−ε

N1+ε0
0

≤ σ(N0)N
ε0−ε
0

N1+ε0
0

=
σ(N0)

N1+ε
0

≤ σ(N)

N1+ε
.

This completes the proof of Lemma 2. �

The next lemma provides an estimate for a CA number of parameter ε.

Lemma 3 Let N be a CA number of parameter ε < F (2, 1) = log(3/2)/ log 2
and define x = x(ε) by (8).
(i). Then

logN ≤ (x) + c
√
x

for some constant c > 0.
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(ii). Moreover, if N is the largest CA number 1 of parameter ε, then

(x) ≤ logN ≤ (x) + c
√
x.

Proof. (i). It follows from formula (11) for N that if xk is defined by (7), then

(14) logN ≤ (x1) + (x2) + · · ·+ (xK),

where K is the largest integer such that xK ≥ 2. (Note that v2(N) = K or
K − 1, and that ε < F (2, 1) implies x > 2 and K ≥ 1.)

As t 7→ F (t, k) is decreasing and (7) holds, we have

F (2, K) ≥ F (xK , K) = ε = F (xK+1, K + 1) > F (2, K + 1).

On the other hand,

F (2, K) = log

(

1 +
1

2K+1 − 2

)

1

log 2
<

1

(2K+1 − 2) log 2
≤ 1

2K log 2
<

2

2K

and, from (8),

ε =
log(1 + 1

x
)

log x
>

1

(x+ 1) log x
≥ 1

(x+ 1)(x− 1)
>

1

x2
.

Thus
2

2K
> F (2, K) ≥ ε >

1

x2
,

implying

(15) K < 1 +
2

log 2
log x.

Since k 7→ xk is decreasing, from (14) we have (compare [13, equation
(368)])

logN ≤ (x1) + (x2) +K(x3).

Using x2 ≤
√
2x and x3 ≤ 3

√
3x (from Lemma 1), together with (15) and the

Prime Number Theorem in the form (t) ∼ t, we deduce (i).

(ii). From (11), the largest CA number of parameter ε is

N =

K
∏

k=1

∏

p≤xk

p

1. Note that Ramanujan’s definition of CA number of parameter ε in [13] is not exactly
the same as that of Robin in [14, pp. 189–190]. Ramanujan’s definition corresponds to the
largest CA number of parameter ε for Robin.
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which implies (x) ≤ logN , and (ii) follows from (i). �

In the next lemma, we recall the oscillations of Chebychev’s function
studied by Littlewood.

Lemma 4 There exists a constant c > 0 such that for infinitely many

primes p we have

(16) θ(p) < p− c
√
p log log log p,

and for infinitely many other primes p we have

(17) θ(p) > p+ c
√
p log log log p.

Proof. From Littlewood’s theorem (see [10]), we know that there exists a
constant c′ > 0 such that for a sequence of values of x going to infinity we
have

(18) θ(x) < x− c′
√
x log log log x,

and for a sequence of values of x′ going to infinity we have

(19) x′ + c′
√
x′ log log log x′ < θ(x′).

Let us suppose first that x is large enough and satisfies (18). If x = p is
prime, then (18) implies (16). Now assume x is not prime, and let p be the
prime following x. As the function t 7→ t − c

√
t log log log t is increasing, we

get

θ(p) = θ(x) + log p < x− c′
√
x log log log x+ log p

< p− c′
√
p log log log p+ log p,

which implies (16) with c < c′ for x large enough.
The proof of (17) is easier. Let x′ satisfy (19) and choose the largest prime

p ≤ x′. For c ≤ c′, we have

θ(p) = θ(x′) > x′ + c′
√
x′ log log log x′ > p+ c

√
p log log log p,

which proves (17). �

Lemma 5 Chebychev’s function (x) satisfies

(x) ≤ (1 + α)x,

where

α = α(x) :=







0 if x ≤ 8 · 1011,
1

36260
< 0.000028 otherwise.
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Proof. Schoenfeld (cf. [16, p. 360]) proved (x) ≤ 1.000081 x for all x, and he
mentioned that Brent had checked that (x) < x for x < 1011. The stronger
results stated here are due to Dusart—see [5, p. 2 and Table 6.6]. �

Lemma 6 Let ε be a positive real number. For t > e, let us set

(20) g(t) = gε(t) := ε log t− log log log t.

