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Abstract

Let o(n) = Y an 4 be the sum of divisors function and y = 0.577 ... the
Euler constant. In 1984, Robin proved that, under the Riemann hypothesis,
o(n)/n < e’ loglog n holds for n > 5040 and that this inequality is equivalent
to the Riemann hypothesis. Under the Riemann hypothesis, Ramanujan gave
the asymptotic upper bound
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with S;(x) = ¥, x*1(p(1 = p)) = >, x?~1/|p|*> where p runs over the non-
trivial zeros of the Riemann ¢ function.

In this paper, an effective form of the asymptotic upper bound of Ramanu-
jan is given, which provides a slightly better upper bound for ¢(n)/n than
Robin’s inequality.
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1 Introduction

Let n be a positive integer, o(n) = Y. 412 9 the sum of its divisors and y = 0.577 ...
the Euler constant. In 1913, Gronwall proved that o(n)/n < (1 + o(1))e” loglogn
(cf. [19]). In 1982, under the Riemann hypothesis, Robin proved that

for n > 5040, aTn) < e’ loglogn (1.1)
holds and, moreover, that (1.1) is equivalent to the Riemann hypothesis (cf. [36,
37]).

Much earlier, in his PHD thesis, Ramanujan worked on the large values taken
by the function o(n). In the notes of the book Collected Papers of Ramanujan,
about the paper Highly Composite Numbers (cf. [33]), it is mentioned “The London
Mathematical Society was in some financial difficulty at the time, and Ramanujan
suppressed part of what he had written in order to save expense”. After the death
of Ramanujan, all his manuscripts were sent to the University of Cambridge (Eng-
land) where they slept in a closet for a long time. They reappeared in the 1980s and,
among them, handwritten by Ramanujan, (see [35, 280-312]) the suppressed part of
“Highly Composite Numbers”. A typed version can be found in [34] or in [2, Chap-
ter 8]. For the history of this manuscript, see the foreword of [34], the introduction
of Chapter 8 of [2] and [29].

In this suppressed part, under the Riemann hypothesis, Ramanujan gave the
asymptotic upper bound

+ 5,(logn) +

vlogn vl1ognloglogn

oln) (1.2)
n

< e7< loglogn — —2(\/5_ D o) )

with (cf. [34, Section 65]),
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where p runs over the non-trivial zeros of the Riemann ¢ function. Under the Rie-
mann hypothesis, following Ramanujan in [33, Equation (226)], we may write
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with
T=2+y —log(4r) =0.046 191 417 932242 0.... (1.5)

where y is the Euler constant. The value of 7 = 2 ) , 1/p can also be found in
several books, for instance [15, p. 67] or [12, p. 272]. See also [3, p. 9-10]. We
prove:

Theorem 1.1. (i) Under the Riemann hypothesis, for n > 2,
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(ii) If the Riemann hypothesis is not true, there exist infinitely many n’s for which
(1.6) does not hold. In other words, (i) is equivalent to the Riemann hypothesis.

(iii) Independently of the Riemann hypothesis, there exist infinitely many n’s such
that

). (1.6)
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From (1.6) and (1.4) it follows
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If n, = 3.98 ... 10% is the root of

3.789 N 0.026 log log n,, _
loglog log'/® n, ’
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then (1.8) is better than Robin’s result (1.1) only for n > n,. So, to study the be-
haviour of large values of ¢(n)/n, for n > 2, we define a(n) by
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Vi a(vy)

k
1% 2%325...7 = 5040 —0.0347834895 ...
21 % 2°325...7 = 10080 0.09563797587 ...
3% 24325...11 = 55440 0.1323247679 ...
4| x 2°325...11 = 110880 0.2169221889 ...
5| 2%325...13 = 720720 0.2575558824 ...
6 | = 2°325...13 = 1441440 0.2990357813 ...
71 % 24335...13 = 2162160 0.3189756880 ...
8 [ xx 29335...13 = 4324320 0.3442304679 ...
9| #x 29335%7...19 = 6.98...10° 0.3912282440 ...
10 | #x 2°33527...23 = 1.60... 10" 0.4044234073 ...
11 | % 2033527...23 = 3.21...10" 0.4167364286 ...

12| = 273%527...23 = 6.42... 10" 0.4911990553 ...
13 | %+ 263%527...29 = 9.31...10" 0.4939642676 ...
14 | % 203°527211...31 = 2.02...10 | 0.5250314374 ...
15 | s 203%527211...31 = 6.06... 10" | 0.5436913001 ...
16 | s 203%527211...37 = 2.24...10'7 | 0.5704418438 ...

Figure 1: Values of v,

In Table 1, we give the value of a(v,) for a sequence (v,);¢;<j6- The SA numbers
(cf. below (4.2)) are marked by one star and the CA numbers (cf. Section 4.1) by
two.

Corollary 1.2. Let us assume the Riemann hypothesis.
(i) For n > v,

o(n) < ey<10g10gn— 0.582 ) (1.10)
h logn
(ii) Forl < k < 15and n > v,,
@ < d(loglogn - a(vk“)).
h vlogn

Let ¢(n) denote the Euler function. It is known that, for all n, o(n)/n < n/¢@(n)
holds and that

: o(n) : n
limsuyp ———— = limsup ———— =¢".
-0 hloglogn -0 @(n)loglogn
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But, there are infinitely many #n’s such that n/@(n) > e’ loglog n (cf. [26, 28]) while
there are infinitely many »’s such that o(n)/n > e’ loglogn only if the Riemann
hypothesis fails (cf. [37, 36]). The large values of o(n)/n and n/@(n) depend on the
product Hpgx(l — 1/p). We shall use below the formula of [28, (2.16)], valid for
x> 10°

S
0.055 <210g<1—1>+y+10g10g9(x)+ 2 + 1(36)S 2.062 ,
\/;logzx px p \/;logx log x \/;logzx
(L.11)

where 6(x) = ). »<x 10g p is the Chebyshev function. Other inequalities about o(n)
and @(n) can be found in [27].

The works of Robin and Ramanujan have aroused several interesting papers, cf.
[4,5,9, 10, 11, 20, 22, 23, 24, 40, 41]. I also recommend the reading of Chapters
6-9 of the book by Broughan [6].

1.1 Notation

0(x) = Z logpand w(x) = ). Phx log p are the Chebyshev functions.

PSX

- n(x) = 2 1 is the prime counting function.
PSX

P = {2,3,5, ...} denotes the set of primes. p, =2, p, =3, ... . D; is the jth
prime. For p € P and n € N, v,(n) denotes the largest exponent such that
p%™ divides n.

If limu, = +co, v, = Q,(u,) is equivalent to limsup,_, . v,/u, > 0 and

n—0o0

liminf,_ v,/u, <O.

We use the following constants:
— &0 =10° + 7 is the smallest prime exceeding 10°, log £ = 20.723265 ...,

— N© is defined in (4.37), and the numbers ( 20))2<k<33

in (4.36).

— For convenience, we sometimes write L for log N, A for loglog N, L, for
log N© and 4, for loglog N©.



We often implicitly use the following results: foru > 0,v > 0, w € R,

(logt — w)*
t> ———

" is decreasing for t > exp(w + u/v), (1.12)
logt — w)* u

mMS%L—EL=<E>emGﬂ—UwL (1.13)

t>eW tU v
u(l —uy/2) <u-— u2/2 Klog(l+u)<u, 0<u<y,<l, (1.14)
2 <% Klogl—wy<—u, O0<u<u<l, (1.15)

u? u?
—u—z(l—_uo)<—u—2(1_u)<log(1—u)<—u, O<u<uy,<1, (1.16)
L <o <1+1)<l >0 (1.17)
1 112 8 t) St ’ '

l—u<exp(-u) <1 —u+u?/2, u>0 (1.18)

<
and, for 0<u<y,<1,0<v<y, <1,

;Sl-l‘ u
(1 —uw)(1 +v) 1—u,

l+u—-v< — (I = vy)v. (1.19)

1.2 Plan of the article

The proof of Theorem 1.1 follows the proofs of (1.1) in [37] and of (1.2) in [34,
Section 71], but in a more precise way.

