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Abstract

Let �(n) = ∑

d∣n d be the sum of divisors function and 
 = 0.577… the
Euler constant. In 1984, Robin proved that, under the Riemann hypothesis,
�(n)∕n < e
 log log n holds for n > 5040 and that this inequality is equivalent
to the Riemann hypothesis. Under the Riemann hypothesis, Ramanujan gave
the asymptotic upper bound

�(n)
n

⩽ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n) +

(1)
√

log n log log n

)

with S1(x) = ∑

� x
�−1∕(�(1 − �)) =

∑

� x
�−1∕|�|2 where � runs over the non-

trivial zeros of the Riemann � function.
In this paper, an effective form of the asymptotic upper bound of Ramanu-

jan is given, which provides a slightly better upper bound for �(n)∕n than
Robin’s inequality.
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1 Introduction
Let n be a positive integer, �(n) = ∑

d∣n d the sum of its divisors and 
 = 0.577…
the Euler constant. In 1913, Gronwall proved that �(n)∕n ⩽ (1 + o(1))e
 log log n
(cf. [19]). In 1982, under the Riemann hypothesis, Robin proved that

for n > 5040,
�(n)
n

< e
 log log n (1.1)

holds and, moreover, that (1.1) is equivalent to the Riemann hypothesis (cf. [36,
37]).

Much earlier, in his PHD thesis, Ramanujan worked on the large values taken
by the function �(n). In the notes of the book Collected Papers of Ramanujan,
about the paper Highly Composite Numbers (cf. [33]), it is mentioned “The London
Mathematical Society was in some financial difficulty at the time, and Ramanujan
suppressed part of what he had written in order to save expense”. After the death
of Ramanujan, all his manuscripts were sent to the University of Cambridge (Eng-
land) where they slept in a closet for a long time. They reappeared in the 1980s and,
among them, handwritten by Ramanujan, (see [35, 280–312]) the suppressed part of
“Highly Composite Numbers”. A typed version can be found in [34] or in [2, Chap-
ter 8]. For the history of this manuscript, see the foreword of [34], the introduction
of Chapter 8 of [2] and [29].

In this suppressed part, under the Riemann hypothesis, Ramanujan gave the
asymptotic upper bound

�(n)
n

⩽ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n) +

(1)
√

log n log log n

)

(1.2)

with (cf. [34, Section 65]),

S1(x) = −
∑

�

x�−1

�(� − 1)
= 1
x
∑

�

x�

|�|2
(1.3)

where � runs over the non-trivial zeros of the Riemann � function. Under the Rie-
mann hypothesis, following Ramanujan in [33, Equation (226)], we may write

|S1(x)| ⩽
1
√

x

∑

�

1
�(1 − �)

= 1
√

x

∑

�

(1
�
+ 1
1 − �

)

= 2
√

x

∑

�

1
�
= �

√

x
(1.4)
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with
� = 2 + 
 − log(4�) = 0.046 191 417 932 242 0… (1.5)

where 
 is the Euler constant. The value of � = 2
∑

� 1∕� can also be found in
several books, for instance [15, p. 67] or [12, p. 272]. See also [3, p. 9–10]. We
prove:
Theorem 1.1. (i) Under the Riemann hypothesis, for n ⩾ 2,

�(n)
n

⩽ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n)

+ 3.789
√

log n log log n
+
0.026 log log n

log2∕3 n

)

. (1.6)

(ii) If the Riemann hypothesis is not true, there exist infinitely many n’s for which
(1.6) does not hold. In other words, (i) is equivalent to the Riemann hypothesis.

(iii) Independently of the Riemann hypothesis, there exist infinitely many n’s such
that

�(n)
n

⩾ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n)

+ 0.9567
√

log n log log n
−
0.48 log log n
log2∕3 n

)

. (1.7)

From (1.6) and (1.4) it follows
�(n)
n

⩽ e

(

log log n + 1
√

log n

(

− 2(
√

2 − 1) + � + 3.789
log log n

+
0.026 log log n

log1∕6 n

))

.

(1.8)
If n0 = 3.98…1080 is the root of

−2(
√

2 − 1) + � + 3.789
log log n0

+
0.026 log log n0

log1∕6 n0
= 0,

then (1.8) is better than Robin’s result (1.1) only for n > n0. So, to study the be-
haviour of large values of �(n)∕n, for n ⩾ 2, we define �(n) by

�(n)
n

= e

(

log log n −
�(n)

√

log n

)

. (1.9)
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k �k �(�k)
1 ∗∗ 24325…7 = 5040 −0.0347834895…
2 ∗ 25325…7 = 10080 0.09563797587…
3 ∗∗ 24325…11 = 55440 0.1323247679…
4 ∗ 25325…11 = 110880 0.2169221889…
5 ∗∗ 24325…13 = 720720 0.2575558824…
6 ∗∗ 25325…13 = 1441440 0.2990357813…
7 ∗ 24335…13 = 2162160 0.3189756880…
8 ∗∗ 25335…13 = 4324320 0.3442304679…
9 ∗∗ 2533527…19 = 6.98…109 0.3912282440…
10 ∗∗ 2533527…23 = 1.60…1011 0.4044234073…
11 ∗∗ 2633527…23 = 3.21…1011 0.4167364286…
12 ∗ 2733527…23 = 6.42…1011 0.4911990553…
13 ∗∗ 2633527…29 = 9.31…1012 0.4939642676…
14 ∗∗ 2633527211…31 = 2.02…1015 0.5250314374…
15 ∗∗ 2634527211…31 = 6.06…1015 0.5436913001…
16 ∗∗ 2634527211…37 = 2.24…1017 0.5704418438…

Figure 1: Values of �k

In Table 1, we give the value of �(�k) for a sequence (�k)1⩽k⩽16. The SA numbers
(cf. below (4.2)) are marked by one star and the CA numbers (cf. Section 4.1) by
two.
Corollary 1.2. Let us assume the Riemann hypothesis.

(i) For n > �16,
�(n)
n

⩽ e

(

log log n − 0.582
√

log n

)

. (1.10)

(ii) For 1 ⩽ k ⩽ 15 and n > �k,

�(n)
n

⩽ e

(

log log n −
�(�k+1)
√

log n

)

.

Let '(n) denote the Euler function. It is known that, for all n, �(n)∕n ⩽ n∕'(n)
holds and that

lim sup
n→∞

�(n)
n log log n

= lim sup
n→∞

n
'(n) log log n

= e
 .
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But, there are infinitely many n’s such that n∕'(n) > e
 log log n (cf. [26, 28]) while
there are infinitely many n’s such that �(n)∕n > e
 log log n only if the Riemann
hypothesis fails (cf. [37, 36]). The large values of �(n)∕n and n∕'(n) depend on the
product ∏p⩽x(1 − 1∕p). We shall use below the formula of [28, (2.16)], valid for
x ⩾ 109

0.055
√

x log2 x
⩽
∑

p⩽x
log

(

1 − 1
p

)

+ 
 + log log �(x) + 2
√

x log x
+
S1(x)
log x

⩽ 2.062
√

x log2 x
,

(1.11)
where �(x) = ∑

p⩽x log p is the Chebyshev function. Other inequalities about �(n)
and '(n) can be found in [27].

The works of Robin and Ramanujan have aroused several interesting papers, cf.
[4, 5, 9, 10, 11, 20, 22, 23, 24, 40, 41]. I also recommend the reading of Chapters
6–9 of the book by Broughan [6].

1.1 Notation
− �(x) =

∑

p⩽x
log p and  (x) = ∑

pk⩽x log p are the Chebyshev functions.

− �(x) =
∑

p⩽x
1 is the prime counting function.

−  = {2, 3, 5,…} denotes the set of primes. p1 = 2, p2 = 3,… , pj is the jthprime. For p ∈  and n ∈ ℕ, vp(n) denotes the largest exponent such that
pvp(n) divides n.

− If lim
n→∞

un = +∞, vn = Ω±(un) is equivalent to lim supn→∞ vn∕un > 0 and
lim inf n→∞ vn∕un < 0.

We use the following constants:
− �(0) = 109 + 7 is the smallest prime exceeding 109, log �(0) = 20.723265…,
− N (0) is defined in (4.37), and the numbers (�(0)k

)

2⩽k⩽33 in (4.36).
− For convenience, we sometimes write L for logN , � for log logN , L0 for
logN (0) and �0 for log logN (0).

5



We often implicitly use the following results: for u > 0, v > 0, w ∈ ℝ,

t↦
(log t −w)u

tv
is decreasing for t > exp(w + u∕v), (1.12)

max
t⩾ew

(log t −w)u

tv
=
(u
v

)u
exp(−u − vw), (1.13)

u(1 − u0∕2) ⩽ u − u2∕2 ⩽ log(1 + u) ⩽ u, 0 ⩽ u ⩽ u0 < 1, (1.14)
− u
1 − u0

⩽ − u
1 − u

⩽ log(1 − u) ⩽ −u, 0 ⩽ u ⩽ u0 < 1, (1.15)

−u − u2

2(1 − u0)
⩽ −u − u2

2(1 − u)
⩽ log(1 − u) ⩽ −u, 0 ⩽ u ⩽ u0 < 1, (1.16)

1
t + 1

< 1
t + 1∕2

< log
(

1 + 1
t

)

⩽ 1
t
, t > 0, (1.17)

1 − u ⩽ exp(−u) ⩽ 1 − u + u2∕2, u > 0 (1.18)
and, for 0 ⩽ u ⩽ u0 < 1, 0 ⩽ v ⩽ v0 < 1,

1 + u − v ⩽ 1
(1 − u)(1 + v)

⩽ 1 + u
1 − u0

− (1 − v0)v. (1.19)

1.2 Plan of the article
The proof of Theorem 1.1 follows the proofs of (1.1) in [37] and of (1.2) in [34,
Section 71], but in a more precise way.

In Section 2, we recall various results about prime numbers and functions �(x),
 (x), �(x) and, in Lemma 2.1, the sum∑

p⩾y log(1 − 1∕p2) is estimated.
Section 3 is devoted to the study of S1(x) defined by (1.3). A formula allowing

us to compute S1(x) is given in Lemma 3.2 while, in Lemma 3.4, we give an up-
per bound for the difference S1(x) − S1(y) and in Lemma 3.5, it is proved that the
mapping x↦ 0.16 log(x) + S1(x) is increasing for x ⩾ 3.

Section 4 studies the colossally abundant numbers (CA). As these numbers look
like very much to the superior highly composite (SHC) numbers, the presentation
of SHC numbers given in [30] is followed. The computation of CA numbers is
explained in Section 4.2. The notion of benefit, very convenient for computation on
numbers with a large sum of divisors, is explained in Section 4.6. In Section 4.7,
an argument of convexity is given, that allows to reduce certain computation for all
integers only to CA numbers. To each CA number N is associated a number � =
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�(N) (see Definition 4.3) close to logN . In Section 4.8, which is a little technical,
are given upper and lower bounds of the difference f (�) − f (logN) for several
functions f .

The proof of Theorem 1.1 is given in Section 5. First, in Proposition 5.1, it
is proved that (1.6) and (1.7) hold when n is a CA number N ⩾ N (0) (defined
in (4.37)). This proposition is the crucial part of the paper and the main tools to
prove it are the estimates of the sums ∑p⩾y log(1 − 1∕p2) (cf. (2.10) and (2.11))
and ∑

p⩽x log(1 − 1∕p) (cf. (1.11)). Then, it follows easily that (1.6) also holds
when n is between two consecutive CA numbers ⩾ N (0). The case n < N (0) is
treated by computation. The argument of convexity given in Section 4.7 restricts
the computation to CA numbers.

The proof (mainly computational) of Corollary 1.2 is exposed in Section 6. For
n ⩾ N (0), (i) follows easily from Theorem 1.1 (i). For n < N (0), here also, the argu-
ment of convexity reduces the computation to CA numbers. To get the array of Table
1, the benefit method (cf. Section 4.6) is used to find the 161 integers n satisfying
5040 ⩽ n ⩽ �16 = 2.24…1017 and �(n)∕n ⩾ e
(log log n − 0.582∕

√

log n).
The last Section presents two open problems.