Then there exists a unique real number t0 = t0(ε) > e such that

(21)
1

log t0 log log t0
= ε.

Moreover, g(t) is decreasing for e < t < t0 and increasing for t > t0.

Proof. The derivative of g is

g′(t) =
1

t

(

ε− 1

log t log log t

)

.

For t > e, both log t and log log t are positive and increasing, and the function
t 7→ 1/(log t log log t) is a decreasing bijection from (e,+∞) onto (0,+∞).
Therefore, one can define t0 > e by (21).

Then we have g′(t) < 0 for e < t < t0, and g′(t) > 0 for t > t0, which
completes the proof of Lemma 6. �

4 GA2 numbers

We first study GA2 numbers. Compare the following result on them with
Theorem 4 on extraordinary numbers.

Theorem 5 (i). The set of GA2 numbers ≤ 5040 is

R2 := {3, 4, 5, 6, 8, 10, 12, 18, 24, 36, 48, 60, 72, 120, 180, 240, 360, 2520, 5040}.

(ii). If the Riemann Hypothesis is true, then no GA2 number exceeds 5040.
(iii). If the Riemann Hypothesis is false, then infinitely many GA2 numbers

exist ; moreover, the inequality

µ := max{G(n) : n > 5040} > eγ

holds, and any integer A > 5040 for which G(A) = µ is both GA2 and CA.
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Proof. (i). Setting
R′ := {N ≤ 5040 : N is GA2},

we have to prove that R′ = R2.
To show R′ ⊂ R2, choose N ∈ R′. From (3), we have G(N) ≥ eγ , so that

N ∈ R := {r ≤ 5040 : G(r) ≥ eγ}
= {3, 4, 5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180,

240, 360, 720, 840, 2520, 5040},

by calculating the “r” column of Table 1. To show that N belongs to the
subset R2 ⊂ R, define for r ∈ R the integer

a(r) :=

{

minAr, if Ar := {a : G(ar) > G(r), ar ∈ R} 6= ∅,
0, if Ar = ∅.

A computation (see the “a(r)” column of Table 1) shows that

(22) {r ∈ R : Ar 6= ∅} = {9, 16, 20, 30, 84, 720, 840}.

Since N is GA2, it must lie in the complement

(23) R \ {9, 16, 20, 30, 84, 720, 840}= R2.

This shows R′ ⊂ R2.
To prove R2 ⊂ R′, choose r ∈ R2. To get r ∈ R′, we need to show that

G(r) ≥ G(ar), for any multiple ar of r. We consider two cases.

Case 1 : ar ≤ 5040. If ar ∈ R, then since r ∈ R2, relations (23) and (22)
imply G(ar) ≤ G(r). On the other hand, if ar 6∈ R, then G(ar) < eγ ≤ G(r).
Thus G(r) ≥ G(ar) whenever ar ≤ 5040.

Before considering Case 2, we recall that in [14, p. 204 (c)] Robin proved
that if C is the largest CA number with P (C) < 20000, then there is no
counterexample ≤ C to his inequality (1). From the property (5) of CA
numbers, we have logC ≥ (20000), where (x) is Chebychev’s function.

We also recall that in [16, p. 359, Corollary 2], Schoenfeld proved that

(x) > x− x

8 log x
(x ≥ 19421).

A calculation then gives the inequalities

(20000) > 20000− 20000

8 log 20000
> 19747

14



which, together with Robin’s result on C, yield the implication

(24) 5040 < n < e19747 =⇒ G(n) < eγ.