In Section 2, we recall various results about prime numbers and functions 6(x),
v (x), #(x) and, in Lemma 2.1, the sum szy log(1 — 1/p?) is estimated.

Section 3 is devoted to the study of .§,(x) defined by (1.3). A formula allowing
us to compute .S, (x) is given in Lemma 3.2 while, in Lemma 3.4, we give an up-
per bound for the difference S,(x) — S,(y) and in Lemma 3.5, it is proved that the
mapping x — 0.16 log(x) + .5,(x) is increasing for x > 3.

Section 4 studies the colossally abundant numbers (CA). As these numbers look
like very much to the superior highly composite (SHC) numbers, the presentation
of SHC numbers given in [30] is followed. The computation of CA numbers is
explained in Section 4.2. The notion of benefit, very convenient for computation on
numbers with a large sum of divisors, is explained in Section 4.6. In Section 4.7,
an argument of convexity is given, that allows to reduce certain computation for all
integers only to CA numbers. To each CA number N is associated a number & =
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E(N) (see Definition 4.3) close to log N. In Section 4.8, which is a little technical,
are given upper and lower bounds of the difference f (&) — f(log N) for several
functions f.

The proof of Theorem 1.1 is given in Section 5. First, in Proposition 5.1, it
is proved that (1.6) and (1.7) hold when n is a CA number N > N© (defined
in (4.37)). This proposition is the crucial part of the paper and the main tools to
prove it are the estimates of the sums ) osylogl —1 /p*) (cf. (2.10) and (2.11))
and )] p<x log(1 — 1/p) (cf. (1.11)). Then, it follows easily that (1.6) also holds
when 7 is between two consecutive CA numbers > N©. The case n < N© is
treated by computation. The argument of convexity given in Section 4.7 restricts
the computation to CA numbers.

The proof (mainly computational) of Corollary 1.2 is exposed in Section 6. For
n> N©O_ (i) follows easily from Theorem 1.1 (i). For n < N©, here also, the argu-
ment of convexity reduces the computation to CA numbers. To get the array of Table
1, the benefit method (cf. Section 4.6) is used to find the 161 integers » satisfying
5040 < n < vjg =2.24...10" and 6(n)/n > e’ (loglogn — 0.582/+/log n).

The last Section presents two open problems.

2 Useful results

In [8, Theorem 2], Biithe has proved
O(x)= Y logp<x forx<10" 2.1)

psX

and
0(x) > x — 1.94\/; for 1427 < x < 10", 2.2)

The results (2.1) and (2.2) have been improved in [7]. It is shown that
10(x) — x| < V/x/(87log® x)
holds for all 599 < x < X where X is the largest number for which
4924/ X/logX < H,

where H is the height to which the Riemann hypothesis has been verified. This, in
conjunction with the paper by Platt and Trudgian [32], which establishes the Rie-
mann hypothesis up to 3 - 10!2, should give a very good error term and would allow
a better estimate in Lemma 2.1 below.



Platt and Trudgian in [31, Corollary 2] have also shown that
0(x) < (1+nx withyp=75x10"7 forx > 0.

We also know that (cf. [38, Theorem 10])

0(x) > 0.89x for x>227 and 6(x)>=>0.945x for x > 853,

that (cf. [38, (3.6)])
z(x)= ) 1< 126x/logx for x>1

P<Xx

and that (cf. [13, Theorem 4.2])

10(x) — x] < x/log’x for x> 89967803.

(2.3)

(2.4)

(2.5)

(2.6)

Under the Riemann hypothesis, we use the upper bounds (cf. [39, Theorem 10,

(6.3)D) |
ly(x) — x| < 8—\/§log2x for x>732
T

and |
16(x) — x| < 8—\/§10g2x for x> 599.
T

2.7)

(2.8)

It would be possible to slightly improve the numerical results of this paper by using

the formula of Dusart (cf. [14, Proposition 2.5])

[0(x) — x| < SL\/;(logx—loglogx —2)logx for x> 11977
/1

improving on Schoenfeld’s formula (cf. [39, Theorem 10, (6.1)])

[0(x) — x| < SL\/;(logx —2)logx for x>23- 108
T

but it would make the presentation of algebraic calculations more technical.

Lemma 2.1. Fory > 108,

1 1 2 1

- T 3 94 < Z_z

ylogy ylog’y ylog’y ylog'y >y P
< 1 + 2

\ylogy ylog’y ylog’y

(2.9)



Fory > 24317,

Pog(1-5) K=o 4 = = 4 (2.10)
>y p ylogy = ylog’y ylog’y ylog'y

and, for y > 19373,

Zlog(l—iz>>— R S S @.11)
p ylogy ylogy ylog’y ylog'y

Proof. By Stieltjes’s integral,

Z 1 /°° d[6(1)] 0(y) /°° 0(t)(2logt+ 1)
== 5 == + dt
D , trlogt y*logy v

2
P>y 3 log” t

and, for y > 108, from (2.6),

le <—y(1 21/10g J’)+/ t(1+1/log t)2210gt+1)dt
>y P y*logy y 3 log” t

by using the notation

A, = ln and an/ anAn—nJ,,H.
ylog"y , tlog't

We get (cf. [43])
—A+A+2)+ 0, +2J,+Js=A,— A, +2A;, - 3A,+ 17TA; — 85
and the upper bound of (2.9) follows from the positivity of J, and from
—3A,+17A5 = (-3 +17/log y)A, < (-3 +17/10g 109 A, = =2.077 ... A,.
Similarly,

L s A A 420 40, =20, — T = A — A, + 24, —9A, +31J;,
7 5 1 2 3 4

pzy

which proves the lower bound of (2.9), since J5 > 0 holds.

9



To prove (2.10) and (2.11), it is convenient to set

1 1 1 2 a
g()’)Z210g<1——2>andf(a,y):— + — - —+ —
P>y 4 ylogy ylogy ylog’y ylog'y

Note that, for y fixed > 1, f(a, y) is increasing in a. Moreover, the derivative d f /dy
is equal to (cf. [43])

df _ h(a.Y)

= s with h(a,Y)=Y*—aY +6Y —4a and Y =logy.
y y

Fora < 13andy > 19, 0h/0Y = 4Y? —a+6 > 4log3 19-7> 0, h(a,Y) is
increasing in Y and h(a,Y) > h(13,log 19) = log* 19—-710g 19-52=2.55... > 0
(cf. [43]), so that, for a fixed < 13, f(a, y) is increasing in y for y > 19.

One has

1 1 1 1 1 1 1
Demg(i-L)ey Loy L
2 08 P 2 kpk ~ p? Z 2p% T p2 T 2p2(p— 1)

k>1 k>2

which, from the lower bound of (2.9), implies

g < fO.y for y>10° (2.12)

Furthermore,

1 1 11 1 1 [Tdt
< —<—=) — <= =
221?2(192—1) h 2(y2—1)2p2 TyEr Ty

pzy pzy

4 4 8
1 < 2 _ 2log yA < 21og"(10°)

==X < A, <0.074,,
Yo-b Ty T aee T )
which, from the upper bound of (2.9), proves
gy) = f2,y) for y>10° (2.13)

Let us assume that 19 < p’ < y < p” where p’ < p” are two consecutive primes.
As p > yisequivalent to p > p”, g(y) is equal to g(p”"). Now, a(y), a(p’) and a(p”)
are defined by

g =gW") = flay),y) = fla@®"),p") = fa®"), p").

10



If a(p”) < 13, then

gy) = fay),y) = fa@"),p") = fla®@"), y),

whence a(y) > a(p”). Similarly, if a(p’) < 13, then

gy) = fay),y) = f(a@),p) < fla®),y)
implies a(y) < a(p’), so that a(p’’) < a(y) < a(p’) holds. The formula
g0)= Y log (1 _ —) 10g< ) Zlog(l _ —>
pzp"

allows a numerical computation of g(p”) = g(), a(p’) and a(p”’). By computation
(cf. [43]), one observes that, for 1669 < p’ < 10%, a(p”) < a(p’) < 12.79 < 13,
that, for 24317 < y < 108, a(y) < 10.26 while, for 19373 < y < 108, a(y) > 2,

which, with (2.12) and (2.13), completes the proof of (2.10) and (2.11). ]
Lemma 2.2. Let x be a real number > 2 and c be such that 0(t) > ct for t > x (cf.
(2.4)). Then
1
L < (A (3 + =) —2¢), (2.14)
[)Z‘x = 2x2log x log x

where n is defined by (2.3). As an Application, if x > 1418, then,

Z % < (2).624 < 0.0286. (2.15)
Sip x?log x X
Proof. By Stieltjes’s integral,
ZL _ /°° die@] _  6(x) +/ 0(t)(3logt + 1)
pex p3 X r logt x3 IOg X X # log t
3logx+1 [% d¢ 3logx + 1
~ e TUF )g—Z/ _3=_2c a )g—z’
x*log x log“x J. 1 x*log x 2x21og” x

which proves (2.14).