2 Useful results
In [8, Theorem 2], Büthe has proved

�(x) =
∑

p⩽x
log p < x for x ⩽ 1019 (2.1)

and
�(x) > x − 1.94

√

x for 1427 < x ⩽ 1019. (2.2)
The results (2.1) and (2.2) have been improved in [7]. It is shown that

|�(x) − x| ⩽
√

x∕(8� log2 x)

holds for all 599 ⩽ x ⩽ X where X is the largest number for which
4.92

√

X∕ logX ⩽ H,

whereH is the height to which the Riemann hypothesis has been verified. This, in
conjunction with the paper by Platt and Trudgian [32], which establishes the Rie-
mann hypothesis up to 3 ⋅ 1012, should give a very good error term and would allow
a better estimate in Lemma 2.1 below.
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Platt and Trudgian in [31, Corollary 2] have also shown that
�(x) < (1 + �)x with � = 7.5 × 10−7 for x > 0. (2.3)

We also know that (cf. [38, Theorem 10])
�(x) ⩾ 0.89x for x ⩾ 227 and �(x) ⩾ 0.945x for x ⩾ 853, (2.4)

that (cf. [38, (3.6)])
�(x) =

∑

p⩽x
1 < 1.26x∕ log x for x > 1 (2.5)

and that (cf. [13, Theorem 4.2])
|�(x) − x] < x∕ log3 x for x ⩾ 89 967 803. (2.6)

Under the Riemann hypothesis, we use the upper bounds (cf. [39, Theorem 10,
(6.3)])

| (x) − x| ⩽ 1
8�

√

x log2 x for x ⩾ 73.2 (2.7)
and

|�(x) − x| ⩽ 1
8�

√

x log2 x for x ⩾ 599. (2.8)
It would be possible to slightly improve the numerical results of this paper by using
the formula of Dusart (cf. [14, Proposition 2.5])

|�(x) − x| ⩽ 1
8�

√

x(log x − log log x − 2) log x for x ⩾ 11977

improving on Schoenfeld’s formula (cf. [39, Theorem 10, (6.1)])
|�(x) − x| ⩽ 1

8�
√

x(log x − 2) log x for x ⩾ 23 ⋅ 108

but it would make the presentation of algebraic calculations more technical.
Lemma 2.1. For y ⩾ 108,

1
y log y

− 1
y log2 y

+ 2
y log3 y

− 9
y log4 y

⩽
∑

p⩾y

1
p2

⩽ 1
y log y

− 1
y log2 y

+ 2
y log3 y

− 2.07
y log4 y

. (2.9)
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For y > 24317,
∑

p⩾y
log

(

1 − 1
p2
)

⩽ − 1
y log y

+ 1
y log2 y

− 2
y log3 y

+ 10.26
y log4 y

(2.10)

and, for y > 19373,
∑

p⩾y
log

(

1 − 1
p2
)

⩾ − 1
y log y

+ 1
y log2 y

− 2
y log3 y

+ 2
y log4 y

. (2.11)

Proof. By Stieltjes’s integral,
∑

p⩾y

1
p2
= ∫

∞

y

d[�(t)]
t2 log t

= −
�(y)
y2 log y

+ ∫

∞

y

�(t)(2 log t + 1)
t3 log2 t

dt

and, for y ⩾ 108, from (2.6),
∑

p⩾y

1
p2

⩽ −
y(1 − 1∕ log3 y)

y2 log y
+ ∫

∞

y

t(1 + 1∕ log3 t)(2 log t + 1)
t3 log2 t

dt

= −A1 + A4 + 2J1 + J2 + 2J4 + J5

by using the notation

An =
1

y logn y
and Jn = ∫

∞

y

dt
t2 logn t

= An − n Jn+1.

We get (cf. [43])
−A1 + A4 + 2J1 + J2 + 2J4 + J5 = A1 − A2 + 2A3 − 3A4 + 17A5 − 85J6

and the upper bound of (2.9) follows from the positivity of J6 and from
−3A4 + 17A5 = (−3 + 17∕ log y)A4 ⩽ (−3 + 17∕ log 108)A4 = −2.077…A4.

Similarly,
∑

p⩾y

1
p2

⩾ −A1 − A4 + 2J1 + J2 − 2J4 − J5 = A1 − A2 + 2A3 − 9A4 + 31J5 ,

which proves the lower bound of (2.9), since J5 > 0 holds.

9



To prove (2.10) and (2.11), it is convenient to set

g(y) =
∑

p⩾y
log

(

1 − 1
p2
)

and f (a, y) = − 1
y log y

+ 1
y log2 y

− 2
y log3 y

+ a
y log4 y

.

Note that, for y fixed > 1, f (a, y) is increasing in a. Moreover, the derivative df∕dy
is equal to (cf. [43])

df
dy

=
ℎ(a, Y )
y2Y 5

with ℎ(a, Y ) = Y 4 − aY + 6Y − 4a and Y = log y.

For a ⩽ 13 and y ⩾ 19, )ℎ∕)Y = 4Y 3 − a + 6 ⩾ 4 log3 19 − 7 > 0, ℎ(a, Y ) is
increasing in Y and ℎ(a, Y ) ⩾ ℎ(13, log 19) = log4 19−7 log 19−52 = 2.55… > 0
(cf. [43]), so that, for a fixed ⩽ 13, f (a, y) is increasing in y for y ⩾ 19.

One has
1
p2

⩽ − log
(

1 − 1
p2
)

=
∑

k⩾1

1
kp2k

< 1
p2
+
∑

k⩾2

1
2p2k

= 1
p2
+ 1
2p2(p2 − 1)

,

which, from the lower bound of (2.9), implies
g(y) ⩽ f (9, y) for y ⩾ 108. (2.12)

Furthermore,
∑

p⩾y

1
2p2(p2 − 1)

⩽ 1
2(y2 − 1)

∑

p⩾y

1
p2

⩽ 1
y2

∑

n⩾y

1
n2

⩽ 1
y2 ∫

∞

y−1

dt
t2

= 1
y2(y − 1)

⩽ 2
y3
=
2 log4 y
y2

A4 ⩽
2 log4(108)
1016

A4 < 0.07A4,

which, from the upper bound of (2.9), proves
g(y) ⩾ f (2, y) for y ⩾ 108. (2.13)

Let us assume that 19 ⩽ p′ < y ⩽ p′′ where p′ < p′′ are two consecutive primes.
As p ⩾ y is equivalent to p ⩾ p′′, g(y) is equal to g(p′′). Now, a(y), a(p′) and a(p′′)
are defined by

g(y) = g(p′′) = f (a(y), y) = f (a(p′), p′) = f (a(p′′), p′′).
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If a(p′′) ⩽ 13, then
g(y) = f (a(y), y) = f (a(p′′), p′′) ⩾ f (a(p′′), y),

whence a(y) ⩾ a(p′′). Similarly, if a(p′) ⩽ 13, then
g(y) = f (a(y), y) = f (a(p′), p′) < f (a(p′), y)

implies a(y) < a(p′), so that a(p′′) ⩽ a(y) < a(p′) holds. The formula

g(y) =
∑

p⩾p′′
log

(

1 − 1
p2
)

= log
( 6
�2

)

−
∑

p⩽p′
log

(

1 − 1
p2
)

allows a numerical computation of g(p′′) = g(y), a(p′) and a(p′′). By computation
(cf. [43]), one observes that, for 1669 < p′ < 108, a(p′′) < a(p′) < 12.79 < 13,
that, for 24317 < y ⩽ 108, a(y) < 10.26 while, for 19373 < y ⩽ 108, a(y) > 2,
which, with (2.12) and (2.13), completes the proof of (2.10) and (2.11).
Lemma 2.2. Let x be a real number ⩾ 2 and c be such that �(t) ⩾ ct for t ⩾ x (cf.
(2.4)). Then

∑

p⩾x

1
p3

⩽ 1
2x2 log x

(

(1 + �)
(

3 + 1
log x

)

− 2c
)

, (2.14)

where � is defined by (2.3). As an Application, if x ⩾ 1418, then,
∑

p⩾x

1
p3

⩽ 0.624
x2 log x

⩽ 0.086
x2

. (2.15)

Proof. By Stieltjes’s integral,
∑

p⩾x

1
p3
= ∫

∞

x

d[�(t)]
t3 log t

= −
�(x)

x3 log x
+ ∫

∞

x

�(t)(3 log t + 1)
t4 log2 t

dt

⩽ − c
x2 log x

+ (1 + �)
3 log x + 1
log2 x ∫

∞

x

dt
t3
= − c

x2 log x
+ (1 + �)

3 log x + 1
2x2 log2 x

,

which proves (2.14).
From (2.4), for x ⩾ 1418, c = 0.945 can be chosen and (1+�)(3+1∕ log(1418))∕2−

c = 0.6239…, which proves (2.15).
It is possible to get a better upper bound for ∑p⩾x 1∕p3 by copying the proof of

Lemma 2.1 with an exponent 3 instead of 2.

11



Lemma 2.3. Let us denote by pi the ith prime. Then, for pi ⩾ 127, we have

pi+1∕pi ⩽ 149∕139 = 1.0719… (2.16)
We order the prime powers pm, with m ⩾ 1, in a sequence (ai)i⩾1 = (2, 3, 4, 5, 7, 8,
9, 11, 13, 16, 17,…). Then, for ai ⩾ 127,

ai+1∕ai ⩽ 1.072. (2.17)
Proof. In [13, Proposition 5.4], it is proved that, for x ⩾ 89693, there exists a prime
p satisfying x < p ⩽ x(1 + 1∕ log3 x). This implies that for pi ⩾ 89693, we have
pi+1 ⩽ pi + pi∕ log

3 pi and
pi+1∕pi ⩽ 1 + 1∕ log

3 pi ⩽ 1 + 1∕ log
3 89693 = 1.000674…

For 2 ⩽ pi < 89693, the computation of pi+1∕pi completes the proof of (2.16).
If pj is the largest prime ⩽ ai, then ai+1 ⩽ pj+1 holds, so that, by (2.16), for

ai ⩾ 127,
ai+1∕ai ⩽ pj+1∕pj ⩽ 1.072

holds, which proves (2.17) (cf. [43]).

3 Study of the function S1(x) defined by (1.3)
Lemma 3.1. Let (x) =

∑

pk⩽x log p be the Chebyshev function. If a, b are fixed real
numbers satisfying 1 ⩽ a < b < ∞, and g any function with a continuous derivative
on the interval [a, b], then

∑

�
∫

b

a

g(t)t�

�
dt = ∫

b

a
g(t)

[

t −  (t) − log(2�) − 1
2
log

(

1 − 1
t2
)]

dt, (3.1)

where � runs over the non-trivial zeros of the Riemann � function.

Proof. This is Théorème 5.8(b) of [17, p.169] or Theorem 5.8(b) of [16, p.162].
Lemma 3.2. For x > 1, S1(x) defined by (1.3) satisfies

S1(x) = −
∑

�

x�−1

�(� − 1)

= ∫

x

1

 (t)
t2
dt − log x + 1 + 
 −

log(2�)
x

+
∞
∑

k=1

1
2k(2k + 1)x2k+1

.
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Proof. Applying Lemma 3.1 with g(t) = 1∕t2, a = 1, b = x and, (cf. (1.5)), � =
∑

� 1∕(�(1 − �)) = 2 − 
 − log(4�) yields

S1(x)−� =
∑

�
∫

x

1

t�−2

�
dt =∫

x

1

[

 (t) − t + log(2�) + 1
2
log

(

1 − 1
t2
)] dt

t2
. (3.2)

From the expansion in power series (cf. [43]),

∫

x

1

log(1 − 1∕t2)
2t2

dt =
∞
∑

k=1

1
2k(2k + 1)x2k+1

−
∞
∑

k=1

( 1
2k
− 1
2k + 1

)

=
∞
∑

k=1

1
2k(2k + 1)x2k+1

+ log 2 − 1,

(3.2) completes the proof of Lemma 3.2. Note that Lemma 3.2 allows the numerical
computation of S1(x), cf. [43]. As the mapping � ↦ 1 − � is a permutation of the
non-trivial roots of the Riemann � function, S1(x) = S1(1∕x) allows the computa-
tion of S1(x) for 0 < x < 1.
Lemma 3.3. For t ⩾ 2, the function Y (t) = log(1 − 1∕t2)∕(2t) is increasing and
satisfies 0 < Y ′(t) < 1∕(2t2).