Case 2 : ar > 5040. If log ar < 19747, then (24) gives G(ar) < eγ ≤ G(r).
On the other hand, if log ar ≥ 19747, then from (2) we get

G(ar) < eγ +
0.6483

(log 19747)2
= 1.787 . . . < 1.790 . . . = min

r′∈R2

G(r′) ≤ G(r).

Thus G(r) ≥ G(ar) whenever ar > 5040.

This shows that, in both Cases 1 and 2, all elements r of R2 are GA2
numbers, so that R2 ⊂ R′. Finally, since we already have R2 ⊃ R′, we get
R2 = R′. This proves (i).

(ii). If RH holds, then by Robin’s theorem there is no number n > 5040 with
G(n) ≥ eγ , while from (3) a GA2 number N must satisfy G(N) ≥ eγ .

(iii). Let us assume that RH fails. Set

Θ := sup
ζ(ρ)=0

ℜ(ρ)

so that
1/2 < Θ ≤ 1.

Let N denote a CA number of parameter ε, and define x = x(ε) by (8).
If p := P (N) and if p+ is the prime following p, then from (11) we have

p ≤ x1 = x ≤ p+,

which implies x ∼ p as N → ∞. Further, from (6), we get p ∼ logN , which
implies

x ∼ logN (N → ∞).

In [15, p. 241], it is proved that as N → ∞

G(N) = eγ
(

1 + Ω+

(

x−b
))

(1−Θ < b < 1/2)

which implies that

G(N) = eγ
(

1 + Ω+

(

(logN)−b
))

(1−Θ < b < 1/2).

(Here the notation “f(N) = Ω+(g(N)) as N → ∞” means that f(N) > g(N)
infinitely often, and should not be confused with the notation Ω(n) in §1.1.)
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Therefore, there exist infinitely many CA numbers N satisfying G(N) > eγ,
and, for all t, we have maxn≥tG(n) > eγ.

Now we construct two sequences A1, A2, . . . and A′
1, A

′
2, . . . , as follows.

Let A1 (resp., A′
1) be the smallest (resp., largest) 2 integer > 5040 such that

G(A1) = G(A′
1) = µ.

Given i ≥ 2, assume that A1, A2, . . . , Ai−1 and A′
1, A

′
2, . . . , A

′
i−1 have

been defined. Set µi := maxn>A′

i−1
G(n) and let Ai (resp., A′

i) be the smallest
(resp., largest) integer > A′

i−1 with G(Ai) = G(A′
i) = µi. Since we have

µi > eγ = lim supG(n), infinitely many Ai’s can be found. The numbers Ai

are such that
n > Ai =⇒ G(n) ≤ G(Ai)

and, therefore, are GA2.
In the same way, A is proved to be GA2, using A > 5040 and G(A) = µ.

To show that A is CA, we apply Lemma 2 with N0 = 55040, ε0 = 0.03,
N = A, and ε = 1/(logA log logA) ; since A is GA2 and A > 5040, from
(24) and (3) we obtain that N = A > e19747 > N0. For n ≥ N0, from the
definition of A we have G(n) ≤ G(A). Since e < N0 < A holds, it follows
from Lemma 6 that, on the interval [N0,+∞), the function g(t) (defined by
(20)) attains its minimum at t = A. Thus, for n ≥ N0, we have

σ(n)

n1+ε
= G(n)

log log n

nε
= G(n)e−g(n) ≤ G(A)e−g(n) ≤ G(A)e−g(A) =

σ(A)

A1+ε

and so (13) holds. Applying Lemma 2 completes the proof of (iii). �

Here is a corollary of the proof of Theorem 5.

Corollary 1 There is no GA2 or extraordinary number between 5041 and

108576.

Proof. Since 108576 < e19747, this follows from (24). �

5 Comparison between CA and GA1 numbers

In this section, we study GA1 numbers. We begin by comparing them
with CA numbers.

2. It is highly probable that A1 = A′

1
. A difficult question is whether G is injective.
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5.1 CA and GA1

By revisiting the proof of [15, Theorem 3, p. 242], we shall prove the
following results.