From (2.4), for x > 1418, ¢ = 0.945 can be chosen and (1+#)(3+1/ log(1418))/2—
¢ = 0.6239 ..., which proves (2.15).

It is possible to get a better upper bound for ), pox 1 /p® by copying the proof of
Lemma 2.1 with an exponent 3 instead of 2. [

11



Lemma 2.3. Let us denote by p, the ith prime. Then, for p, > 127, we have
Piv/p; < 149/139 = 1.0719 ... (2.16)

We order the prime powers p™, with m > 1, in a sequence (a,);5, = (2,3,4,5,7,8,
9,11,13,16,17,...). Then, for a, > 127,

a;,,/a; < 1.072. 2.17)

Proof. In[13, Proposmon 5.4], it is proved that, for x > 89693, there exists a prime
p satisfying x < p < x(1 + 1/1log’ x). This implies that for p; = 89693, we have

D1 < p; + p;/log’ p, and
Pii/py < 1+1/1og* p < 1+ 1/log’ 89693 = 1.000674 ...

For 2 < p; < 89693, the computation of p,,,/p, completes the proof of (2.16).
If p; is the largest prime < a;, then a,,; < p;,, holds, so that, by (2.16), for
> 127,

a141/a; < Py /p; < 1.072
holds, which proves (2.17) (cf. [43]). 0

3 Study of the function 5,(x) defined by (1.3)
Lemma 3.1. Let w(x) = Z «<x 10g p be the Chebyshev function. If a, b are fixed real

numbers satisfying 1 < a < b < o0, and g any function with a continuous derivative
on the interval [a, b], then

b b
Z/ g(;)t”dt:/ g(0) [t—w(t)—log(Z;r)—%log(l—%)] di,  (3.1)
p Ja ¢

where p runs over the non-trivial zeros of the Riemann { function.

Proof. This is Théoreme 5.8(b) of [17, p.169] or Theorem 5.8(b) of [16, p.162]. [

Lemma 3.2. For x > 1, S1 (x) defined by (1.3) satisfies
p(p -1

S,(x) = - 2
40 log(2) 1

= [ Yl —togx+1+ + .
/1 2 08X Y= kz:;zk(zk+1)x2k+l

12



Proof. Applying Lemma 3.1 with g(t) = 1/>,a = 1,b = x and, (cf. (1.5)), 7 =
2, 1/(p(1 = p)) =2 —y —log(4n) yields

S, (x)— 1_2/ Y7 gt = / [w(t)—t+1og(2n)+%1og(1—tlz>] %. 3.2)

From the expansion in power series (cf. [43]),

o]

log(l - 1/12) d
/1 Z 2k(2k + 1)x2k+1 ; ( 2k + 1)

k=1 1

+log2 -1,
; 2k(2k + 1)x2k+1 o8

(3.2) completes the proof of Lemma 3.2. Note that Lemma 3.2 allows the numerical
computation of .S, (x), cf. [43]. As the mapping p — 1 — p is a permutation of the
non-trivial roots of the Riemann ¢ function, S, (x) = $,(1/x) allows the computa-
tion of S;(x) for0 < x < 1. [

Lemma 3.3. Fort > 2, the function Y (¢t) = log(1 — 1/t*)/(2t) is increasing and
satisfies 0 < Y'(t) < 1/(2%).

Proof. FromY = — Y " 1/(2ke***"), for t > 2, one deduces

o]

' S 3w 11
Y_ZZkﬂk” kz_}ztzkﬂ\ﬁ lﬁ_ﬁ’

[o0]

which completes the proof of Lemma 3.3. [

Lemma 3.4. Let S| be defined by (1.3) and x and y be real numbers. Then, under
the Riemann hypothesis,

|x — y|log” y

|.S,(x) = S,(»)| <0.0515 72 for 132<y<x (3.3)

and
S109 _ S,0)| _ 0.0521]x = yllogy

logx logy Y32

for T732<y<x. (3.4

13



Proof. From (2.7) and (1.12), for 73.2 < y < x

“w)—t * 10g2t |x — y| log2 y
< < —
[ t2 dt \[ 87[ [3/2dt X 8]‘[ y3/2 ’ (35)
Y dt

I 1 _x-y _|x—yl
I _ < 3.6
? y x xy y? -0

y
and

X 1 _ 2
/ _logl —1/7) ..
y 21

AR lx—yl
_/y ﬁ(lzl]t21> 2

Jljy

Ix - yl _ ¥
Z 2y2( 2 _ )’ (3.7

whence, from (3.2), (3.5), (3.6) and (3.7), with y, = 73.2,

log? log(2
Ix — |< <>gy+0g(7r)+ 1 >
8 y3/2 ¥ 22(y* =1
Ix—y|10g2y<1 1 < 1
- 7 (—+ ——(log2n) + —))
Y32 87 ﬁlogzy 2002 = 1)
Ix—y|10g2y< 1 1 ( 1
= ey 10g(27r)+—>>
y2 8z \/y,log’ ¥, 205 -1

1510 =S| <

V/A\

|x — y|log® y

= 0.0514... 7

which proves (3.3). Finally, from (3.3) and (1.4),

Si(x) Sl(y) S0 S, 5 Six)
logx logy logy logy logx log y
_ 1510 = S0l
+ 15,00 /
log y tlog”t
0.0515]x — y|1 - -
< Ix3 2yl ogy  z lx—y _Ix y3|20gy<0'0515 . )
y3/ \/_ylog y y3/ log’ y
which, as from (1.5), 7/log’ y < 0.0462/ log® 73.2 < 0.0006, completes the proof
of (3.4) and of Lemma 3.4. ]
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Lemma 3.5. The function
h,(x) =0.161log x + 5,(x), (3.8)
where S,(t) is defined by (1.3), is increasing for x > 3

Proof. Let us use the sequence (q,),, introduced in Lemma 2.3. From (3.2), h,(x)
is continuous for x > 1 and differentiable on x € (a;, a;,,), so it suffices to prove
that h,(x) is increasing on each interval (a;, a,,,) for a; > 3.

Let x € (a;,a,,,). From Lemma 3.2 with the notation Y (x) = log(1-1/x%)/(2x),

W (x) = (()16 "'("")Hog(z”)—unx))
X
and, from Lemma 3.3,
H(x) > (0 16 + l”(a")ﬂog(z”)—1+Y(a,<)>. (3.9)
ity

For each g, satisfying 3 < a; < 127, the smallest value of the parenthesis of (3.9) is
> (0.0033 (cf. [43]) and thus positive. For a; > 128, from (2.17) and (2.7),

) + log(2 4 loe? a, 2
w(a,) + log(2x) S 4 (1 _ log”q, ) S 1 (1 _ log” 128
8ryfa;/  1OT2% " gz4/128

From Lemma 3.3, Y(a,) > Y(128) = —2.38... 1077 so that (3.9) yields h’l(x) >
0.16 + 0.855 — 1 — 2.4 x 1077 > 0.0149 > 0, which ends the proof of Lemma
3.5. ]

> ) > 0.855.
ity it

Lemma 3.6. Let a > 0.75, b < 3.9 and ¢ < 0.1. The function

b c logt
G() = G(a,b,c,t) =logt — — + (3.10)
\f Vilogt | P
is increasing for t 2 6 and concave for t > 10, while the function
clogt
H(t) = H(a,b,c, t)—logt——+ +.5,() + (3.11)