Proof. From Y = −
∑∞

k=1 1∕(2kt
2k+1), for t ⩾ 2, one deduces

Y ′ =
∞
∑

k=1

2k + 1
2kt2k+2

⩽
∞
∑

k=1

3
2t2k+2

⩽ 3
2t2

∞
∑

k=1

1
22k

= 1
2t2
,

which completes the proof of Lemma 3.3.
Lemma 3.4. Let S1 be defined by (1.3) and x and y be real numbers. Then, under
the Riemann hypothesis,

|S1(x) − S1(y)| ⩽ 0.0515
|x − y| log2 y

y3∕2
for 73.2 ⩽ y ⩽ x (3.3)

and
|

|

|

|

S1(x)
log x

−
S1(y)
log y

|

|

|

|

⩽
0.0521|x − y| log y

y3∕2
for 73.2 ⩽ y ⩽ x. (3.4)
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Proof. From (2.7) and (1.12), for 73.2 ⩽ y ⩽ x

|

|

|

|

|

∫

x

y

 (t) − t
t2

dt
|

|

|

|

|

⩽ ∫

x

y

log2 t
8� t3∕2

dt ⩽
|x − y| log2 y
8� y3∕2

, (3.5)

∫

x

y

dt
t2
= 1
y
−1
x
=
x − y
x y

⩽ |x − y|
y2

(3.6)
and
|

|

|

|

|

∫

x

y
−
log(1 − 1∕t2)

2t2
dt
|

|

|

|

|

= ∫

x

y

1
2t2

(

∞
∑

j=1

1
jt2j

)

dt ⩽ |x − y|
2y2

∞
∑

j=1

1
jy2j

⩽ |x − y|
2y2

∞
∑

j=1

1
y2j

=
|x − y|

2y2(y2 − 1)
, (3.7)

whence, from (3.2), (3.5), (3.6) and (3.7), with y0 = 73.2,

|S1(x) − S1(y)| ⩽ |x − y|
( log2 y
8� y3∕2

+
log(2�)
y2

+ 1
2y2(y2 − 1)

)

=
|x − y| log2 y

y3∕2
( 1
8�

+ 1
√

y log2 y

(

log(2�) + 1
2(y2 − 1)

))

⩽
|x − y| log2 y

y3∕2
( 1
8�

+ 1
√

y
0
log2 y0

(

log(2�) + 1
2(y20 − 1)

))

= 0.0514…
|x − y| log2 y

y3∕2

which proves (3.3). Finally, from (3.3) and (1.4),
|

|

|

|

S1(x)
log x

−
S1(y)
log y

|

|

|

|

⩽
|

|

|

|

S1(x)
log y

−
S1(y)
log y

|

|

|

|

+
|

|

|

|

S1(x)
log x

−
S1(x)
log y

|

|

|

|

=
|S1(x) − S1(y)|

log y
+ |S1(x)|∫

x

y

dt
t log2 t

⩽
0.0515|x − y| log y

y3∕2
+ �
√

y
|x − y|
y log2 y

=
|x − y| log y

y3∕2
(

0.0515 + �
log3 y

)

,

which, as from (1.5), �∕ log3 y ⩽ 0.0462∕ log3 73.2 ⩽ 0.0006, completes the proof
of (3.4) and of Lemma 3.4.
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Lemma 3.5. The function

ℎ1(x) = 0.16 log x + S1(x), (3.8)
where S1(t) is defined by (1.3), is increasing for x ⩾ 3.

Proof. Let us use the sequence (ai)i⩾1 introduced in Lemma 2.3. From (3.2), ℎ1(x)is continuous for x ⩾ 1 and differentiable on x ∈ (ai, ai+1), so it suffices to prove
that ℎ1(x) is increasing on each interval (ai, ai+1) for ai ⩾ 3.Let x ∈ (ai, ai+1). FromLemma 3.2with the notation Y (x) = log(1−1∕x2)∕(2x),

ℎ′1(x) =
1
x

(

0.16 +
 (ai) + log(2�)

x
− 1 + Y (x)

)

and, from Lemma 3.3,

ℎ′1(x) ⩾
1
x

(

0.16 +
 (ai) + log(2�)

ai+1
− 1 + Y (ai)

)

. (3.9)

For each ai satisfying 3 ⩽ ai ⩽ 127, the smallest value of the parenthesis of (3.9) is
> 0.0033 (cf. [43]) and thus positive. For ai ⩾ 128, from (2.17) and (2.7),

 (ai) + log(2�)
ai+1

⩾
ai
ai+1

(

1 −
log2 ai
8�

√

ai

)

⩾ 1
1.072

(

1 −
log2 128

8�
√

128

)

⩾ 0.855.

From Lemma 3.3, Y (ai) ⩾ Y (128) = −2.38…10−7 so that (3.9) yields ℎ′1(x) ⩾
0.16 + 0.855 − 1 − 2.4 × 10−7 > 0.0149 > 0, which ends the proof of Lemma
3.5.
Lemma 3.6. Let a ⩾ 0.75, b ⩽ 3.9 and c ⩽ 0.1. The function

G(t) = G(a, b, c, t) = log t − a
√

t
+ b
√

t log t
+
c log t
t2∕3

(3.10)

is increasing for t ⩾ 6 and concave for t ⩾ 10, while the function

H(t) = H(a, b, c, t) = log t − a
√

t
+ b
√

t log t
+ S1(t) +

c log t
t2∕3

, (3.11)

where S1(t) is defined by (1.3), is increasing for t ⩾ 6.
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Proof. Let us set
g1(u, v, t) = u log t + v

√

t log t
, (3.12)

g′1(u, v, t) =
dg1(u, v, t)

dt
= 1
2t

(

2u − v
√

t log t
− 2v
√

t log2 t

)

,

g′′1 (u, v, t) = − 1
4t2

(

4u − 3v
√

t log t
− 8v
√

t log2 t
− 8v
√

t log3 t

)

.

For u ⩾ 0.8, v ⩽ 3.3 and t ⩾ 6,

g′1(u, v, t) ⩾
1
2t

(

1.6 − 3.3
√

6 log 6
− 6.6
√

6 log2 6

)

= 0.0088…
2t

> 0 (3.13)

and, for u ⩾ 0.95, v ⩽ 3.3 and t ⩾ 10,

g′′1 (u, v, t) ⩽ − 1
4t2

(

3.8 − 9.9
√

10 log 10
− 26.4
√

10 log2 10
− 26.4
√

10 log3 10

)

= −0.18…∕(4t2) < 0. (3.14)
Furthermore,

g2(a, v, t) = − a
√

t
+ v
√

t log t
, (3.15)

g′2(a, v, t) =
dg2(a, v, t)

dt
= 1
2t3∕2

(

a − v
log t

− 2v
log2 t

)

,

g′′2 (a, v, t) = − 1
4t5∕2

(

3a − 3v
log t

− 8v
log2 t

− 8v
log3 t

)

,

and for a ⩾ 0.75, v ⩽ 0.6 and t ⩾ 6,

g′2(a, v, t) ⩾
1
2t3∕2

(

0.75 − 0.6
log 6

− 1.2
log2 6

)

= 0.041…
2t3∕2

> 0, (3.16)

while, for a ⩾ 0.75, v ⩽ 0.6 and t ⩾ 10,

g′′2 (a, v, t) ⩽ −
1
4t5∕2

(

2.25 − 1.8
log 10

− 4.8
log2 10

− 4.8
log3 10

)

= −0.16…
4t5∕2

< 0. (3.17)

16



Let us set
g3(u, c, t) = u log t +

c log t
t2∕3

, (3.18)
g′3(u, c, t) = 1

3t

(

3u − 2c
log t − 3∕2

t2∕3
)

,

g′′3 (u, c, t) = − 1
9t2

(

9u − 10c
log t − 2.1

t2∕3
)

.

For t ⩾ 6, log t− 3∕2 is positive. Thus, if c ⩽ 0, then g′3(0.04, c, t) > 0 holds while,if 0 < c ⩽ 0.1, from (1.13), (log t − 3∕2)∕t2∕3 ⩽ 3∕(2e2) and
g′3(0.04, c, t) ⩾ (0.12 − 0.2 × 3∕(2e

2))∕(3t) = 0.079…∕(3t) > 0.

In both cases, for c ⩽ 0.1 and t ⩾ 6,
g′3(0.04, c, t) is positive. (3.19)

For t ⩾ 10, log t−2.1 is positive. Thus, if c ⩽ 0, then g′′3 (0.04, c, t) < 0 holds while,if 0 < c ⩽ 0.1, from (1.13),
(log t − 2.1)∕t2∕3 ⩽ 1.5 exp(−2.4)

and
g′′3 (0.04, c, t) ⩽ −(0.36 − 10 × 0.1 × 1.5 exp(−2.4)))∕(9t

2) = −0.22…∕(9t2) < 0.

In both cases, for c ⩽ 0.1 and t ⩾ 6,
g′′3 (0.04, c, t) is negative. (3.20)

From (3.10), (3.12), (3.15) and (3.18), one may write
G(a, b, c, t) = g1(0.96, b − 0.6, t) + g2(a, 0.6, t) + g3(0.04, c, t).

Since a ⩾ 0.75, b ⩽ 3.9 and c ⩽ 0.1 are assumed, from (3.13), (3.16) and (3.19),
G(a, b, c, t) is increasing for t ⩾ 6, while (3.14), (3.17) and (3.20) prove the concav-
ity of G(a, b, c, t) for t ⩾ 10.

From (3.11), (3.8), (3.12), (3.15) and (3.18),
H(a, b, c, t) = ℎ1(t) + g1(0.8, b − 0.6, t) + g2(a, 0.6, t) + g3(0.04, c, t)

and Lemma 3.5, (3.13), (3.16) and (3.19) prove that H(a, b, c, t) is increasing in t
for t ⩾ 6.
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4 Colossally abundant (CA) numbers

4.1 Definition of CA numbers
Definition 4.1. A number N is said to be colossally abundant (CA) if there exists
" > 0 such that

�(M)
M1+"

⩽ �(N)
N1+"

(4.1)
holds for all positive integers M . The number " is called a parameter of the CA
numberN .

These numbers were introduced in 1944 (cf. [1]) by Alaoglu and Erdős who
did not know that, earlier, in a manuscript not yet published, Ramanujan already
defined these numbers and called them generalized superior highly composite (cf.
[34, Section 59]). The CA numbers have been considered in many papers and more
especially in [25, 18, 37, 9, 10, 6].

The study of CA numbers is close to the study of the superior highly composite
numbers introduced by Ramanujan in [33, Section 32]. In this paper, we use a
presentation of the CA numbers similar to that given in [30] for the superior highly
composite numbers.

An integer n is said to be superabundant (SA for short) if
m ⩽ n implies �(m)∕m ⩽ �(n)∕n. (4.2)

The SA numbers have been introduced and studied by Alaoglu and Erdős (cf. [1,
Section 4]). They also were defined and studied by Ramanujan (cf. [34, Section 59])
who called them generalized highly composite. It is possible to adapt the algorithm
described in [30, Section 3.4] to compute a table of SA numbers (cf. [43]).

If n = ∏

p∈ p
vp(n) is superabundant, then vp(n) is non-increasing in p (cf. [1,

Theorem 1]). From the definition of CA numbers, it follows that a CA numberN is
SA and thus

vp(N) is non-increasing in p. (4.3)
From the definition (4.1), note that two CA numbers N of parameter " and N ′

of parameter "′ satisfy (N ′∕N)"−"′ ⩾ 1 and consequently,
if N < N ′, then " ⩾ "′. (4.4)

For t real > 1 and k positive integer, one defines

F (t, k) =
log(1 + 1∕(tk + tk−1 +…+ t))

log t
=
log(1 + (t − 1)∕(tk+1 − t))

log t
. (4.5)
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Note that the second formula allows to calculate F (t, u) for u real positive and that
F (t, u) is decreasing in t for u fixed and in u for t fixed.

For p prime, we consider the set
p = {F (p, k), k integer ⩾ 1}, (4.6)

and the set
 = {F (p, k), p prime, k integer ⩾ 1} =

⋃

p∈
p. (4.7)

It is convenient to order the elements of  ∪ {∞} defined in (4.7) in the decreasing
sequence

"1 = ∞ > "2 = F (2, 1) =
log(3∕2)
log 2

= 0.58…

> "3 =
log(4∕3)
log 3

= 0.26… >… > "i = F (pi, ki) >… (4.8)
Each element of  is the quotient of the logarithm of a rational number by the loga-
rithm of a prime so that the diophantine properties of  are similar to those of the set
 studied in [30, Section 3.1]. From the Six Exponentials Theorem (cf. [42] or [21])
there could exist elements in the set  defined by (4.7) admitting two representations

"i = F (qi, ki) = F (q′i , k
′
i) (4.9)

with ki > k′i ⩾ 1 and qi < q′i . An element "i ∈  satisfying (4.9) is said to be
extraordinary. If "i is not extraordinary, it is said to be ordinary and satisfies in
only one way

"i = F (qi, ki). (4.10)
For " > 0, let us introduce

N" =
∏

p∈
p⌊�⌋ with � = �(p, ") =

log((p1+" − 1)∕(p1+" − p))
log p

(4.11)

which is CA of parameter " (cf. [1, Theorem 10]). Note that (cf. [43])
F (p, �) = F (p, �(p, ")) = ". (4.12)

We observe thatN" is a non-increasing function of ". More precisely,
if " ⩽ "′, then N"′ dividesN". (4.13)

By convention,N"1 = N∞ = 1, as (4.11) yieldsN" = 1 for " > "2 = log(3∕2)∕ log 2.
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Proposition 4.2. If "i (with i ⩾ 2) belongs to the sequence (4.8) and " satisfies
"i−1 > " > "i, there is only one CA number of parameter ", namely N" = N"i−1
defined by (4.11).