Lemma 7 Let N be a CA number of parameter ε > 0 and assume that

p := P (N) ≥ 5. If

(25) ε >
1

log(N/p) log log(N/p)
,

then N is also a GA1 number.

Proof. Let q be a prime factor of N . It follows from (5) that 6p divides N
and that N/q ≥ N/p ≥ 6 > e, which implies log log(N/q) > log log e = 0.
Since N is a CA number, from (4) one has

(26)
σ(N/q)

(N/q)1+ε
≤ σ(N)

N1+ε
,

so that

(27)
σ(N/q)

σ(N)
≤ 1

q1+ε
.

Since log logN and log log(N/q) are positive, it follows that

(28)
G(N/q)

G(N)
≤ log logN

qε log log(N/q)
=

(N/q)ε log logN

N ε log log(N/q)
= exp(g(N/q)− g(N)),

where g(t) is defined by (20). By Lemma 6, using (21) to define t0 > e, we
have that g(t) is increasing for t > t0. Now from (25) we deduce that

e < t0 <
N

p
≤ N

q
< N

and from (28) we get G(N/q) < G(N). This shows that N is GA1. �

Theorem 6 Infinitely many CA numbers are GA1.

Proof. Choose a sufficiently large prime p satisfying (17), and set ε := F (p, 1)
(so that x = p, by (8)). Let N be the largest CA number of parameter ε (so
that p divides N , by (12)). From Lemma 3 part (ii) and (17), we get

logN ≥ (x) = (p) > p+ c
√
p log log log p,

17



so that
log(N/p) > p+ c

√
p log log log p− log p > p+ 1.

Using the lower bound log(1 + t) ≥ t/(1 + t), we get

ε = F (p, 1) =
log

(

1 + 1
p

)

log p
≥ 1

(p+ 1) log p

>
1

(p+ 1) log(p+ 1)
>

1

log(N/p) log log(N/p)

and Lemma 7 implies N is GA1. Since, by Lemma 4, there are infinitely
many primes p satisfying (17), the theorem is proved. �

5.2 CA and not GA1

To study CA numbers that are not GA1, we need a lemma.

Lemma 8 Given a prime p ≥ 3, let N be the largest CA number of parame-

ter ε := F (p, 1). If

(29) ε <
1

logN log logN
,

then N is not GA1.

Proof. As ε = F (p, 1), we have pε = (p + 1)/p = σ(p)/p. Hence, by (12),
inequality (26) becomes an equality when q = p, and so do inequalities (27)
and (28). Therefore, with g and t0 defined by (20) and (21) as in the proof
of Lemma 7, we get that

G(N/p)

G(N)
= exp(g(N/p)− g(N))

and, from Lemma 6, that g(t) is decreasing for t < t0. Then (29) implies
N/p < N < t0, so that G(N) < G(N/p). Thus N is not GA1. �

The CA numbers N such that P (N) ∈ {2, 3, 5, 7, 11, 13, 29, 59, 149} are
not GA1. There are two CA numbers such that P (N) = 23 ; the larger one
is not GA1, while the smaller one is GA1. All other CA numbers satisfying
P (N) < 300 are GA1. (These statements follow by computing all CA num-
bers N with P (N) < 300, and calculating those that are GA1—see §7.)

Theorem 7 Infinitely many CA numbers are not GA1.
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Proof. Choose a sufficiently large prime p satisfying (16), and set ε := F (p, 1)
(so that, from (8), x = p). Let N be the largest CA number of parameter ε
(so that, from (12), p = P (N)). From Lemma 3 part (i) and (16), we get

logN ≤ (p) + c
√
p < p− c

√
p log log log p+ c

√
p < p,

and so

ε =
log(1 + 1

p
)

log p
<

1

p log p
<

1

logN log logN
.

Then Lemma 8 implies N is not GA1. Since there are infinitely many primes p
satisfying (16), the theorem is proved. �

5.3 Odd GA1 numbers

We show that there are infinitely many odd GA1 numbers, and we com-
pute the smallest one.