\/_logt 23

where S,(t) is defined by (1.3), is increasing fort > 6

15



Proof. Let us set

g (u,v,1) = ulogt+ ° (3.12)
tlogt
dgl(l/l,l),t) 1 2U
' ) 7t - == 2 )
8 (U 0.1) a1 2t< “-

\/—logt \ﬂlogzt ’
8v )
\/;logt \/_log t \/;log3t

o = -2 (4u-

412

Foru>0.8,v<33andt > 6,

¢ v.0) > l<1.6 33 66 ) _ 0.0088 ... >0 (3.13)
2t \/810g6 \/glog2 6 2t
and, foru > 0.95, v <3.3andr > 10,
') < _ﬂ<3 g _ 9.9 _ 26.4 B 26.4 >
V101og 10 v/1010og 10 1/1010g® 10
= —0.18.../(4) < 0. (3.14)
Furthermore,
g(a,v,t) = ——+ (3.15)
\/_ \/_logt
d(avt) = dg,(a,v,1) 1 ( v 2v >
2 dt 2t3/2 logt 10g2[
" 1 ( 3v 8v 8v )
) 7t = T 3 - - - ’
&0 a5\ log?  log’t log’t

and fora > 0.75,v< 0.6 andt > 6,

1 0.6 12 0.041 ...
'(a.v.t >—<o.75— — )= >0, 3.16
gy(a,v,1) 57 g6  Tog’6 T (3.16)
while, fora > 0.75, v < 0.6 and t > 10,
1 1.8 4.8 4.8 0.16 ..
"a,v.1) < — (2_25_ _ — >=— - < 0. (3.17
&@ 0.0 g5 log10 10g?10 log®10 41572 G1D
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Let us set

clogt
g3(u, C, t) = u logt + 1‘2/3 s (318)
, = L(au- M)
g3(u9c’t) - 32‘ 3Ll 2C 12/3 s
" _ 1 logr — 2.1
g, = —ﬁ<9u—1OcT>

Fort > 6, logt — 3 /2 is positive. Thus, if ¢ < 0, then gg(0.04, ¢, t) > 0 holds while,
if 0 < ¢ < 0.1, from (1.13), (logt — 3/2)/t*/* < 3/(2¢?) and

gg(0.04, c,t) =2(0.12-0.2 x 3/(2e2))/(3t) =0.079... /(3t) > 0.
In both cases, for c < 0.1 and ¢ > 6,
25(0.04, ¢, 1) is positive. (3.19)

Fort > 10, logt—2.1 is positive. Thus, if ¢ < 0, then gg’(0.04, ¢, t) < 0holds while,
if 0 < ¢ £0.1, from (1.13),

(logt —2.1)/1*3 < 1.5exp(-2.4)
and
g7(0.04,¢,1) < —=(0.36 —10x 0.1 x 1.5 exp(—2.4)))/(9t*) = =0.22 ... /(9¢*) < 0.
In both cases, forc < 0.1 and f > 6,
g5 (0.04, ¢, 1) is negative. (3.20)
From (3.10), (3.12), (3.15) and (3.18), one may write
G(a,b,c,t) = g,(0.96,b - 0.6,1) + g,(a,0.6,1) + g5(0.04, c, 1).

Since a > 0.75, b <€ 3.9 and ¢ < 0.1 are assumed, from (3.13), (3.16) and (3.19),
G(a, b, c,t) 1s increasing for ¢t > 6, while (3.14), (3.17) and (3.20) prove the concav-
ity of G(a, b, c,t) for t > 10.

From (3.11), (3.8), (3.12), (3.15) and (3.18),

H(a,b,c,1) = h,(t) + g,(0.8,b — 0.6,1) + g,(a, 0.6, 1) + g5(0.04, c, 7)

and Lemma 3.5, (3.13), (3.16) and (3.19) prove that H(a, b, c,t) is increasing in ¢
fort > 6. ]
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4 Colossally abundant (CA) numbers

4.1 Definition of CA numbers

Definition 4.1. A number N is said to be colossally abundant (CA) if there exists
€ > 0 such that
c(M) _ o(N)
<
M1+ N1+e
holds for all positive integers M. The number € is called a parameter of the CA
number N.

4.1)

These numbers were introduced in 1944 (cf. [1]) by Alaoglu and Erd6s who
did not know that, earlier, in a manuscript not yet published, Ramanujan already
defined these numbers and called them generalized superior highly composite (cf.
[34, Section 59]). The CA numbers have been considered in many papers and more
especially in [25, 18, 37, 9, 10, 6].

The study of CA numbers is close to the study of the superior highly composite
numbers introduced by Ramanujan in [33, Section 32]. In this paper, we use a
presentation of the CA numbers similar to that given in [30] for the superior highly
composite numbers.

An integer n is said to be superabundant (SA for short) if

m<n implies o(m)/m< o(n)/n. 4.2)

The SA numbers have been introduced and studied by Alaoglu and Erdds (cf. [1,
Section 4]). They also were defined and studied by Ramanujan (cf. [34, Section 59])
who called them generalized highly composite. It is possible to adapt the algorithm
described in [30, Section 3.4] to compute a table of SA numbers (cf. [43]).
Ifn=1] beP p’»™ is superabundant, then v,(n) 1s non-increasing in p (cf. [1,
Theorem 1]). From the definition of CA numbers, it follows that a CA number N is
SA and thus
v,(N) is non-increasing in p. 4.3)

From the definition (4.1), note that two CA numbers N of parameter € and N’
of parameter &’ satisfy (N’/N) ¢ > 1 and consequently,

if N<N', then e>¢. (4.4)
For t real > 1 and k positive integer, one defines

logl+ 1/ + 1"+ ... +1)  log(l+ -1/ —1)

F(t, k)=
UL logt logt

4.5)
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Note that the second formula allows to calculate F (¢, u) for u real positive and that
F(t,u) is decreasing in ¢ for u fixed and in u for ¢ fixed.
For p prime, we consider the set

Sp = {F(p, k), k integer > 1}, 4.6)

and the set
& = {F(p, k), p prime, k integer > 1} = U E, (4.7)
pEP
It is convenient to order the elements of £ U {0} defined in (4.7) in the decreasing
sequence

log(3/2
£1=oo>£2=F(2,1)=0ig(—é)=0.58...
og
log(4/3
e, = 08 6 s s e = Fpk)> ... (48)
log 3

Each element of £ is the quotient of the logarithm of a rational number by the loga-
rithm of a prime so that the diophantine properties of £ are similar to those of the set
& studied in [30, Section 3.1]. From the Six Exponentials Theorem (cf. [42] or [21])
there could exist elements in the set £ defined by (4.7) admitting two representations

e, = Fg,.k;) = F(q]. k) (49)

with k; > k! > 1 and g; < g/. Anelement ¢; € & satisfying (4.9) is said to be
extraordinary. If €; is not extraordinary, it is said to be ordinary and satisfies in
only one way

e, = F(q;, k). (4.10)

For € > 0, let us introduce

1 I+e _ 1 1+e __
N, =TTr" with u=utp.e) = ELZDOTZ0D )
PEP logp

which is CA of parameter € (cf. [1, Theorem 10]). Note that (cf. [43])

F(p,u) = F(p, u(p.€)) = €. (4.12)

We observe that N, is a non-increasing function of . More precisely,
ife <€, then N, divides N,. (4.13)
By convention, N, = N, = 1,as(4.11)yields N, = 1fore > ¢, = 10og(3/2)/log 2.
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Proposition 4.2. If €, (with i > 2) belongs to the sequence (4.8) and ¢ satisfies
€,y > € > g, there is only one CA number of parameter €, namely N, = N,
defined by (4.11).
If €, is ordinary and satisfies (4.10), there are two CA numbers of parameter €,
namely N, and N, _ satisfying
N, =g,N 4.14)

&

with gq; defined by (4.10).

If €; in (4.8) is extraordinary of the form (4.9), there are four CA numbers of
parameter €;, namely N, _, ¢;N, ., ¢'N_ , N, =qq/N, .

In conclusion, if there is no extraordmary € any CA number is of the form N,
(withi > 1). If extraordinary €,’s exist, for each of them, there are two extra CA
numbers N, /q. and N, /q; and they both have only one parameter €,. In both cases,
the set of parameters of N, is [€,,,,€;] and two consecutive CA numbers have one
and only one common parameter.