If "i is ordinary and satisfies (4.10), there are two CA numbers of parameter "i,
namelyN"i andN"i−1 satisfying

N"i = qiN"i−1 (4.14)
with qi defined by (4.10).

If "i in (4.8) is extraordinary of the form (4.9), there are four CA numbers of
parameter "i, namelyN"i−1 , qiN"i−1 , q

′
iN"i−1 , N"i = qiq

′
iN"i−1 .

In conclusion, if there is no extraordinary "i, any CA number is of the formN"i
(with i ⩾ 1). If extraordinary "i’s exist, for each of them, there are two extra CA
numbersN"i∕q

′
i andN"i∕qi and they both have only one parameter "i. In both cases,

the set of parameters of N"i is ["i+1, "i] and two consecutive CA numbers have one
and only one common parameter.

Proof. The proof is similar to the one of [30, Proposition 3.7], see also [18, Propo-
sition 4] and [30, Remark 3.8].
Definition 4.3. Let N be a CA number satisfying N"i−1 < N ⩽ N"i (where "i−1
and "i is are elements of the sequence (4.8) and N" is defined by (4.11)). From
Proposition 4.2, either N is equal to N"i or "i is extraordinary. In both cases, the
largest parameter of N is "i. We define �1 = � = �(N) by (cf. [18, (8)] or [37,
Section 2])

F (�, 1) =
log(1 + 1∕�)

log �
= "i, (4.15)

for k ⩾ 1, the numbers �k = �k(N) by

F (�k, k) =
log(1 + 1∕(�k + �2k +…+ �kk))

log �k
= F (�, 1) = "i (4.16)

and, from (4.3),
K = K(N) = K(N"i) = v2(N"i) = maxp⩾2

vp(N"i). (4.17)
Lemma 4.4. With the notation of Definition 4.3, for k ⩾ 1 and p prime, we have

vp(N"i) =

{

k for �k+1 < p ⩽ �k if k ⩾ 1
0 for p > �1

(4.18)
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and

N"i =
K
∏

k=1

∏

�k+1 <p⩽ �k

pk. (4.19)

Proof. Let k ⩾ 1 be an integer, p be a prime satisfying �k+1 < p ⩽ �k and � =
�(p, "i) be defined by (4.11). From (4.16) and (4.12), one has

F (�k, k) = F (p, �) = "i. (4.20)
As F (t, u) is decreasing in t and u, from (4.20), p ⩽ �k implies � ⩾ k. Similarly,
F (�k+1, k + 1) = F (p, �) and p > �k+1 imply � < k + 1, so that ⌊�⌋ = k and,
from (4.11), vp(N) = k which proves the first case of (4.18). If p > �1 = �,
F (�, 1) = F (p, �) shows that � < 1 and vp(N"i) = 0, which completes the proof of
(4.18) and (4.19) follows.
Proposition 4.5. LetN be a CA number and "i the element of (4.8) such thatN"i−1 <
N ⩽ N"i . The numbers �, �k and K are defined by Definition 4.3. Then

logN"i − log � =
K
∑

k=1
�(�k) − log � ⩽ logN ⩽ logN"i =

K
∑

k=1
�(�k) (4.21)

and
� �

(

N"i

)

(� + 1)N"i

⩽ �(N)
N

⩽
�
(

N"i

)

N"i

=
K
∏

k=1

∏

�k+1<p⩽�k

1 − 1∕pk+1

1 − 1∕p
. (4.22)

Proof. From (4.19), it follows that

logN"i =
∑

1⩽k⩽K
�(�k) and �

(

N"i

)

N"i

=
K
∏

k=1

∏

�k+1<p⩽�k

1 − 1∕pk+1

1 − 1∕p
. (4.23)

∙ If "i is ordinary, from Proposition 4.2,N"i−1 andN"i are two consecutive CA num-
bers,N"i−1 < N ⩽ N"i impliesN = N"i , so that (4.23) prove (4.21) and (4.22).
∙ If "i is extraordinary and given by (4.9), from Proposition 4.2, N is equal to N"i ,
N"i∕qi, or N"i∕q

′
i and so N does not exceed N"i , which proves the upper bound of

(4.21). AsN"i is CA, thus superabundant (cf. (4.2)), �(N)∕N ⩽ �(N"i)∕N"i holds,which proves the upper bound of (4.22). The two primes qi and q′i divide N"i and
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so, from (4.19), are both ⩽ �, which proves the lower bound of (4.21). From (4.9)
and (4.16), we also have for q = qi or q′i and k = ki or k′i,
�(N"i)
N"i

=
�(N q)
N q

=
(1 + q +…+ qk

q +…+ qk
)�(N)

N
=
(

1 + 1
q +…+ qk

)�(N)
N

= qF (q,k)
�(N)
N

= q"i
�(N)
N

= qF (�,1)
�(N)
N

⩽ �F (�,1)
�(N)
N

=
(

1 + 1
�

)�(N)
N

,

which proves the lower bound of (4.22).
Proposition 4.6. Let n ⩾ 2 be an integer. There exists two consecutive CA numbers
N ′ < N such that
N
�

⩽ N ′ < n ⩽ N and �(n)
n

⩽ �(N)
N

⩽ (� + 1)�(N ′)
�N ′ ⩽ �(N ′)

N ′ +
�(N)
�N

, (4.24)
where � = �(N) is defined in Definition 4.3.

Proof. First, we determine the element "i of the sequence (4.8) such that N"i−1 <
n ⩽ N"i .
∙ If "i is ordinary and given by (4.10), from Proposition 4.2, we choose N = N"i ,
N ′ = N"i−1 = N"i∕qi and, from (4.2), �(n)∕n ⩽ �(N)∕N follows. As qi does notexceed �, we haveN"i∕qi ⩾ N"i∕� and, from (4.16),

�(N)
N

=
�(N ′ qi)
N ′ qi

=
(1 + qi +…+ qkii

qi +…+ qkii

)�(N ′)
N ′ =

(

1 + 1
qi +…+ qkii

)�(N ′)
N ′

= q"ii
�(N ′)
N ′ = qF (�,1)i

�(N ′)
N ′ ⩽ �F (�,1)

�(N ′)
N ′ =

(

1 + 1
�

)�(N ′)
N ′ , (4.25)

which proves (4.24) since, from (4.2), �(N ′)∕N ′ < �(N)∕N holds.
∙ If "i is extraordinary and given by (4.9), from Proposition 4.2, there are four

consecutive CA numbers in [N"i−1 , N"i], namely M1 = N"i−1, M2 = qiN"i−1 =
qiM1, M3 = q′iN"i−1 = q′iM2∕qi, M4 = qiq′iN"i−1 = qiM3. For j = 1 or j = 3,
Mj+1 = qMj with q = qi or q′i and k = ki or k′i. By copying (4.25), one gets
�(Mj+1)∕Mj+1 ⩾ (1 + 1∕�)�(Mj)∕Mj . For j = 2,
�(M3)
M3

=
1 + 1∕q′i +…+ 1∕(q′i )

k′i

1 + 1∕qi +…+ 1∕(qi)ki+1
�(M2)
M2

⩽
(

1 + 1∕q′i +…+ 1∕(q′i )
k′i
)�(M2)
M2

= (q′i )
"i
�(M2)
M2

⩽ �"i
�(M2)
M2

= �F (�,1)
�(M2)
M2

=
�

� + 1
�(M2)
M2
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so that, for 1 ⩽ j ⩽ 3, �(Mj+1)∕Mj+1 < (� + 1)∕�)�(Mj)∕Mj holds. From the
choice of "i, n ∈ (Mj0 ,Mj0+1] for some j0 ∈ {1, 2, 3}. Then, by choosingN ′ =Mj0 ,
N =Mj0+1, (4.24) is satisfied.

The first CA numbers are (for a longer table, cf. [1, p. 468] or [43]):

i "i N = N"i �(N)∕N parameter �(N)
1 ∞ 1 1 ["2, "1) 1
2 F (2, 1) = 0.58 2 3∕2 ["3 , "2] 2
3 F (3, 1) = 0.26 6 = 2 ⋅ 3 2 ["4 , "3] 3
4 F (2, 2) = 0.22 12 = 22 ⋅ 3 7∕3 ["5 , "4] 3.29
5 F (5, 1) = 0.11 60 = 22 ⋅ 3 ⋅ 5 14∕5 ["6 , "5] 5
6 F (2, 3) = 0.09 120 = 23 ⋅ 3 ⋅ 5 3 ["7 , "6] 5.44
7 F (3, 2) = 0.07 360 = 23 ⋅ 32 ⋅ 5 13∕4 ["8, "7] 6.71
8 F (7, 1) = 0.06 2520 = 23 ⋅ 32 ⋅ 5 ⋅ 7 26∕7 ["9, "8] 7

Figure 2: The first colossally abundant numbers

4.2 Enumeration of CA numbers
How to compute CA numbers? For a short table, one determines the sequence "i(cf. (4.8)) and, if "i satisfies (4.10), then N"i = qiN"i−1 (cf. (4.14). In the proof
of Lemma 5.3, we have to compute the CA numbers up to N (0) (defined below by
(4.37)). Let us say thatN"i is a CA number of type 2 if "i satisfies (4.10) with ki ⩾ 2and of type 1 if ki = 1. We have precomputed the table of the 6704 CA numbersN
of type 2 (with � = �(N) defined by Definition 4.3) satisfying � < 20007 × 105 (cf.
[43]). If N is of type 2 with its largest prime factor equal to the rth prime pr, thenthe following CA numbers areNpr+1,Npr+1pr+2, etc. up to the next CA number of
type 2.

Note that we have not found any extraordinary case (cf. Section 4.1). The small-
est difference "i−"i+1 = 2.57…10−23 has been obtained with "i = F (54371, 2) and
"i+1 = F (1524427141, 1) (cf. [43]).
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4.3 Estimates of �k defined by (4.16)
Proposition 4.7. Let k ⩾ 2 be an integer, � > 1 a real number and �k be defined by
F (�k, k) = F (�, 1). Then

�1∕k ⩽ �k ⩽ (k�)1∕k for k ⩾ 2 and � > 1, (4.26)
when � tends to infinity, the asymptotic expansion of �2 is

�2 =
√

2�
(

1 − a
2 log �

+
a∕2 + 3a2∕8
log2 �

−
a∕2 + a2 + 5a3∕16

log3 �
+

(1)
log4 �

)

(4.27)

with a = log 2,

�2 ⩾
√

2�
(

1 −
log 2
2 log �

)

for � ⩾ 1530 (4.28)
and

�2 ⩽
√

2�
(

1 − 0.323
log �

)

for � ⩾ 109. (4.29)

Proof. The proofs of the lower bound of (4.26) and of (4.28) are given in [37, p.
190].

To prove the upper bound of (4.26), we first observe that F is decreasing and
F (�k, k) = F (�, 1) holds. So, we have to show that F ((k�)1∕k, k) ⩽ F (�k, k) =
F (�, 1). Setting z = (k�)1∕k, from (1.14), one has

F (z, k) =
k log(1 + 1∕(z + z2 +…+ zk))

log � + log k
⩽

k∕zk

log � + log k
=

1∕�
log � + log k

and, from (1.17),

F (�, 1) =
log(1 + 1∕�)

log �
⩾ 1
(� + 1∕2) log �

.

Therefore, it suffices to show 1∕(�(log �+log k)) ⩽ 1∕((�+1∕2) log �), i.e. �(log �+
log k) ⩾ (�+1∕2) log � which is true, since � ⩾ log � and log k ⩾ log 2 > 1∕2 hold.