Let us denote by P0 = {2, 3, 5, 7, 11, 13, 17, . . .} the set of all primes, and
by P a subset of P0. To P, we attach the set

NP := {n ≥ 1 : p | n =⇒ p ∈ P}

and the function

P(x) :=
∑

p∈P, p≤x

log p.

A number N ∈ NP is said to be colossally abundant relative to P (for
short, CAP) if there exists ε > 0 such that

σ(N)

N1+ε
≥ σ(n)

n1+ε
(n ∈ NP).

If M =
∏

p∈P0
pαp is an ordinary CA number of parameter ε, then the factor

N =
∏

p∈P p
αp is CAP , for the same parameter ε, and all CAP numbers can

be obtained in this way.

Theorem 8 There exist infinitely many odd GA1 numbers.

Proof. First, we observe that Lemma 7 remains valid if we replace CA with
CAP , for any set P with at least 2 elements.

We set P = P0 \ {2}. The proof of Theorem 6 remains essentially valid.
We just have to change the lower bound for logN to

logN ≥ P(p) = (p)− log 2
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and the inequality log(N/p) > p+1 still holds, so that we may conclude that
N is GA1. �

The smallest CAP0\{2} number that is GA1 is

ω := 1058462574572984015114271643676625

= 34 ·53 ·72 ·112 ·13·17·19·23·29·31·37·41·43·47·53·59·61·67·71·73.

From our computation (see §7.5), ω is also the smallest odd GA1 number.

Corollary 2 There exist infinitely many GA1 numbers that are not SA.

Proof. This folllows immediately from (5) and Theorem 8. �

Of course, the proof of Theorem 8 works for any set of primes P such
that P0 \ P is finite.

6 Prime factors of GA1 numbers

Here we study prime factors of proper GA1 numbers.

6.1 An upper bound

We need the following upper bound.

Theorem 9 Given a GA1 number N with Ω(N) ≥ 3, let p be a prime factor

of N . Then for any positive integer r ≤ vp(N) we have

p ≤ (r logN)1/r ≤ logN.

Proof. We have G(N/p) ≤ G(N), which implies

(30)
σ(N/p)N

(N/p)σ(N)
≤ log log(N/p)

log logN
=

log(logN − log p)

log logN
·

Note that log logN > log log(N/p) ≥ log log 4 > 0. We also have

log(logN − log p) = log

(

logN

(

1− log p

logN

))

= log logN + log

(

1− log p

logN

)

20



so that

(31)
log(logN − log p)

log logN
= 1−

− log
(

1− log p
logN

)

log logN
·

Further, setting v = vp(N), the left side of (30) can be written as

σ(N/p)N

(N/p)σ(N)
= p

1 + p+ · · ·+ pv−1

1 + p+ · · ·+ pv

= 1− 1

1 + p+ · · ·+ pv
≥ 1− 1

1 + p + · · ·+ pr
·(32)

From (30), (31), and (32), one deduces

(33) pr ≤ 1 + p+ · · ·+ pr ≤ log logN

− log
(

1− log p
logN

) ≤ logN log logN

log p

which yields

(34) pr log p ≤ logN log logN.

Let us assume, ab absurdum, that p > (r logN)1/r. Then we would have

pr log p > (r logN)
1

r
log(r logN) = logN log(r logN) ≥ logN log logN

contradicting (34). Therefore, p ≤ (r logN)1/r holds. Finally, by calculus,
(r logN)1/r is decreasing for r ≥ 1 (because Ω(N) ≥ 3 implies N ≥ 8 and
logN > 2) and the theorem follows. �

6.2 Study of Ω(N) where N is GA1

We show that there are only finitely many proper GA1 numbers N that
have a fixed value of Ω(N).

Theorem 10 If k ≥ 3, then

Πk := #{N : N is GA1 and Ω(N) = k} <∞.