Proof. The proof is similar to the one of [30, Proposition 3.7], see also [18, Propo-
sition 4] and [30, Remark 3.8]. []

Definition 4.3. Let N be a CA number satisfying N, < N < N, (where €,_,
and €, is are elements of the sequence (4.8) and N, is defined by (4 11)). From
Proposztton 4.2, either N is equal to N, or g, is extraordinary. In both cases, the
largest parameter of N is €, We deﬁne & =& =EWN) by (cf [18 (8)] or [37,
Section 2])
F¢E, 1) = log +1/¢) _ €, 4.15)
log ¢

for k > 1, the numbers &, = &, (N) by
log(1+1/(& + &+ ... + &)

F(&y. k) = o2, =F(E. 1) =g (4.16)

and, from (4.3),

K =K(N)=K(N,)=0,(N,) = mazx v,(N,). “4.17)
: ! > ;

Lemma 4.4. With the notation of Definition 4.3, for k > 1 and p prime, we have

v,(N,) =

i

{k for & <p<é if k21 (4.18)

0 for p>¢
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and

K
N, = H - (4.19)

Proof. Let k > 1 be an integer, p be a prime satisfying &, ,;, < p < & and y =
u(p, €;) be defined by (4.11). From (4.16) and (4.12), one has

F(&. k) = F(p,u) = ¢;. (4.20)

As F(t,u) is decreasing in ¢ and u, from (4.20), p < &, implies y > k. Similarly,
F¢.,k+1) = F(p,u)and p > &, imply u < k + 1, so that |u] = k and,
from (4.11), v,(N) = k which proves the first case of (4.18). If p > & = &,
F(&,1) = F(p, u) shows that y < 1 and Up(NE[_) = 0, which completes the proof of
(4.18) and (4.19) follows. L]

Proposition 4.5. Let N be a CA number and €, the element of (4.8) suchthat N, <
N < N,. The numbers &, §, and K are defined by Definition 4.3. Then

K K
log N, —logé = Z 0(&) —logé <logN <log N, = Z 6(&,) 4.21)
k=1 k=1

and

¢o(N,) <6(N)<6<Ne,-)=ﬁ H 1—1/p!

E+DN, = N N, (422

; k=l &y <p<éy 1-1/p

Proof. From (4.19), it follows that

K 1 — l/pk+l
logN, = Y 6() and ~ =11 I =i (4.23)

1<k<K fi k=1 &1 <p<éy

« If ¢, is ordinary, from Proposition 4.2, N, and N, are two consecutive CA num-
bers, Ngiil <N K Ne,- implies N = N, > S0 that 4. 23) prove (4.21) and (4.22).

o If ¢, is extraordinary and given by (4.9), from Proposition 4.2, N is equal to N,
N, /q;, or N, /q; and so N does not exceed N, , which proves the upper bound of
(4.21). As N, is CA, thus superabundant (cf. (4.2)), 6(N)/N < O'(NE‘_)/NE‘_ holds,
which proves the upper bound of (4.22). The two primes ¢; and g; divide N, and
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so, from (4.19), are both < &, which proves the lower bound of (4.21). From (4.9)
and (4.16), we also have for ¢ = ¢, or ¢/ and k = k; or k/,

G(Ng,.)_o(Nq)=<l+q+...+qk>6(N)=<l+ 1 )a(N)
q g+...+gq

N, Ngq qg+...+4* N N
N N N N N
_ qF(q,k>"( ) _ qeia( ) _ qF@,l)"( ) < §F<§,1)0( ) _ <1 n l)"( ),
N N N N e) N
which proves the lower bound of (4.22). ]

Proposition 4.6. Let n > 2 be an integer. There exists two consecutive CA numbers
N’ < N such that

N a(n) o(N) (&+1o(N') o(N') o(N)

e < + 20 404

EN' N’ EN
where & = E(N) is defined in Definition 4.3.

<N <n< N and

Proof. First, we determine the element g, of the sequence (4.8) such that N, _; <
n< Ne,-' l

« If £, is ordinary and given by (4.10), from Proposition 4.2, we choose N = N, ,
N =N, =N, //4; and, from (4.2), o(n)/n < o(N)/N follows. As g, does not

Ei_

exceed &, we have N, /q; =z N /& and, from (4.16),

o(N)_a(N’qi)_<1+ql-+---+qf"'>a<N’>_<1+ ! )o(N’)
N N'g, q,.+...+qf" N g+...+¢q N
£ o(N') F(&,1) o(N') F(E 1) o(N') 1\o(N")
=a T = < T = (14 )T @29

which proves (4.24) since, from (4.2), 6(N')/ N’ < ¢(N)/ N holds.

o If ¢, is extraordinary and given by (4.9), from Proposition 4.2, there are four
consecutive CA numbers in [N, ,N, ], namely M, = N, _;, M, = ¢;N, =
gM,, M, = qlfNEi_1 =q 2/ql, 4 = q,qN = q;M;. Forj =lorj =3,
M;,, = gM; with g = g, or ¢/ and k = k; or k’ By copying (4.25), one gets

o(M,)/ M,y > (1 +1/E)0(M,)/M,. For j =2,

o(My)  1+1/q+...+1/(@)" o(M,) ,
> = o S (/g + . +1/g)")
M;  1+1/g+ ...+ 1/(g)+ M,

M,
= ()" O'(Mz) <& I.O'(Mz) _ é;F(.»:,l)G(Mz) & oMy

M, M, M, S E+1 M,

O'(Mz)
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so that, for 1 < j < 3, 6(M;,)/M;,, < (& + 1)/&)o(M;)/M; holds. From the
choiceof g, n € (MjO,Mj()H] for some j, € {1,2,3}. Then, by choosing N’ = M,

Ji
N=M,,,, (4.24) is satisfied. OD

The first CA numbers are (for a longer table, cf. [1, p. 468] or [43]):

i € N=N,_ o(N)/N | parameter | £(N)
1 ) 1 1 le,,e) |1

2| F22,1)=0.58 2 3/2 le5,6,] |2

31 F3,1)=0.26 6=2-3 2 le,.e5] |3

4| F(2,2)=0.22 12=22.3 7/3 les.e4] |3.29

5| F(,1)=0.11 60=2%.3.5 14/5 leg.€5] |5

6| F(2,3)=0.09 120=23.3.5 3 le;.,€6] |5.44

71F@3,2)=0.07| 360=2%.32.5 13/4 leg.€7] | 6.71

8| F(7,1)=0.06 | 2520 =2%-32-5-7| 26/7 leg, €8] |7

Figure 2: The first colossally abundant numbers

4.2 Enumeration of CA numbers

How to compute CA numbers? For a short table, one determines the sequence &,
(cf. (4.8)) and, if ¢, satisfies (4.10), then N, = ¢,N, (cf. (4.14). In the proof
of Lemma 5.3, we have to compute the CA numbers up to N@ (defined below by
(4.37)). Let us say that N, is a CA number of type 2 if ¢, satisfies (4.10) with k, > 2
and of type 1 if k, = 1. We have precomputed the table of the 6704 CA numbers N
of type 2 (with & = £(IN) defined by Definition 4.3) satisfying & < 20007 x 10° (cf.
[43]). If N is of type 2 with its largest prime factor equal to the rth prime p,, then
the following CA numbers are Np,, Np,, p..,, €tc. up to the next CA number of
type 2.

Note that we have not found any extraordinary case (cf. Section 4.1). The small-
est difference ¢, —¢,,; = 2.57 ... 107> has been obtained with €, = F(54371,2) and
€, = F(1524427141, 1) (cf. [43]).
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4.3 Estimates of &, defined by (4.16)

Proposition 4.7. Let k > 2 be an integer, & > 1 a real number and &, be defined by
F(. k)= F(&,1). Then

VR L E S (kEVF for k=2and € > 1, (4.26)

when & tends to infinity, the asymptotic expansion of &, is

2 2 3
(i __a_ , a2+3¢/8 a/2+4a+58/16 O\ .
& \/_é:( 2logé " log2§ log3 & " 10g4§> ( )
with a = log 2,
log?2
£ > @(1 - 2log§) for &3 1530 (4.28)
and 0.323
. 9
£ < @(1—@> for &> 10°. (4.29)

Proof. The proofs of the lower bound of (4.26) and of (4.28) are given in [37, p.
190].