To compute the asymptotic expansion of �2, we observe that, from (4.26), �2tends to infinity with �. From (4.16), one has

F (�2, 2) =
log(1 + 1∕(�2 + �22))

log �2
= F (�, 1) =

log(1 + 1∕�)
log �

. (4.30)
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As log(1 + 1∕u) ∼ 1∕u when u → ∞, it follows that 1∕(�22 log �2) ∼ 1∕(� log �),
which implies �22 log �2 ∼ � log �, 2 log �2 ∼ log �, �22 ∼ (� log �)∕ log �2 ∼ 2� and
�2 ∼

√

2�. Furthermore (cf. [43]),

log
(

1 + 1
�2 + �22

)

= 1
�22
+

(1)
�32

= 1
�22
+

(1)
�3∕2

and
F (�2, 2) =

1
�22 log �2

+
(1)

�3∕2 log �2
= 1
�22 log �2

(

1 +
(1)
√

�

)

,

whence, from (4.30), as F (�, 1) = (1∕(� log �))(1 + (1)∕
√

�) holds,

�22 =
� log �
log �2

(

1 +
(1)
√

�

)

. (4.31)

In (4.31), the change of variables t = log � and �2 =
√

2�w yields

w2 =
�22
2�
=

log �
2 log �2

(

1 +
(1)
√

�

)

= t
log 2 + t + 2 logw

(

1 +
(1)
√

�

)

and
w =

(

1 +
log 2
t

+
2 logw
t

)−1∕2(

1 + 
(

exp
(

− t
2

)))

. (4.32)
Iterating (4.32) from w = 1 + o(1) gives the expansion (4.27). It is possible to get
the asymptotic expansion of �k for k > 2 in a similar way (cf. [43]).

To prove (4.29), let us set � = 0.323, t = log �, a = log 2, x0 = 109 and
z =

√

2�(1 − �∕ log �). We have to prove F (z, 2) ⩽ F (�2, 2), i.e., from (4.30),
F (z, 2) − F (�, 1) ⩽ 0. From (1.14) and (1.17), it follows that

F (z, 2) − F (�, 1) =
log(1 + 1∕(z + z2))

log z
−
log(1 + 1∕�)

log �

⩽ 1
(z + z2) log z

− 1
(� + 1∕2) log �

< 1
z2 log z

− 1
(� + 1∕2) log �

.

So, it suffices to show that
z2 log z − (� + 1∕2) log � ⩾ 0 for � ⩾ x0. (4.33)

25



From (1.15), one has

log z = 1
2
(a + t) + log

(

1 −
�
t

)

⩾ 1
2
(a + t) −

�
t − �

,

by using Maple (cf. [43]) ,

z2 log z ⩾ 2�
t2
(t − �)2

(1
2
(a + t) −

�
t − �

)

=
�
t2
(

t3 + (a − 2�)t2 + �(� − 2a − 2)t + �2(a + 2)
)

and, for � ⩾ x0 = 109,

(� + 1∕2) log � =
�
t2
(

t3 + t3

2�

)

⩽ �
t2
(

t3 +
log3 x0
2x0

)

.

Therefore, one gets

z2 log z− (� +1∕2) log � ⩾ �
t2
(

(a−2�)t2 + �(� −2a−2)t+ �2(a+2)−
log3(x0)
2x0

)

.

(4.34)
The roots of the trinomial on t in (4.34) are 0.2879… and 20.698… so that it is
positive for t ⩾ log x0 = 20.723… which proves (4.33) and completes the proof of
(4.29).

4.4 Study of CA numbers ⩾ N (0)

By (4.19), we defineN (0) = N"(0) with "(0) = F (�(0), 1) ∈  and
�(0) = �(0)1 = 109 + 7, (4.35)

the smallest prime exceeding 109. For k ⩾ 2, we define �(0)k by (4.15) and (4.16),
obtaining (cf. [43])
�(0)2 = 44023.5… , �(0)3 = 1418.3… , �(0)4 = 247.3… , �(0)5 = 85.6… , … ,

�(0)33 = 2.033… , (4.36)
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from (4.19),

N (0) = N"(0) = 233321514711119138177197237
41
∏

p=29
p6

83
∏

p=43
p5

241
∏

p=89
p4

1409
∏

p=251
p3

44021
∏

p=1423
p2

1000000007
∏

p=44027
p, (4.37)

L0 = logN (0) = 1000014552.11… , �0 = log logN (0) = 20.7232803… , (4.38)
�(N (0))∕N (0) = 36.909618566… and from (4.17), K = K(N (0)) = 33.
Lemma 4.8. Let N be a CA number > N (0) = N"(0) and "i, �, �k and K be defined
in Definition 4.3. Then "i ⩽ "(0), � ⩾ �(0), �k ⩾ �(0)k for k ⩾ 1, and K = K(N) ⩾ 33.
Proof. By (4.21),N ⩽ N"i holds. SinceN (0) < N is assumed, this impliesN (0) =
N"(0) < N"i and, from (4.4), "i ⩽ "(0). Moreover, from (4.15), one has F (�, 1) =
"i ⩽ "(0) = F (�(0), 1) and as F is decreasing, � = �(N) ⩾ �(0) = 109 + 7. Similarly,
from (4.16), for k ⩾ 2, F (�k, k) = "i ⩽ "(0) = F (�(0)k , k) implies �k = �k(N) ⩾ �(0)kgiven by (4.36). Finally, as N (0) = N"(0) divides N"i (cf. (4.13)), from (4.17), it
follows that K(N) ⩾ K(N (0)) = 33.
Lemma 4.9. Let N be a CA number > N (0) = N"(0) with �, �k and K be defined in
Definition 4.3. Then

K = K(N) ⩽ 1.71 log �. (4.39)
Proof. From (4.17) and (4.18), we have �K+1 < 2 ⩽ �K so that, from (4.26), 2 ⩽
(K�)1∕K holds, which implies

log � ⩾ K log 2 − logK = K(log 2 − (logK)∕K).

But, from Lemma 4.8, K ⩾ 33 and thus log � ⩾ K(log 2 − (log 33)∕33) ⩾ 0.587K
which yields K ⩽ (1∕0.587) log � < 1.71 log � and completes the proof of Lemma
4.9.

4.5 Some properties of numbers �k
Lemma 4.10. Let N be a CA number satisfying N ⩾ N (0) defined by (4.37). The
numbers � = �(N), �k and K are defined by Definition 4.3, so that, from Lemma
4.8, � ⩾ �(0) = 109 + 7 and K ⩾ 33 hold. Then

T3 =
K
∑

k=3
�k ⩽ 1.9769 �1∕3. (4.40)
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Proof. If k0 satisfies 4 ⩽ k0 ⩽ K , as �k is non-increasing in k, from (4.26) and
(4.39), we have

T3 ⩽
(

k0−1
∑

k=3
�k
)

+ (K − k0 + 1)�k0 ⩽
(

k0−1
∑

k=3
(k�)1∕k

)

+ (K − k0 + 1)(k0�)1∕k0

= �1∕3
(

(

k0−1
∑

k=3

k1∕k

�1∕3−1∕k
)

+
K − (k0 − 1))k

1∕k0
0

�1∕3−1∕k0

)

⩽ �1∕3
((

k0−1
∑

k=3

k1∕k

(�(0))1∕3−1∕k
)

+
1.71 k1∕k00 (log � −w)

�v
)

(4.41)

with w = (k0 − 1)∕1.71 and v = 1∕3 − 1∕k0. An upper bound of (4.41) can be
obtained from (1.12) or (1.13), with u = 1. The best choice is k0 = 31, which gives
T3∕�1∕3 ⩽ 1.976836… (cf. [43]).
Lemma 4.11. Let N be a CA number. The numbers � = �(N) and �2 = �2(N) are
defined in Lemma 4.8. Let us assume that � ⩾ �(0) = 109 + 7. Then

√

2
√

� log �
− 0.524
√

� log2 �
⩽ 1
�2 log �2

⩽
√

2
√

� log �
− 0.4
√

� log2 �
(4.42)

and
2.67

√

� log2 �
⩽ 1
�2 log

2 �2
⩽

2
√

2
√

� log2 �
⩽ 2.829

√

� log2 �
. (4.43)

Proof. From (4.29), onemaywrite �2 ⩽
√

2�(1−0.323∕ log �) and log �2 ⩽ log(
√

2�)
= (log �)(1 + (log 2)∕ log �)∕2, whence, from (1.19),

1
�2 log �2

⩾ 2
(
√

2� log �)(1 − 0.323∕ log �)(1 + (log 2)∕ log �)

⩾
√

2
√

� log �

(

1 −
log 2 − 0.323

log �

)

⩾
√

2
√

� log �
− 0.524
√

� log2 �
,

which proves the lower bound of (4.42). Next,
1

�2 log �2
⩾ 1

√

� log �

(
√

2 − 0.524
log �(0)

)

⩾ 1.38
√

� log �
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and, as log �2 ⩽ (log �)(1 + (log 2)∕ log �)∕2 follows from (4.26),
1

�2 log
2 �2

⩾ 2.76
(
√

� log2 �)(1 + (log 2)∕ log �)

⩾ 2.76
(
√

� log2 �)(1 + (log 2)∕ log �(0))
⩾ 2.67

√

� log2 �
,

which proves the lower bound of (4.43).
From (4.28), one has

�2 ⩾
√

2�
(

1 −
log 2
2 log �

)

⩾
√

2�
(

1 −
log 2

2 log �(0)
)

⩾ 1.39
√

�,

which implies �2 ⩾
√

2�(1 − u) with
u = (log 2)∕(2 log �) ⩽ u0 = (log 2)∕(2 log �(0)) = 0.016…

and
log �2 ⩾ (log � + 2 log 1.39)∕2 ⩾ (log � + 0.658)∕2 = (log �)(1 + v)∕2

with v = 0.658∕ log � ⩽ v0 = 0.658∕ log �(0) = 0.031…. Therefore, from (1.19),

1
�2 log �2

⩽ 2
√

2� log �(1 − u)(1 + v)
⩽

√

2(1 + u∕(1 − u0) − v(1 − v0))
√

� log �

=

√

2
√

� log �

(

1 − 0.284…
log �

)

⩽
√

2
√

� log �
− 0.4
√

� log2 �
,

which proves the upper bound of (4.42). Then, as from (4.26), �2 >
√

� holds,

1
�2 log

2 �2
=
( 1
�2 log �2

)( 1
log �2

)

⩽
(

√

2
√

� log �

)( 2
log �

)

=
2
√

2
√

�(log2 �)
,

which proves the upper bound of (4.43).
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4.6 Benefit
Definition 4.12. Let " be a positive real number andN a CA number of parameter
". For a positive integer n, we introduce the benefit of n

ben"(n) = log
(�(N)
N1+"

)

− log
(�(n)
n1+"

)

= log
(�(N)
�(n)

)

+ (1 + ")(log n − logN).
(4.44)

If Ñ is another CA number of parameter ", then note that the value of the right-
hand side of (4.44) does not change when replacing N by Ñ . Indeed (4.1) yields
�(N)∕N1+" ⩽ �(Ñ)∕Ñ1+" and �(Ñ)∕Ñ1+" ⩽ �(N)∕N1+", so that �(N)∕N1+" =
�(Ñ)∕Ñ1+", which implies

log
(�(N)
N1+"

)

− log
(�(n)
n1+"

)

= log
(�(Ñ)
Ñ1+"

)

− log
(�(n)
n1+"

)

.

From (4.1), it follows that, for any n,
ben"(n) ⩾ 0 (4.45)

holds. Let us write
N =

∏

p∈
pap and n =

∏

p∈
pbp , (4.46)

so that �(N)∕�(n) =∏

p∈(p
ap+1 − 1)∕(pbp+1 − 1). We define

Benp,"(n) = ben"(Npbp−ap) = log
(pap+1 − 1
pbp+1 − 1

)

+ (1 + ")(bp − ap) log p ⩾ 0 (4.47)

and (4.44) gives
ben"(n) =

∑

p∈
Benp,"(n). (4.48)

This notion of benefit has been used in [25, 18] for theoretical results on numbers n
having a large value of �(n) and in [30, Section 3.5], it is defined and used for the
divisor function d(n) = ∑

d∣n 1.For p, ap, " fixed and t ⩾ 0, let us introduce the mapping

t↦ Bp,ap,"(t) = log
(pap+1 − 1
pt+1 − 1

)

+ (1 + ")(t − ap) log p (4.49)

so that, if t is an integer, then B(t) is equal to ben"(Npt−ap) = Benp,"(Npt−ap).
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Lemma 4.13. Let p be a prime, ap a non-negative integer, " a positive real number
and, for t ⩾ 0, Bp,ap,"(t) = B(t) be defined by (4.49). Let us assume that, if t is an
integer, then B(t) ⩾ 0 holds. Then,

(i) limt→∞B(t) = ∞ and limt→∞B′(t) = " log p > 0.
(ii) For t ⩾ 0, B(t) is convex, i.e. B′(t) is increasing.
(iii)B(t) is increasing for t ⩾ ap+1 and, if ap ⩾ 2, decreasing for 0 ⩽ t ⩽ ap−1.