Proof. For a GA1 number N with Ω(N) = k > 2, let us write N = p1p2 · · · pk
with p1 ≤ p2 ≤ · · · ≤ pk. We have N ≤ pkk, so that pk ≥ N1/k holds. But
Theorem 9 yields pk ≤ logN , whence

logN

log logN
≤ k
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and N is bounded. Thus Πk is finite. �

Since log 1060

log log 1060
= 28.03 . . . , a table of GA1 numbers up to 1060 (see §7)

allows us to calculate Πk for k ≤ 28.
We have Πk = 0 if 3 ≤ k ≤ 12, and the following table gives Πk when

13 ≤ k ≤ 28 (see [17, Sequence A201558]).

k = 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Πk = 2 4 2 1 1 2 4 1 2 3 7 7 7 1 4 7

6.3 The exponent of the largest prime factor

First, we observe that the function t 7→ 2t/t is an increasing bijection of
the interval [2,+∞) to itself. Let us introduce the inverse function h defined
for x ≥ 2 by

(35) h(x) = t ⇐⇒ x =
2t

t
·

We shall need the following lemma.

Lemma 9 Let x satisfy x ≥ 2. Then we have 2 ≤ h(x) ≤ 3.08 logx.

Proof. The lower bound results from the definition of h. Let us set t = h(x),
so that x = 2t/t. By noting that (log t)/t ≤ 1/e holds, we get

h(x)

log x
=

t

t log 2− log t
=

1

log 2− (log t)/t
≤ 1

log 2− 1/e
= 3.0743 . . .

which proves Lemma 9. �

Theorem 11 Let N be a GA1 number with Ω(N) ≥ 3. Set R = h(logN),
so that 2R/R = logN . Then N divides the number M =M(N) defined by

(36) M :=

⌊R⌋
∏

r=1

∏

((r+1) logN)1/(r+1)<p≤(r logN)1/r

pr =

⌊R⌋
∏

r=1

∏

p≤(r logN)1/r

p.

Proof. Since the function r 7→ (r logN)1/r is decreasing, this follows from
Theorem 9. �

For example, ifN = ν = 183783600,we compute R = h(log ν) = 7.072 . . .
and find that M = 72ν.
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Theorem 11 allows the computation of proper GA1 numbers—see §7.2
and §7.5.

For the exponent vp(N) of a prime p in the standard factorization of N ,
Theorem 11 provides the upper bound vp(N) ≤ vp(M), which only depends
on the size of N .

We now study the exponent of the largest prime factor of a GA1 number.

Theorem 12 Let N be a GA1 number with Ω(N) ≥ 3, and let p = P (N) be

its largest prime factor. Then vp(N) = 1.

Proof. Suppose on the contrary that v := vp(N) ≥ 2. Then Theorem 9 implies
that N divides the number

Mv =Mv(N) :=





∏

p≤(v logN)1/v

p





v
⌊R⌋
∏

r=v+1

∏

p≤(r logN)1/r

p

with R defined by 2R/R = logN. Thus, from the function r 7→ (r logN)1/r

being decreasing,

logN ≤ logMv = v (v logN)1/v) +

⌊R⌋
∑

r=v+1

((r logN)1/r)

≤ 2((2 logN)1/2) +R((3 logN)1/3).

From Lemmas 9 and 5, it follows that

logN ≤ 1.000028
(

2
√

2 logN + 3.08 log logN(3 logN)1/3
)

≤ 2.83
√

logN + 4.45 log logN(logN)1/3.

Therefore, we have

2.83√
logN

+
4.45

(logN)2/3 log logN
≥ 1

which implies logN ≤ 15.03, N ≤ N0 := 3336369 and R ≤ 6.65, so that
N must divide Mv(N0) for some v in the range 2 ≤ v ≤ 6. But the table

v = 2 3 4 5 6
(v logN0)

1/v = 5.48 3.56 2.78 2.37 2.12
Mv(N0) = 43200 = 263352 1728 = 2633 64 = 26 64 64

shows that if v ≥ 2, then the number Mv(N0) divides M2(N0) = 43200,
contradicting the easily-checked fact that none of the 84 divisors of 43200 is
a proper GA1 number. (In fact, we will see in §7.5 that there is no proper
GA1 number < 183783600.) This proves the theorem. �
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6.4 The largest prime factor of a GA1 number

For a GA1 number, we now study the largest prime factor itself.