To prove the upper bound of (4.26), we first observe that F is decreasing and
F(&,.,k) = F(& 1) holds. So, we have to show that F((k&)V* k) < F k) =
F(&,1). Setting z = (k&)'/%, from (1.14), one has

klog(1+1/(z+zz+...+z"))< k/z* ~ 1/¢
logé + log k S logé+logk  logé+logk

F(z, k) =

and, from (1.17),

log(1 +1/8) 1

logé 7 (E+1/2D)loge’
Therefore, it suffices to show 1/(£(log E+log k)) < 1/((E+1/2)1ogé),i.e. E(logé+
logk) > (£ +1/2)log & which is true, since ¢ > log & and log k > log2 > 1/2 hold.

To compute the asymptotic expansion of &,, we observe that, from (4.26), &,
tends to infinity with £. From (4.16), one has

F@.1) =

_log(1+1/(& + &)

1 141
F(&.2) = — Fe 1y = 2ed 1/

logé, logé

(4.30)
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As log(1 + 1/u) ~ 1/u when u — oo, it follows that 1/(5% logé&,) ~ 1/(&logé),
which implies & log &, ~ £logé&, 2logé, ~ logé, & ~ (Elogé)/logé&, ~ 2& and
&, ~ 4/2¢. Furthermore (cf. [43]),

| L oem 1 o0
1 1 = — 4 7 - 4 7
(g =g g —at e
and | o) | o)
F(,,2) = = 1+ —,
2 £logé, T oz, 5510g§z< ’ \/E)

whence, from (4.30), as F(&, 1) = (1/(&log &))(1 + O(1)/4/&) holds,

, ¢logé o(l)
SR (1 + v ) 431)

In (4.31), the change of variables t = log & and &, = 1/2&w yields

52
= Z_ZE B 211(:)—ggé::2<1+ (i%)) - 10g2+tt+210gw<1+%>
d
an - (1 . 10?2 N 2lotgw>—1/2(1 +(9<exp<— %))) (4.32)

Iterating (4.32) from w = 1 4+ o(1) gives the expansion (4.27). It is possible to get
the asymptotic expansion of &, for k > 2 in a similar way (cf. [43]).

To prove (4.29), let us set f = 0.323, t = logé, a = log2, x, = 10° and
z = \/ﬁ(l — p/logé). We have to prove F(z,2) < F(&,,2), i.e., from (4.30),
F(z,2)— F(,1) <0. From (1.14) and (1.17), it follows that

log(1+1/(z + z%)) _ log(1 + 1/&)

log z logé
1 1 1 1

S C+D)logz  CE+1/2)logé  Zlogz G+ 1/2)logé

F(z,2)-F@¢, 1) =

So, it suffices to show that

Z2logz— (E+1/2)logé >0 for &3> x,. (4.33)
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From (1.15), one has

p

1 1
IOgZZE(a-i't)-l'lOg(l—g) = E(a-l't)—m,

by using Maple (cf. [43]),

Plogz > 2‘f( /3)2( (a +z)—_iﬂ)

- t%(z +(a—2P)F + BB - 2a —2)t+ﬂ2(a+2)>

and, for & > x, = 10°,

E+1/2105=5(r+ C)<t e %)

2x,

Therefore, one gets

log’ (x,)
2x, >

(4.34)
The roots of the trinomial on ¢ in (4.34) are 0.2879 ... and 20.698 ... so that it is
positive for ¢ > log x, = 20.723 ... which proves (4.33) and completes the proof of
(4.29). O

z?logz—(E+1/2)1logé > t%<(a—2ﬂ)t2+ﬁ(ﬂ—2a—2)t+ﬁ2(a+2)—

4.4 Study of CA numbers > N©
By (4.19), we define N = N, with €@ = F(£@, 1) € € and

£0 =" =10"+7, (4.35)

the smallest prime exceeding 10°. For k > 2, we define flio) by (4.15) and (4.16),
obtaining (cf. [43])

£V =440235..., £ =14183..., &Y =2473..., &Y =856...,
£ =2.033..., (436)
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from (4.19),
41 83 241
NO =N, = 2935%7111°138171923" [ [ »° [ 2 [ [ #*
p=29 p=43  p=89
1409 44021 1000000007

[~ 11 » I » (4.37)

p=251  p=1423 p=44027
L, =log N© = 1000014552.11 ..., 4, = loglog N =20.7232803 ..., (4.38)
c(N©)/N© =36.909618566 ... and from (4.17), K = K(N©) = 33.

Lemma 4.8. Let N be a CA number > N© = N_, and €,, &, &, and K be defined
in Definition 4.3. Thene; < €9, & > €0 & > fl(co)for k> 1, and K = K(N) > 33.
Proof. By (4.21), N < N_ holds. Since N © < N is assumed, this implies N© =
N.o < N, and, from (4.4), ¢, < €. Moreover, from (4.15), one has F(¢,1) =
g < Q= F(EY,1)and as F is decreasing, & = E(N) > €@ = 10° + 7. Similarly,
from (4.16), for k > 2, F(&. k) = ¢; < €@ = F(EY, k) implies &, = & (N) > &
given by (4.36). Finally, as N = N, divides N, (cf. (4.13)), from (4.17), it
follows that K(N) > K(N©) = 33. O

Lemma 4.9. Let N be a CA number > N© = N_q, with &, &, and K be defined in
Definition 4.3. Then

K =K(N)< 1.711ogé. (4.39)
Proof. From (4.17) and (4.18), we have &y, < 2 < &g so that, from (4.26), 2 <
(K &)X holds, which implies

logé > Klog2 —log K = K(log2 — (log K)/K).

But, from Lemma 4.8, K > 33 and thus log ¢ > K(log2 — (log33)/33) > 0.587K
which yields K < (1/0.587)logé < 1.711og ¢ and completes the proof of Lemma
4.9. ]

4.5 Some properties of numbers &,

Lemma 4.10. Let N be a CA number satisfying N > N© defined by (4.37). The
numbers & = E(N), &, and K are defined by Definition 4.3, so that, from Lemma
4.8 &> 9 =10°+7 and K > 33 hold. Then
K
Ty=) & <19769¢'7°. (4.40)

k=3
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Proof. 1f k, satisfies 4 < k, < K, as &, is non-increasing in k, from (4.26) and
(4.39), we have

ko—1 ko—1
T (2 6) + K=kt D5, < ( Z0OM )+ (K kot Dk
ko—1 1/k
0 kl/k K — (kO - 1)k 0
= 51/3 << ; 51/3—1/k> + E1/3=1/kg - )

ko—1 1/ky
/3 kl/k L.71 k" (logé — w)
S¢ (( Z (5(0))1/3—1/k> &

k=3

with w = (k, — 1)/1.71 and v = 1/3 — 1/k,. An upper bound of (4.41) can be
obtained from (1.12) or (1.13), with u = 1. The best choice is k, = 31, which gives
T, /&3 < 1.976836 ... (cf. [43]). O

) (4.41)

Lemma 4.11. Let N be a CA number. The numbers & = §&(N) and &, = &,(N) are
defined in Lemma 4.8. Let us assume that & > £ = 10° + 7. Then

V2 0524 1 V2 0.4

< < — (4.42)
\/Elogf \/Elogzg & logé, \/Elogf \/Elong

and
2.67 1 22 2.829

< < < .
VElogie  &log’E,  y[Elog?e  y/Elogié

Proof. From (4.29), one may write &, < 1/2£(1—0.323/ log &) and log &, < log(1/2¢)
= (log &)(1 + (log2)/log &)/2, whence, from (1.19),

(4.43)

1 2
>
& 1028 (1/2Elog&)(1 —0.323/log £)(1 + (log 2)/ log &)
N V2 <1_1og2—0.323>> V2 o 0524
\/Elogé log¢ \/Elogéj \/Elog2§

which proves the lower bound of (4.42). Next,

Ly L (y5o 082, L3
&logé, = \/eloge log £© VElogé
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and, as log &, < (logé&)(1 + (log?2)/ log &) /2 follows from (4.26),