Moreover, B(ap + 1) ⩾ 0 = B(ap) and B(ap − 1) ⩾ 0 = B(ap).
(iv) limp→∞Bp,0,"(1) = ∞.

Proof of (i). The inequality

B(t)> log
(pap+1 − 1

pt+1
)

+(1+")(t−ap) log p = log(pap+1−1)+("t−1−ap(1+")) log p

shows that limt→∞B(t) = ∞. The derivativeB′(t) is equal to " log(p)−(log p)∕(pt+1−
1) and tends to " log p when t tends to infinity.

Proof of (ii). The second derivative (cf. [43]) d2B(t)∕dt2 = (log2 p)pt+1∕(pt+1 −
1)2 is positive.

Proof of (iii). Note that B(ap) = 0.
∙ If B′(0) ⩾ 0, then, as, from (ii), B′(t) is increasing, one has B′(t) ⩾ 0 for t ⩾ 0, so
that B(t) is increasing for t ⩾ 0. This implies ap = 0 since, if ap were positive, weshould have B(ap) > 0, so contradicting B(ap) = 0.
∙ If B′(0) < 0, then, as B′(t) is increasing and tends to " log p > 0 when t tends to
infinity, B′ has one and only one zero, say t0. We have

ap − 1 ⩽ t0 ⩽ ap + 1. (4.50)
Indeed, if t0 > ap+1, then B(t)would decrease on [ap, ap+1] and, since B(ap) = 0,
B(ap + 1) would be negative. Similarly, if t0 < ap − 1, then B(t) would increase on
[ap − 1, ap] and B(ap − 1) would be negative. From (4.50), B(t) is increasing for
t ⩾ ap + 1 and if ap ⩾ 2, decreasing for t ⩽ ap − 1.

Proof of (iv). Bp,0,"(1) is equal to " log p−log(1+1∕p) that tends to infinity with
p. □

Proposition 4.14. Let " > 0, N a CA number of parameter " and � a positive real
number. Then, the set of integers n satisfying ben"(n) ⩽ � is finite.

Proof. We use the notation (4.46) and assume ben"(n) ⩽ �. In view of applying
Lemma 4.13, one remarks that, if t ⩾ 0 is an integer, then, from (4.45), Bp,ap,"(t) =
ben"(Npt−ap) ⩾ 0 holds.
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Let p′ be the smallest prime not dividing N , so that ap = 0 for p ⩾ p′. From
Lemma 4.13 (iv), there exists p′′ ⩾ p′ such that, for p ⩾ p′′,Bp,0,"(1) = Benp,"(Np) >
�. From Lemma 4.13 (ii), if bp ⩾ 1, then Benp,"(n) = Bp,0,"(bp) ⩾ Bp,0,"(1) >
�, which, from (4.48), implies that ben"(n) ⩾ Benp,"(n) > �. Consequently, as
ben"(n) ⩽ � is assumed, bp = 0 for p ⩾ p′′.

For p < p′′, from Lemma 4.13 (i), there exists an integer b′p such that, for bp ⩾ b′p,
Benp,"(n) = Bp,ap,"(bp) exceeds �, which implies that, as ben"(n) ⩽ � is assumed,
then 0 ⩽ bp ⩽ b′p − 1. Therefore, |{n, ben"(n) ⩽ �}| ⩽

∏

p<p′′ b′p.
Proposition 4.14 and Lemma 4.13 allow to get an algorithm to compute all in-

tegers n such that ben"(n) ⩽ �. This algorithm is efficient if � is not too large (not
much larger than "), cf. [43].

4.7 Convexity
Lemma 4.15. LetN ′ ⩾ 2 andN be two consecutive CA numbers and f a function
of class C2, increasing and concave on the interval [logN ′, logN] such that

�(N ′)∕N ′ ⩽ f (logN ′) and �(N)∕N ⩽ f (logN). (4.51)
Let n be an integer satisfyingN ′ ⩽ n ⩽ N . Then

�(n)∕n ⩽ f (log n). (4.52)
Proof. From Proposition 4.2, N ′ and N share a common parameter, say ". From
the definition (4.1) of CA numbers, one deduces that log(�(N ′)∕N ′) − " logN ′ =
log(�(N)∕N) − " logN. For n ∈ [N ′, N], from (4.1), one has

log
�(n)
n

− " log n ⩽ log �(N
′)

N ′ − " logN ′ = log
�(N)
N

− " logN. (4.53)
In view of using a convexity argument, one writes

log n = � logN ′ + � logN with 0 ⩽ � ⩽ 1 and � = 1 − �.

From (4.53) and (4.51), it follows that
log

�(n)
n

⩽ " log n + �
(

log
�(N ′)
N ′ − " logN ′

)

+ �
(

log
�(N)
N

− " logN
)

= "(� logN ′ + � logN) + � log
�(N ′)
N ′ + � log

�(N)
N

− �" logN ′ − �" logN = � log
�(N ′)
N ′ + � log

�(N)
N

. (4.54)
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The inequality �(N ′)∕N ′ > 1 and (4.51) imply log f (logN ′) > 0. As f is sup-
posed increasing and concave, f ′(t) ⩾ 0 and f ′′(t) ⩽ 0 hold for t ∈ [logN ′, logN].
Therefore, as the derivatives of log f are f ′∕f and (ff ′′ − f ′2)∕f 2, log f is in-
creasing, concave and positive on [logN ′, logN] and (4.54) and (4.51) give

log
�(n)
n

⩽ � log(f (logN ′)) + � log(f (logN))

⩽ log(f (� logN ′ + � logN)) = log(f (log n)),

which yields (4.52) and completes the proof of Lemma 4.15.

4.8 Estimates of a CA numberN in terms of �
In this Section, N is a CA number ⩾ N (0) = N"(0) defined by (4.37). The numbers
"i = "i(N), � = �(N), �k = �k(N) and K = K(N) are defined by Definition 4.3,
so that, from Lemma 4.8, � ⩾ �(0) = 109 + 7, �k ⩾ �(0)k and K ⩾ 33 hold. We give
estimates of such an N and of a few functions of N in terms of �. Some of these
estimates are valid if the Riemann hypothesis fails.

To get shorter formulas, we use the notation L = logN , � = log logN , L0 =
logN (0) > 109, and �0 = log logN (0) > log(109) (cf. (4.38)).
Lemma 4.16. LetN ⩾ N (0) be a CA number. Then, under the Riemann hypothesis,

�(�) + �2 + 0.534�1∕3 ⩽ L = logN ⩽ �(�) + �2 + 2.043�1∕3, (4.55)
L∕1.0006 ⩽ � ⩽ 1.0006L, (4.56)

�∕1.00003 ⩽ log � ⩽ 1.00003�, (4.57)
|L − �| ⩽ 0.0433

√

� log2 � ⩽ 0.044
√

L�2, (4.58)
|

|

|

|

|

|

1
√

L�
− 1
√

� log �

|

|

|

|

|

|

⩽ 0.00052
L2∕3

, (4.59)
|

|

|

|

|

|

1
√

L�2
− 1
√

� log2 �

|

|

|

|

|

|

⩽ 0.000027
L2∕3

, (4.60)
|

|

|

|

1
L�

− 1
� log �

|

|

|

|

⩽ 0.00099
L7∕6

⩽ 0.001
�7∕6

(4.61)
and

|

|

|

|

S1(L)
logL

−
S1(�)
log �

|

|

|

|

⩽ 0.021
L2∕3

. (4.62)
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Proof. To prove the upper bound of (4.55), from (4.21), (2.3) and (4.40), we may
write
L−�(�)−�(�2) ⩽

K
∑

k=3
�(�k) ⩽ (1+�)

K
∑

k=3
�k ⩽ (1+�)1.9769�1∕3 ⩽ 1.977�1∕3. (4.63)

Next, if �(0) ⩽ � ⩽ 5 × 1037, then, from (4.26), �2 ⩽
√

2� ⩽ 1019 and, from (2.1),
�(�2) < �2, while, if � > 5 × 1037, then, from (2.7),

|�(�2) − �2| ⩽
√

�2 log
2 �2

8�
⩽
(2�)1∕4 log2(2�)

32�

=
21∕4�1∕3 log2(2�)

32��1∕12
⩽
21∕4 log2(1038)�1∕3

32�(5 × 1037)1∕12
⩽ 0.066�1∕3. (4.64)

So, for � ⩾ �(0), we have �(�2) ⩽ �2 + 0.066�1∕3 which, together with (4.63), provesthe upper bound of (4.55).
From (4.21), we deduce logN ⩾

∑4
k=1 �(�k)−log �. But, from (4.36), �4 exceeds

247, so that from (2.4) and (4.26), �(�4) ⩾ 0.89�4 ⩾ 0.89�1∕4, which is > log � for
� > 109. Therefore, since from (4.36), �3 exceeds 1418, from (2.4) and (4.26),

L ⩾
3
∑

k=1
�(�k) ⩾ �(�1) + �(�2) + 0.945�3 ⩾ �(�1) + �(�2) + 0.945�1∕3. (4.65)

∙ If �(0) ⩽ � ⩽ 5 × 1037, then, from (4.26), 1427 <√

�(0) ⩽
√

� ⩽ �2 ⩽
√

2� ⩽ 1019
and, from (2.2),
�(�2) − �2 ⩾ −1.94

√

�2 ⩾ −1.94(2�)1∕4 ⩾ −2.31�1∕4 = −2.31�1∕3∕�1∕12

⩾ −2.31�1∕3∕(109)1∕12 ⩾ −0.411�1∕3.
∙ If � > 5 × 1037, then, from (4.64), �(�2) − �2 ⩾ −0.066�1∕3.In both cases, �(�2) ⩾ �2 − 0.411�1∕3, which, from (4.65), implies the lower
bound of (4.55).

Furthermore, from (4.55), (2.8) and (4.26),

L ⩽ �(�) + �2 + 2.043�1∕3 ⩽ � +

√

� log2 �
8�

+
√

2� + 2.043�1∕3

= � +
√

� log2 �
( 1
8�

+

√

2
log2 �

+ 2.043
�1∕6 log2 �

)

⩽ � +
√

� log2 �
( 1
8�

+

√

2
log2 109

+ 2.043
(109)1∕6 log2 109

)

⩽ � + 0.0433
√

� log2 �
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and
L ⩾ �(�) + �2 + 0.534�1∕3 ⩾ � −

√

� log2 �
8�

⩾ � − 0.04
√

� log2 �,

whence

|L − �| ⩽ 0.0433
√

� log2 � ⩽ �
(0.0433 log2 109

√

109

)

⩽ 0.00059�, (4.66)

which implies
�

1.0006
⩽ (1 − 0.00059)� ⩽ L ⩽ 1.0006�

and proves (4.56). Next,

log � ⩽ � + 0.0006 = �
(

1 + 0.0006
�

)

⩽ �
(

1 + 0.0006
log 109

)

⩽ 1.00003�

and
log � ⩾ �

(

1 −
log(1.0006)

�

)

⩾ �
(

1 −
log(1.0006)
log 109

)

⩾ �
1.00003

prove (4.57). Then, from (4.66), (4.56) and (4.57), one may write
|L − �] ⩽ 0.0433

√

� log2 � ⩽ 0.0434
√

L�2,

which ends the proof of (4.58).
To prove (4.59), it is convenient to introduce � = min(�, L) ⩾ min(�(0), L0).From (4.56), (4.35) and (4.38), it follows that

L ⩾ � = min(�, L) ⩾ L
1.0006

and also L ⩾ � ⩾ 109. (4.67)

One may write
|

|

|

|

|

|

1
√

L�
− 1
√

� log �

|

|

|

|

|

|

=
|

|

|

|

|

∫

L

�

log t + 2
2t3∕2 log2 t

dt
|

|

|

|

|

⩽ |L − �|
2�3∕2 log �

(

1 + 2
log �

)

and, from (4.58) and (4.67), this is

⩽
0.044(1.0006)3∕2

√

L�2

2L3∕2 log 109
(

1 + 2
log 109

)

⩽ 0.0012
L2∕3

�2

L1∕3
⩽ 0.0005153…

L2∕3
,
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which proves (4.59).
The proofs of (4.60) and (4.61) are similar :
|

|

|

|

|

|

1
√

L�2
− 1
√

� log2 �

|

|

|

|

|

|

=
|

|

|

|

|

∫

L

�

log t + 4
2t3∕2 log3 t

dt
|

|

|

|

|

⩽
0.044(1.0006)3∕2

√

L�2

2L3∕2 log2 109

(

1 + 4
log 109

)

⩽
0.000062 log2 109

(109)1∕3L2∕3
= 0.0000266…

L2∕3

and
|

|

|

|

1
L�

− 1
� log �

|

|

|

|

=
|

|

|

|

|

∫

L

�

log t + 1
t2 log2 t

dt
|

|

|

|

|

⩽ |L − �|
�2 log �

(

1 + 1
log �

)

⩽
0.044(1.0006)2

√

L�2

L2 log 109
(

1 + 1
log 109

)

⩽ 0.0023
log2L
L3∕2

⩽
0.0023 log2 109

(109)1∕3L7∕6
⩽ 0.00099

L7∕6
⩽ 0.0099 × 1.00067∕6

�7∕6
⩽ 0.001

�7∕6
.