Theorem 13 For GA1 numbers N with Ω(N) ≥ 3, the largest prime factor

satisfies

P (N) ∼ logN (N → ∞).

Proof. Let N be a GA1 number satisfying Ω(N) ≥ 3 and let p := P (N) be
its largest prime factor. From Theorem 9, we know that

(37) p ≤ logN.

It remains to get a lower bound for p. The proof resembles that of Theorem 12.
Since N divides M given by (36) and p = P (N), by Lemma 5 we have

logN ≤ (p) +
R
∑

r=2

((r logN)1/r)

≤ (p) + ((2 logN)1/2) +O(R(logN)1/3)

≤ (p) +O(
√

logN).(38)

From the Prime Number Theorem and from (37), we get

(p) = p+O(p exp(−c
√

log p)) = p+O(logN exp(−c
√

log logN)).

Therefore, (38) becomes

logN ≤ p +O(logN exp(−c
√

log logN)),

which, together with (37), completes the proof of the theorem. �

7 Computation of GA1 numbers

In this section we give several versions of an algorithm to compute GA1
numbers.

7.1 The Gronwall quotient

We begin with a lemma and a definition.
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Lemma 10 Let n be a positive integer with Ω(n) ≥ 3. Let q and p be prime

factors of n satisfying q < p and vq(n) ≤ vp(n). Then we have

G(n/q) < G(n/p).

Proof. We have

σ(n/q)/(n/q)

σ(n)/n
= q

σ(n/q)

σ(n)
=

q + · · ·+ qvq(n)

1 + q + · · ·+ qvq(n)
= 1− 1

1 + q + · · ·+ qvq(n)

≤ 1− 1

1 + p + · · ·+ pvp(n)
=
σ(n/p)/(n/p)

σ(n)/n

which implies σ(n/q)
n/q

≤ σ(n/p)
n/p

.

The lemma follows from log log(n/q) > log log(n/p), since Ω(n) ≥ 3 im-
plies log log(n/p) ≥ log log 4 > 0. �

We define the Gronwall quotient Q(n) of a composite integer n to be the
number

Q(n) := max
p|n

p prime

G(n/p)

G(n)
= max

p|n
p prime

pvp(n)+1 − p

pvp(n)+1 − 1

log log n

log log(n/p)
·

GA1 numbers N are characterized by Q(N) ≤ 1. For example, the “Q(r)”
column in Table 1 shows that the only GA1 number r ∈ R is r = 4.

Let us introduce a subset S(n) of the set of the prime divisors of n. The
elements of S(n) are defined by induction. The largest prime factor of n is the
first element q1 of S(n). Now let us assume that i ≥ 2 and that the elements
q1, q2, . . . , qi−1 ∈ S(n) are known.

If, for all primes p that divide n and are smaller than qi−1, we have
vp(n) ≤ vqi−1

(n), then there are no further elements of S(n), and we get
S(n)={q1, q2, . . . , qi−1}.

If not, then the element qi ∈ S(n) is defined as the largest prime factor
of n that satisfies qi < qi−1 and vqi(n) > vqi−1

(n).
From Lemma 10, if Ω(n) ≥ 3 we get

Q(n) = max
p∈S(n)

G(n/p)

G(n)
= max

p∈S(n)

pvp(n)+1 − p

pvp(n)+1 − 1

log log n

log log(n/p)
·
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7.2 A first algorithm

To compute all proper GA1 numbers N ≤ x for a given x, we first calcu-
late M =M(x), defined by

M :=

⌊R⌋
∏

r=1

∏

p≤(r log x)1/r

p,

with R such that (R log x)1/R = 2. Any GA1 number N ≤ x with Ω(N) ≥ 3
is a divisor of M (see Theorem 11).