1 S 2.76
& log’ &, (y/Elog? &)(1 + (log2)/ log &)

S 2.76 S 2.67
(VElog? )(1 + (log2)/ log EO) ~ \/Elog” &

which proves the lower bound of (4.43).
From (4.28), one has

522\/%0— log2>>@<l_ log?2 )21.39\/5,

2logé 2log £O

which implies &, > 1/2&(1 — u) with
u=(log2)/(2logé) < uy, = (log2)/(2log £?) = 0.016 ...
and
log &, > (log & + 21og 1.39)/2 > (log & + 0.658)/2 = (log &)(1 + v)/2
with v = 0.658/log & < v, = 0.658/log é® = 0.031 .... Therefore, from (1.19),
L 2 o V204 u/(1 = u) = o = vy)
& 1088 (/28 log&(1 — w)(1 + v) VElogé

_ V2 (120280 o V2 04
\/Elogaf log ¢ \/Elogaf \/Elogzé

which proves the upper bound of (4.42). Then, as from (4.26), &, > \/E holds,

! 1 ! V2 2 212
glofs, <521°g52><10gé’z> S (\/Elogéf)(logﬁf) B VElog &)

which proves the upper bound of (4.43).
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4.6 Benefit

Definition 4.12. Let € be a positive real number and N a CA number of parameter
€. For a positive integer n, we introduce the benefit of n

O'(N)> _10g<6(l’l)> :10g<0(N)

]Vl+e nl+e a(n)

ben, (n) = log < ) + (1 +€e)(logn —log N).

(4.44)

If N is another CA number of parameter &, then note that the value of the right-
hand side of (4.44) does not change when replacing N by N. Indeed (4.1) yields
o(N)/N'* < 6(N)/N' and 6(N)/N'*¢ < 6(N)/N'*¢, so that 6(N)/N'*¢ =
o(N)/N'*+¢, which implies

o (S22 ) g (22) =1 (S522) e (72

From (4.1), it follows that, for any n,

ben, (1) > 0 (4.45)

holds. Let us write

N = H p» and n= H b, (4.46)

pEP pEP

so that 6(N)/a(n) = [[,ep(p™*' = 1)/(p"*" = 1). We define

%+1__1
Ben, (n) = ben, (N p>»~%) = log <lp)bp+1—_1> +(+e)b,—a,logp >0 (447)
and (4.44) gives
ben, (n) = )" Ben, (n). (4.48)
PEP

This notion of benefit has been used in [25, 18] for theoretical results on numbers #
having a large value of ¢(n) and in [30, Section 3.5], it is defined and used for the
divisor function d(n) = ¥, 1.

For p, a,e fixed and ¢ > 0, let us introduce the mapping

a,+1

pr -1

t— Bp’apyg(t) = log (—p’H 3

)+ +e)t - a,)logp (4.49)
so that, if 7 is an integer, then B(?) is equal to ben (N p'~*) = Ben, . (N p"~%).
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Lemma 4.13. Let p be a prime, a, a non-negative integer, € a positive real number
and, fort > 0, Bp’ap’g(t) = B(t) be defined by (4.49). Let us assume that, if t is an
integer, then B(t) > 0 holds. Then,

(i) lim,_ , B(t) = o0 and lim,_ , B'(t) = elogp > 0.

(ii) For t > 0, B(t) is convex, i.e. B'(t) is increasing.

(iii) B(¢) is increasing fort > ap+1 and, ifap > 2, decreasing for0 < t < a,— 1.
Moreover, B(a,+ 1) 2 0 = B(a,) and B(a,— 1) 2 0 = B(a,).

(iv) lim,_ B, (1) = oo,

Proof of (i). The inequality

ap+1 -1
B(1)>log (pT>+(1 +e)(t—a,)logp = log(p™ —1)+(et—1 —a,(l1+¢))logp
p
shows thatlim,_,  B(f) = co. The derivative B'(¢) is equal to € log(p)—(log p)/(p'+'—

1) and tends to € log p when ¢ tends to infinity.

Proof of (ii). The second derivative (cf. [43]) d2B(r)/dt* = (log” p)p*! /(p'+! —
1)? is positive.

Proof of (iii). Note that B(a,) = 0.
o If B’(0) > 0, then, as, from (ii), B’(¢) is increasing, one has B’(¢) > 0 fort > 0, so
that B(?) is increasing for # > 0. This implies a,= 0 since, if a, were positive, we
should have B(a,) > 0, so contradicting B(a,) = 0.
o If B'(0) < 0, then, as B'(?) is increasing and tends to £ log p > 0 when ¢ tends to
infinity, B’ has one and only one zero, say #,. We have

a,-1<ty<a,+1. (4.50)

Indeed, if 7, > a,+ 1, then B(¢) would decrease on [ap, a,+ 1] and, since B(ap) =0,
B(a, + 1) would be negative. Similarly, if 7, < a, — 1, then B(#) would increase on
[a, — 1,a,] and B(a, — 1) would be negative. From (4.50), B(?) is increasing for
12a,+1 and if a, > 2, decreasing for t < a,— 1.

Proof of (iv). B, (1) is equal to € log p—log(1+1 /p) that tends to infinity with

p. ]

Proposition 4.14. Let € > 0, N a CA number of parameter € and f a positive real
number. Then, the set of integers n satisfying ben_(n) < p is finite.

Proof. We use the notation (4.46) and assume ben,(n) < f. In view of applying
Lemma 4.13, one remarks that, if # > 0 is an integer, then, from (4.45), Bp’awg(t) =

ben, (Np'~%) > 0 holds.
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Let p’ be the smallest prime not dividing N, so that a, = 0 for p > p'. From
Lemma4.13 (iv), there exists p” > p’ such that, for p > p”, B, (1) = Ben, (Np) >
p. From Lemma 4.13 (ii), if b, > 1, then Ben, (n) = B,,.(b,) = B, (1) >
f, which, from (4.48), implies that ben, (n) > Ben, (n) > p. Consequently, as
ben,(n) < f is assumed, b, = 0 for p > p".

For p < p”, from Lemma 4.13 (i), there exists an integer b; such that, for b, > b; ,
Ben, (n) = Bp’ap’s(bp) exceeds f, which implies that, as ben,(n) < f is assumed,
then0 < b, < b; — 1. Therefore, |{n, ben,(n) < p}| <[],., b;. O]

p<p

Proposition 4.14 and Lemma 4.13 allow to get an algorithm to compute all in-
tegers n such that ben,(n) < . This algorithm is efficient if f is not too large (not
much larger than ¢€), cf. [43].

4.7 Convexity

Lemma 4.15. Let N' > 2 and N be two consecutive CA numbers and f a function
of class C,, increasing and concave on the interval [log N',log N such that

6(N")/N' < f(logN") and o(N)/N < f(logN). (4.51)
Let n be an integer satisfying N' < n < N. Then
o(n)/n < f(logn). (4.52)

Proof. From Proposition 4.2, N’ and N share a common parameter, say €. From
the definition (4.1) of CA numbers, one deduces that log(6(N')/N’) —elog N’ =
log(c(N)/N) —elog N.Forn € [N’, N], from (4.1), one has

NI
log@ —elogn < log o(N)
n N’

—510gN’=10g$—510gN. (4.53)
In view of using a convexity argument, one writes

logn=AlogN'+ ulogN with 0<A<1 and u=1-4A
From (4.53) and (4.51), it follows that

/

N N
log# < elogn+/1<logagv,)—elogN’)+y<loga( )—glogN>
o(N') o(N)
= &e(Alog N’ + ulog N) + Alog N +MlogT
N’ N
_,IglogN’—,uelogN:Moga(N,)+ﬂlogagv). (4.54)
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The inequality c(N')/N’ > 1 and (4.51) imply log f(log N) > 0. As f is sup-
posed increasing and concave, f’(¢) > 0 and f”(¢) < 0 hold for ¢t € [log N’,log N].
Therefore, as the derivatives of log f are f'/f and (f f"” — f'*)/f?, log f is in-
creasing, concave and positive on [log N’,log N] and (4.54) and (4.51) give

tog % < 4log( tog N')) + u og( (log N)
n
< log(f(Alog N + plog N)) = log(f (log n)),
which yields (4.52) and completes the proof of Lemma 4.15. [

4.8 Estimates of a CA number N in terms of &

In this Section, N is a CA number > N = N, defined by (4.37). The numbers
g, =€(N), & =E(N), & =&(N)and K = K(N) are defined by Definition 4.3,
so that, from Lemma 4.8, ¢ > 9 =10°+ 7, &, > /(CO) and K > 33 hold. We give
estimates of such an N and of a few functions of N in terms of £&. Some of these
estimates are valid if the Riemann hypothesis fails.