Finally, from (3.4), (4.58) and (4.67),
|

|

|

|

S1(L)
logL

−
S1(�)
log �

|

|

|

|

⩽
0.0521|L − �| log �

�3∕2
⩽
0.0521 × 0.044

√

L�2 log �
�7∕6+1∕3

and, observing from (4.67) that
�2 log �
�1∕3

⩽ (1.0006)1∕3�3

L1∕3
⩽
(1.0006)1∕3 log3 109

(109)1∕3
⩽ 8.91,

we get
|

|

|

|

S1(L)
logL

−
S1(�)
log �

|

|

|

|

⩽
0.0521 × 0.044 × 1.00067∕6 × 8.91

√

L
L7∕6

= 0.0204…
L2∕3

which completes the proof of (4.62) and of Lemma 4.16.
Lemma 4.17. Let N ⩾ N (0) be a CA number. The numbers � = �(N) and �2 =
�2(N) are defined by Definition 4.3. Then

log log �(�) ⩽ log log logN −

√

2
√

� log �
+ 0.491
√

� log2 �
+ 0.0015

�2∕3
(4.68)
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and

log log �(�) ⩾ log log logN −

√

2
√

� log �
+ 0.456
√

� log2 �
− 0.11
�2∕3

. (4.69)

Proof. From (4.55), we haveL = logN ⩾ �(�)+�2, which implies �(�) ⩽ L−�2 =
L(1 − �2∕L),

log �(�) ⩽ � + log(1 − �2∕L) ⩽ � − �2∕L = �(1 − �2∕(L�))

and, from (4.61),

log log �(�) ⩽ log � −
�2
L�

⩽ log � −
�2

� log �
+
0.001�2
�7∕6

.

But, from (4.26), �2∕�7∕6 ⩽
√

2∕�2∕3, and applying (4.28) ends the proof of the
upper bound (4.68).

The lower bound (4.69) is less simple, because the lower bound of (1.16) is more
complicated. From (4.55), we have �(�) ⩾ L(1−�2∕L−2.043�1∕3∕L), which, from(1.16), yields

log �(�) ⩾ � + log(1 − u) ⩾ � − u − u2

2(1 − u0)
with, from (4.26), (4.35) and (4.56) ,

u =
�2
L
+
2.043�1∕3

L
⩽

√

2�
L

+
2.043�1∕3

L
=

√

�
L

(
√

2 + 2.043
�1∕6

)

⩽
√

�
L

(
√

2+2.043
109∕6

)

⩽ 1.48
√

�
L

⩽
1.48 ×

√

1.0006
√

L
⩽ 1.49

√

L
⩽ 1.49

√

109
⩽ 0.00005,

u0 = 0.00005 and 2(1 − u0) = 1.9999. Therefore, we may write

log �(�) ⩾ � −
�2
L
−
2.043�1∕3

L
−
(1.49)2

1.9999L
⩾ � −

�2
L
−
2.043�1∕3

L
− 1.12

L
.

But
2.043�1∕3

L
+ 1.12

L
=
�1∕3

L

(

2.043 + 1.12
�1∕3

)

⩽ �1∕3

L

(

2.043 + 1.12
1000

)

⩽ 2.05�
1∕3

L
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and so,
log �(�) ⩾ �

(

1 −
�2
�L

−
2.05�1∕3

�L

)

= �(1 − ũ)

with ũ = �2∕(�L) + 2.05�1∕3∕(�L). Note that ũ is close to u∕�. A similar computa-
tion shows that (cf. [43])

ũ ⩽ 1.49∕(�
√

L) ⩽ 1.49∕(log(109)
√

109) ⩽ ũ0 = 0.000003,

2(1 − ũ0) = 1.999994

and

log log �(�) ⩾ log �− ũ− ũ2

2(1 − ũ0)
⩾ log �−

�2
�L

−
2.05�1∕3

�L
−

(1.49)2

1.999994�2L
.

But

2.05�1∕3 +
(1.49)2

1.999994�
⩽ �1∕3

(

2.05 +
(1.49)2

1.999994 log(109)109∕3
)

⩽ 2.06�1∕3

and, from (4.56), (4.61), (4.26) and (4.29),

log log �(�) ⩾ log � −
�2
�L

−
2.06�1∕3

�L
⩾ log � −

�2
�L

− 2.06 × 1.0006
log(109)�2∕3

⩾ log � −
�2

� log �
− 0.001

�2
�7∕6

− 0.1
�2∕3

⩾ log � −
�2

� log �
−
0.001

√

2
�2∕3

− 0.1
�2∕3

⩾ log � −
�2

� log �
− 0.11
�2∕3

⩾ log � −
√

2
√

� log �
+

√

2 × 0.323
√

� log �
− 0.11
�2∕3

,

which completes the proof of (4.69) and of Lemma 4.17.

5 Proof of Theorem 1.1

5.1 The case n large
First, we prove (1.6) for a large CA number.
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Proposition 5.1. Let N be a CA number N ⩾ N (0) defined by (4.37), and S1 be
defined by (1.3). Then, under the Riemann hypothesis,
�(N)
N

⩽ e

(

log logN −
2(
√

2 − 1)
√

logN
+ S1(logN)

+ 3.789
√

logN log logN
+
0.024 log logN

log2∕3N

)

(5.1)
and,

�(N)
N

⩾ e

(

log logN −
2(
√

2 − 1)
√

logN
+ S1(logN)

+ 0.9567
√

logN log logN
−
0.48 log logN
log2∕3N

)

. (5.2)

Proof. The numbers � = �(N), �k = �k(N) and K = K(N) are defined by Defini-
tion 4.3, and, from Lemma 4.8 and (4.36), � ⩾ �(0) = 109 + 7, �2 ⩾ �(0)2 > 44023
and �3 ⩾ �(0)3 > 1418 hold. From (4.22), it follows that

U − U
� + 1

=
�

� + 1
U ⩽ log

(�(N)
N

)

⩽ U (5.3)
with

U = log
(

K
∏

k=1

∏

�k+1<p⩽�k

1 − 1∕pk+1

1 − 1∕p

)

= U1 + U2 + U3 − U4 − U5 (5.4)

with
U1 =

K
∑

k=3

∑

�k+1<p⩽�k

log
(

1 − 1
pk+1

)

, U2 =
∑

�3<p⩽�2

log
(

1 − 1
p3
)

,

U3 =
∑

p>�2

log
(

1 − 1
p2
)

, U4 =
∑

p>�
log

(

1 − 1
p2
)

and U5 =
∑

p⩽�
log

(

1 − 1
p

)

.

Observing that, from (4.26), p > �k+1 implies pk+1 > �k+1k+1 ⩾ �, we have, from (1.15)
with u = 1∕� and u0 = 1∕�(0)), (2.5), (4.26) and (4.36),
0 ⩾ U1 ⩾ �(�3) log

(

1 − 1
�

)

⩾ −
1.26�3

�(1 − 1∕�(0)) log �3

⩾ − 1.26(3�)1∕3

(1 − 1∕�(0))(log �(0)3 )�
⩾ − 1.26(3�)1∕3

(1 − 1∕�(0))(log 1418)�
⩾ −0.251

�2∕3
. (5.5)
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Next, from (1.15) with u = 1∕p3 and u0 = 1∕(�(0)3 )3, (2.15) and (4.26),

0 ⩾ U2 =
∑

�3<p⩽�2

log
(

1 − 1
p3
)

⩾ − 1
1 − 1∕(�(0)3 )3

∑

p⩾�3

1
p3

⩾ − 0.086
(

1 − 1∕14183
)

�23
⩾ −0.087

�2∕3
. (5.6)

As the trinomial 2∕ log2 y − 2∕ log y + 1 is positive, from (2.11), it follows that
0 > U4 ⩾

∑

p⩾� log(1 − 1∕p2) ⩾ −1∕(� log �) and that, from (4.26) and log � > 1,

0 < −U4 <
1
�
⩽ 2
�22
=

2 log4 �2
�2(�2 log

4 �2)
⩽
(2 log4 �(0)2

�(0)2

) 1
�2 log

4 �2
< 0.6
�2 log

4 �2
.

In the same way, from (1.15),
− log

(

1 − 1
�22

)

⩽ 1
�22
(

1 − 1∕(�(0)2 )2
)
⩽ 2
�22
< 0.6
�2 log

4 �2

whence, from (2.10),

U3 − U4 ⩽
∑

p⩾�2

log
(

1 − 1
p2
)

− log
(

1 − 1
�22

)

− U4

⩽ − 1
�2 log �2

+ 1
�2 log

2 �2
− 2
�2 log

3 �2
+ 11.46
�2 log

4 �2
.

As log �2 > log �(0)2 > 11.46∕2 holds, from (4.42) and (4.43), it follows that

U3 − U4 ⩽ −
1

�2 log �2
+ 1
�2 log

2 �2
⩽ −

√

2
√

� log �
+ 3.353
√

� log2 �
. (5.7)

From (2.11), we get
U3 − U4 > U3 ⩾

∑

p⩾�2

log
(

1 − 1
p2
)

⩾ − 1
�2 log �2

+ 1
�2 log

2 �2
− 2
�2 log

3 �2
.

But, 2∕ log �2 ⩽ 2∕ log �(0)2 < 0.19 and therefore, from (4.42) and (4.43),

U3 − U4 ⩾ −
1

�2 log �2
+ 0.81
�2 log

2 �2
⩾ −

√

2
√

� log �
+ 2.5627
√

� log2 �
. (5.8)
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From (1.11) and (4.69), U5 = ∑

p⩽� log(1 − 1∕p) satisfies

U5 ⩽ −
 − log � −
2 −

√

2
√

� log �
+ 1.606
√

� log2 �
−
S1(�)
log �

+ 0.11
�2∕3

(5.9)

while , from (1.11) and (4.68),

U5 ⩾ −
 − log � −
2 −

√

2
√

� log �
− 0.436
√

� log2 �
−
S1(�)
log �

− 0.0015
�2∕3

. (5.10)

Therefore, from (5.4), (5.5), (5.6), (5.7) and (5.10), we deduce

U ⩽ 
 + log � −
2
√

2 − 2
√

� log �
+ 3.789
√

� log2 �
+
S1(�)
log �

+ 0.0015
�2∕3

(5.11)

while, from (5.4), (5.5), (5.6), (5.8) and (5.9), we get

U ⩾ 
 + log � −
2
√

2 − 2
√

� log �
+ 0.9567
√

� log2 �
+
S1(�)
log �

− 0.448
�2∕3

. (5.12)

In (5.11), from (4.56), we have
0.0015∕�2∕3 ⩽ 0.0015 × (1.0006)2∕3∕L2∕3 ⩽ 0.00151∕L2∕3 (5.13)

and, similarly, in (5.12),
−0.448∕�2∕3 ⩾ −0.448 × (1.0006)2∕3∕L2∕3 ⩾ −0.449∕L2∕3. (5.14)

Also, from (4.59), (4.60) and (4.62),
(2
√

2 − 2) × 0.00052 + 3.789 × 0.000027 + 0.021 ⩽ 0.0216

so that

−
2
√

2 − 2
√

� log �
+ 3.789
√

� log2 �
+
S1(�)
log �

⩽ −
2
√

2 − 2
√

L logL
+ 3.789
√

L log2L
+
S1(L)
logL

+ 0.0216
L2∕3
(5.15)
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and similarly

−
2
√

2 − 2
√

� log �
+ 0.9567
√

� log2 �
+
S1(�)
log �

⩾ −
2
√

2 − 2
√

L logL
+ 0.9567
√

L log2L
+
S1(L)
logL

− 0.0215
L2∕3

.