Thus a first version of the algorithm computes all composite divisors N
of M, and for each of them calculates G(N/p)/G(N) for all p ∈ S(N). If
for some p ∈ S(N) we have G(N/p)/G(N) > 1, we stop : N is not GA1. If
not, we compute the Gronwall quotient Q(N) (which involves all primes p
dividing N) : N is GA1 if and only if Q(N) ≤ 1. 3.

7.3 A second algorithm

A more elaborate version of the algorithm tests only a small number of
the divisors of M . First, we define

M1 :=

⌊R⌋
∏

r=2

∏

p≤(r log x)1/r

p

so that M2 := M/M1 is squarefree. Let us write M2 = p1p2 · · ·ps where
p1, p2, . . . , ps are consecutive primes in ascending order.

As a first step, we compute the set D0 of all the composite divisors of M1

and test each of them for GA1 by the method described above.
A divisor of M whose largest prime factor is pi is equal to d pi, where d is

a divisor of M whose largest prime factor is < pi. Therefore, we construct by
induction on i = 1, 2, . . . , s the set D′

i containing those divisors of M whose
largest prime factor is pi, and the set Di containing the divisors of M whose
largest prime factor is ≤ pi. Then D′

i is equal to piDi−1 and Di = D′
i ∪ Di−1.

From Theorem 9, for i = 1, 2, . . . , s, we only have to test the elements of D′
i

that are greater than exp(pi).

3. To avoid roundoff errors, we carry out our computation in floating point arithmetic
with 20 decimal digits and choose a small ε (typically, ε = 10−5). In the first step, we keep
the N ’s satisfying Q(N) ≤ 1 + ε. For these N ’s, we start the computation again with 40
digits.
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7.4 A third algorithm

Let us say that a divisor d ∈ Di (with 0 ≤ i < s) is bad if, for every
j satisfying i < j ≤ s, all multiples of d belonging to Dj are smaller than
exp(pj).

The largest multiple of d belonging to Dj is d pi+1pi+2 · · ·pj , so that d is
bad if and only if

log d < δi := (pi) + min
i<j≤s

(pj − (pj)).

Therefore, we write Gi ⊂ Di for the set obtained from Di by removing the
bad divisors, i.e., those divisors d satisfying d < ∆i := exp(δi).

Furthermore, we construct G ′
i+1 and Gi+1 by removing from pi+1Gi and

pi+1Gi ∪ Gi, respectively, those divisors d that satisfy d < ∆i+1 = exp(δi+1).
For i = 1, 2, . . . , s, it remains to test the elements of Gi whose largest

prime factor is equal to pi, that is, the elements of G ′
i.

7.5 Results

The smallest proper GA1 number is

ν = 183783600 = 24 · 33 · 52 · 7 · 11 · 13 · 17.

We compute that M =M(ν) = 8 · 19 · ν and we find that there is no proper
GA1 number N < ν.

Using the third algorithm, we have computed all GA1 numbers N ≤ 1060

with Ω(N) ≥ 3.

These results as well as the Maple code can be found on the web site
http://math.univ-lyon1.fr/~nicolas/GAnumbers.html.

We hope to present soon a fourth algorithm, more sophisticated, and able
to compute GA1 numbers up to 10120.

8 The number of GA1 numbers up to x

Let Q1(x) be the number of proper GA1 numbers N ≤ x. From (36) we
know that Q1(x) does not exceed the number τ(M) of divisors of

M =M(x) :=

⌊R⌋
∏

r=1

∏

p≤(r log x)1/r

p
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with (R log x)1/R = 2. It is easy to see that logM ∼ log x as x → ∞, and
from the estimation of the large values of the function τ (cf. [8] or [11]), it
follows that

Q1(x) ≤ exp

(

c
log x

log log x

)

for some positive c. By estimating the number of good divisors of M (that
is, divisors that are not bad—see §7.4), it might be possible to improve the
above estimate.

It seems more difficult to get a lower bound for Q1(x). We hope to return
to these questions in another article.
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