(5.16)
Consequently, (5.3), (5.11), (5.13) and (5.15) yield

log
(�(N)
N

)

⩽ U ⩽ 
 + log � − u (5.17)
with

u =
2
√

2 − 2
√

L�
− 3.789
√

L�2
−
S1(L)
�

− 0.02311
L2∕3

(5.18)

and, from (5.12), (5.14) and (5.16),

U ⩾ 
 + log � −
2
√

2 − 2
√

L�
+ 0.9567

√

L�2
+
S1(L)
�

− 0.4705
L2∕3

. (5.19)

From (5.18), (1.4) and (1.5), one remarks that

0 < 0.44
√

L�
<
2
√

2 − 2 − 3.789∕�0 − � − 0.2311�0∕L
1∕6
0

√

L�
⩽ u

⩽
2
√

2 − 2 + �
√

L�
< 0.875

√

L�
(5.20)

and thus, (5.17) implies
U < 
 + log �. (5.21)

The mapping t↦ (log log t)∕t1∕3 is decreasing for t > 18, so we may write
U
� + 1

<

 + log �

�
⩽ 1.0006

L2∕3
( 

109∕3

+
log log 109

109∕3
)

⩽ 0.0037
L2∕3

.

Therefore, it follows from (5.3) that

0 ⩾ log
(�(N)
N

)

− U ⩾ − U
� + 1

⩾ −0.0037
L2∕3

,
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which, from (5.19), yields
log

(�(N)
N

)

⩾ 
 + log � − v (5.22)
with

v =
2
√

2 − 2
√

L�
− 0.9567

√

L�2
−
S1(L)
�

+ 0.4742
L2∕3

.

Furthermore, from (5.20),
u2

2
⩽ 0.8752

2L�2
⩽ 0.8752

2 × 109∕3(log2 109)L2∕3
⩽ 10−6

L2∕3

which, with (1.18) and (5.17), yields (5.1). Finally, (1.18) and (5.22) prove (5.2).

Corollary 5.2. Let n be an integer satisfying n > N (0) defined by (4.37). Then
�(n)
n

⩽ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n)

+ 3.789
√

log n log log n
+
0.026 log log n

log2∕3 n

)

. (5.23)

Proof. By applying Proposition 4.6, we define the two consecutive CA numbersN ′

andN satisfyingN ′ < n ⩽ N , so that (4.24) gives
�(n)
n

⩽ �(N ′)
N ′ +

�(N)
�N

(5.24)
where � = �(N) is defined by Definition 4.3. As logN > logN (0) > 20 holds, (1.1)
or (5.1) implies �(N)∕N < e
 log logN and, from (4.56),
�(N)
�N

⩽ 1.0006e
�
L

⩽ 1.0006e
�
109∕3L2∕3

⩽
0.002 log logN

log2∕3N
⩽
0.002 log log n

log2∕3 n
. (5.25)

Applying (5.1) to N ′ with the notation (3.11) with a = 2(√2 − 1), b = 3.789 and
c = 0.024 yields �(N ′)∕N ′ ⩽ H(a, b, c, logN ′) and, from Lemma 3.6 proving that
H in increasing, as N ′ < n, �(N ′)∕N ′ ⩽ H(a, b, c, log n). Therefore, from (5.24)
and (5.25), it follows that

�(n)
n

⩽ H(a, b, c, log n) +
0.002 log log n

log2∕3 n
= H(a, b, c + 0.002, log n),

which proves (5.23).
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5.2 The case n small
Lemma 5.3. Let n be an integer satisfying 2 ⩽ n ⩽ N (0) defined by (4.37). Then

�(n)
n

⩽ e

(

log log n −
2(
√

2 − 1)
√

log n
+ S1(log n)

+ 3.789
√

log n log log n
−
0.0983 log log n

log2∕3 n

)

. (5.26)

Proof. We use the notation of Lemma 3.6 so that, from (1.4), it suffices to show
that, for 2 ⩽ n ⩽ N (0),

�(n)∕n ⩽ e
G
(

2(
√

2 − 1) + �, 3.789,−0.0983, log n
)

. (5.27)
∙ If 55440 ⩽ n ⩽ N (0), as log 55440 > 10, Lemma 3.6 implies that the mapping
t↦ G

(

2(
√

2−1)+�, 3.789,−0.0983, t
) is increasing and concave for t ⩾ log 55440.

Therefore, as 55440 is CA, from Lemma 4.15, to prove (5.27), it suffices to prove it
for all CA numbersN satisfying 55440 ⩽ N ⩽ N (0). For n ⩾ 2, it is convenient to
define c̃(n) by

e
G
(

2(
√

2 − 1) + �, 3.789, c̃(n), log n
)

= �(n)∕n.

For all CA numbersN satisfying 55440 ⩽ N ⩽ N (0), we have computed c̃(N) (cf.
[43]). The largest value, −0.098377958…, is obtained for

N = 232320513711119138177197
37
∏

p=23
p6

73
∏

p=41
p5

199
∏

p=79
p4

1123
∏

p=211
p3

31249
∏

p=1129
p2

504457601
∏

p=31253
p

and logN = 5.04466…108.
∙ If n ⩽ 55440, then one computes c̃(n) for all n’s satisfying 2 ⩽ n ⩽ 55440
(cf. [43]). The largest value of c̃(n) is obtained for n = 55440 and c̃(55440) =
−0.52488… < −0.0983, which completes the proof of Lemma 5.3.

5.3 Proof of Theorem 1.1 (i)
Part (i) follows from Corollary 5.2 and Lemma 5.3.
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5.4 Proof of Theorem 1.1 (ii)
G. Robin has proved (cf. [37, Section 4]) that, if the Riemann hypothesis fails, then
there exists b < 1∕2 such that the CA numberN satisfies

�(N)∕(N log logN) = e

(

1 + Ω±(log
−bN)

)

. (5.28)
Consequently, (5.28) implies the existence of infinitely many n’s that do not satisfy
(1.6), which proves (ii).

5.5 Proof of Theorem 1.1 (iii)
If the Riemann hypothesis is true, then (iii) follows from Proposition 5.1, (5.2). If it
is false, then (iii) follows from (5.28). □

6 Proof of Corollary 1.2

6.1 Preliminary lemmas
Lemma 6.1. Let N ′ ⩾ 55440 and N be two consecutive CA numbers with �(N ′)
(defined in (1.9)) and �(N) positive. Let n such thatN ′ ⩽ n ⩽ N . Then,

�(n) ⩾ min(�(N ′), �(N)). (6.1)
Proof. First, note that the positivity of �(N ′) and �(N) follows from (1.1), but in
each computation, it will be checked. Let us set a = min(�(N ′), �(N)) > 0 and
f (t) = e
(log t − a∕

√

t). This function is increasing and concave for t > 1. More-
over, �(N ′)∕N ′ = e


(

log logN ′ − �(N ′)∕
√

logN ′
)

⩽ f (logN ′) and, similarly,
�(N)∕N ⩽ f (logN). So, we may apply Lemma 4.15 that yields e
(log log n −
�(n)∕

√

log n) = �(n)∕n ⩽ f (log n), and �(n) ⩾ a follows.
Lemma 6.2. Let a be a real number belonging to [0, 1],N a CA number of param-
eter ",M ′ andM two integers such that 8 ⩽ M ′ ⩽ M , and an integer n satisfying
M ′ ⩽ n ⩽M and �(n) ⩽ a. Then ben"(n) defined in (4.44) satisfies

ben"(n) ⩽ max
(

g(logM ′), g(logM)
)

− 
 + log(�(N)∕N) − " logN (6.2)
with

g(t) = "t − log
(

log t − a∕
√

t
)

.
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Proof. First, for t ⩾ log 8 and 0 ⩽ a ⩽ 1, log t − a∕√t is positive and
d2g(t)
dt2

=
1∕t2 + 3a∕(4t5∕2)

log t − a∕
√

t
+
(1∕t + a∕(2t3∕2))2
(

log t − a∕
√

t
)2

> 0,

thus g(t) is convex. Next, from (4.44),
ben"(n) = log(�(N)∕N) − log(�(n)∕n) + " log n − " logN.

But, from (1.9), as �(n) ⩽ a is assumed,
�(n)
n

= e

(

log log n −
�(n)

√

log n

)

⩾ e

(

log log n − a
√

log n

)

so that " log n − log(�(n)∕n) ⩽ g(log n) − 
 and
ben"(n) ⩽ g(log n) − 
 + log(�(N)∕N) − " logN.

As g(t) is convex, its maximum on the interval [logM ′, logM] is attained at one of
its extremities, whence (6.2).
Lemma 6.3. If n ⩾ N"24 the 24th CA number of parameter "24 = F (41, 1),

N"24 = 9200527969062830400 = 2
634527211…41 = 9.2…1018, (6.3)

then �(n) > 0.582 holds.

Proof. First, we consider the case n ⩾ N0) (defined by (4.37)) withL0 = logN (0) >
109 and �0 = log logN (0) > log 109 (cf. (4.38)). From (1.8) and (1.12),
�(n)
n

⩽ e

(

log log n + 1
√

log n

(

− 2(
√

2 − 1) + � + 3.789
�0

+
0.026�0
L1∕60

)

)

< e

(

log log n − 0.582
√

log n

)

. (6.4)

Next, we consider the case N"24 ⩽ n ⩽ N (0). One computes �(N) for all CA
numbers N ⩽ N (0). The largest value of �(N) found is 0.92019… for the CA
number whose largest prime factor is 1019 (cf. [43]). For all CA numbers N’s
satisfying N"24 ⩽ N ⩽ N (0), �(N) ⩾ �(N"24) = 0.603… holds, which, from
Lemma 6.1, completes the proof of Lemma 6.3.
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6.2 Proof of Corollary 1.2 (i).
If N ′ ⩾ 12 and N are two consecutive CA numbers, then Lemma 6.2, with " the
common parameter of N ′ and N (cf. Proposition 4.2), M ′ = N ′, M = N and
a ∈ [0, 1], allows us to compute an upper bound � = �(N, a) of ben"(n) when
N ′ ⩽ n ⩽ N and �(n) ⩽ a. From Section 4.6, there exists an algorithm to determine
the list ben = ben(N, a) of those integers n ∈ [N ′, N] such that ben"(n) ⩽ �.
By pruning ben, i.e. by taking off the n’s with �(n) > a, we determine the list
� = �(N, a) of integers n satisfyingN ′ < n ⩽ N , �(n) ⩽ a and n ⩾ 5040.

With the notation of Table 1, �16 = N"23 is the CA number preceding N"24 . For
n ⩾ N"24 , (1.10) follows from Lemma 6.3. To complete the proof of (1.10), we
have to check that there are no n satisfying �(n) ⩽ 0.582 and �16 < n < N"24 , inother words, we have to check that the set �(N"24 , 0.582) is empty, which is true
(cf. [43]).

6.3 Proof of Corollary 1.2 (ii).
For each CA numberN such thatN"9 = 5040 ⩽ N ⩽ N"24 (cf. (6.3)), one computes
�(N, 0.582). By bringing together these sets, one can get ̂, the set of 161 numbers
n satisfying 5040 ⩽ n ⩽ N"24 and �(n) ⩽ 0.582 (cf. [43]). Among them, 15 are CA
and 58 are SA (but not CA).

Let us write ̂ = {n1 = �1 < n2 < … < n161 = �16}, To get the �k’s of Table 1,
we prune ̂ in the following way: for k from 16 downwards to 2, �k−1 is the largest
ni < �k such that �(ni) < �(�k). □

7 Open questions
Find an asymptotic expansion of the upper bound of �(n)∕nmore precise than (1.2).
In particular, find the asymptotic coefficient of 1∕(√log n log log n) in (1.2). Proba-
bly, for that, it would be necessary to improve the estimate (1.11) of∏p⩽x(1−1∕p).In [34] (see also [2, Chapter 8]), under the Riemann hypothesis, Ramanujan
considers

�−s(n) =
∑

d∣n

1
ds
, for 0 < s ⩽ 1
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(note that �−1(n) = �(n)∕n), defines

Ss(x) = −s
∑

�

x�−1

�(� − s)

and gives an asymptotic expansion of the maximal order Σ−s(n) of �−s(n). For ex-ample, for s = 1∕2, (cf. [34, Equation (380)]),

Σ−1∕2(n) = −

√

2
2
�
(1
2

)

exp
(

li(
√

log n)+
2 log 2 − 1 + S1∕2(log n)

log log n
+

(1)
(log log n)2

)

,

(7.1)
where li denotes the logarithmic integral. It would be interesting to get an effective
form to the asymptotic expansion of Σ−s(n). The general case 0 < s < 1 might be
difficult to deal with. But in the case s = 1∕2, it is maybe possible to get an effective
form to the expansion (7.1).
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