To get shorter formulas, we use the notation L = log N, 4 = loglog N, L, =
log N > 10%, and A, = loglog N© > log(10°) (cf. (4.33)).

Lemma 4.16. Let N > N© be a CA number. Then, under the Riemann hypothesis,

0(8) + & +0.534E2 < L =log N < 0(&) + &, + 2.043¢1/3, (4.55)
L/1.0006 < & < 1.0006L, (4.56)
4/1.00003 < log & < 1.000034, 4.57)
IL — &] < 0.04331/Elog? & < 0.044V/L A2, (4.58)
11 < 0.0(;(/)352’ 4.59)
VLA WEloge| L
1 1 < 0.002(3)27’ 460)
\/Z/lz \/Elog 3 L
1 1 0.00099 _ 0.001
—- < < 4.61
'u élogf‘ oL T s oD
and S S©
D) 8¢ < 2021 4.62)
logL logé L23
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Proof. To prove the upper bound of (4.55), from (4.21), (2.3) and (4.40), we may
write

K K

L—0(&)—-0(&,) < Z 0(&) < (14n) Z & < (141)1.9769¢'° < 1.977&'3. (4.63)
k=3 k=3

Next, if €9 < & < 5 x 10%, then, from (4.26), & < /2& < 10" and, from (2.1),

0(&,) < &, while, if &€ > 5 x 10%7, then, from (2.7),

\/5 og’ & L Lo log*(2¢)
32x
21/451/3 log (25) 21/4 10g2(1038)§1/3
T 32pEn2 327z(5>< 1037)1/12 =

So, for & > €0, we have 0(&,) < & + 0.066&'/3 which, together with (4.63), proves
the upper bound of (4.55).

From (4.21), we deduce log N > zi=1 0(¢,)—logé. But, from (4.36), &, exceeds
247, so that from (2.4) and (4.26), 6(&,) > 0.89&, > 0.89&!'/4, which is > log & for
&> 10°. Therefore, since from (4.36), &, exceeds 1418, from (2.4) and (4.26),

10(5,) — &l <

< 0.066E'73. (4.64)

3
Z 0(&) = 0(E) + 0(&,) + 0.9458;, > 0(&) + 0(&,) + 0.945&3. (4.65)
k=1

< If £ < £ < 5x 107, then, from (4.26), 1427 < /&0 < \E <& < V2E < 107
and, from (2.2),
0(&,) — & > —1.944/&, > —1.94(26)!/* > —2.31&/* = —2.31£!/3 /¢1/12
> —2.31EY3 /(10012 > —0.411&'7°.
o If £ > 5 x 10%, then, from (4.64), 0(£,) — &, > —0.066¢£'/3.
In both cases, 0(&,) > & — 0.411&'/3, which, from (4.65), implies the lower

bound of (4.55).
Furthermore, from (4.55), (2.8) and (4.26),

VElog* ¢ )
87

L < 0 +& +20438'° <&+
_ (1 V2 2083
= £+ 1/Elog §<875 + g2 + 51/610g2§>

1 V2 2.043 )
< &+ 61026(—+ + )<§+o.0433 Elog? &
VElog 87 log”10°  (10°)!/61log” 10° Vélog

2& 4 2.043¢!/3
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and

VElog* &

> £ —0.04y/Elog’ g,
8

L>0(&)+&+0.53483 > & —
whence

0.0433 log” 10°

V10°

|L — & < 0.04331/Elog? & < g( ) < 0.00059¢, (4.66)

which implies
¢
1.0006

and proves (4.56). Next,

< (1= 0.00059)¢ < L < 1.0006¢

log & < A + 0.0006 = /1<1 + M) < /1<1 + 0'0006) < 1.000034
A log 10°
and log(1.0006) Jog(1.0006) A
og(1. og(1.
1 2,1(1——>>/1(1— >>
ogé p log10° / Z 1.00003

prove (4.57). Then, from (4.66), (4.56) and (4.57), one may write

IL — &1 < 0.04331/Zlog? & < 0.0434V/ L2,

which ends the proof of (4.58).
To prove (4.59), it is convenient to introduce p = min(&, L) > min(&@, L,).
From (4.56), (4.35) and (4.38), it follows that

L>p=min(, L) > andalso L >p > 10°. (4.67)

1.0006

L
logt +2

/ Og—2dt <
¢ 213/21log"t

One may write

1 1
VLA /Elogé

and, from (4.58) and (4.67), this is

|L—¢| ( 2 )
S 2p¥2logp\ " logp

<O.O44(1.0006)3/2\/Z/12<1+ 2 > L 00012 2 _ 0.0005153 ...
h 213/21og 10° log10°/ = L3 L3~ 3 7
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which proves (4.59).
The proofs of (4.60) and (4.61) are similar :
1

1 /L logt+4 it
VL2 \fElog ¢ ¢ 201log’t
) 0.044(1.0006)/2\/L 12 (1 LA ) _ 0.000062 log? 10° _ 0.0000266 ...

2] 3/2 10g2 109 log 109 (109)1/312/3 - 12/3
and
L
logr+1 L—
1 _ 1‘=/Og+dt<| "z|<1+1>
Li ¢&logé ¢ 2log’t p*logp log p
0.044(1.0006)21/ L A2 log? L
< ( PVL <1+ I )<0.0023°g
L?log 10° log 10° L3/2
< 0.0023 log” 10° < 0.00099 _ 0.0099 x 1.00067/6 . 0.001
= (109)1/3L7/6 =i T £7/6 = ee7/6'

Finally, from (3.4), (4.58) and (4.67),

S(L) S, < 0.0521|L —¢|logp < 0.0521 x 0.0441/L 42 log p
logL logé| p3/? = p1/6+1/3

and, observing from (4.67) that

) 1/3 ;3 1/310g° 10°
22log p < (1.0006)1/3 4 < (1.0006)'/* log” 10 <891
p1/3 L1/3 (109)1/3

we get

SWL) _ S,©)] _ 0.0521x0.044 X 100067 x 891v/L _ 0.0204 ...
logL logé&| L7/ I

which completes the proof of (4.62) and of Lemma 4.16. [

Lemma 4.17. Let N > N© be a CA number. The numbers ¢ = E(N) and &, =
&,(N) are defined by Definition 4.3. Then

V2 L 0491 00015
\/Elogaf \/Elogzé &3
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and

V20456 ol
\/‘EloggE \/Elog2§ £/’

Proof. From (4.55), we have L =log N > 6(§)+¢&,, which implies 8(§) < L—-¢&, =
L(l - 52/L)7

log8(§) < A+log(1 = &/L) <A=& /L = A1 = &/(LA)

loglog 6(¢) > logloglog N — (4.69)

and, from (4.61),

£, & 00015
loglog0(¢) < log 4 — 7S <logk-— Flog? + 70

But, from (4.26), &,/E7/6 < 1/2/%/3, and applying (4.28) ends the proof of the
upper bound (4.68).

The lower bound (4.69) is less simple, because the lower bound of (1.16) is more
complicated. From (4.55), we have 0(¢) > L(1-¢&,/L— 2.043&£'/3 /L), which, from

(1.16), yields

u?

logfé) =2 A+logl —uw)2A—-u— ——
0g0(&) gl =1 > A= u= 5

with, from (4.26), (4.35) and (4.56) ,

1/3 D) 1/3
_& 204380 \/_éf | 2:043¢ \/_<\/— 204)

L L - L £1/6
\/_<\/-+20;4/2> sﬁ 148 V10006 _ 149 _ 149 _ oo
10 VL \/_ V100

u, = 0.00005 and 2(1 — u,) = 1.9999. Therefore, we may write

& 2.043813  (1.49) & 2.04351/3_1.12

log 0(8) > A— 2 — _ > -2 .
0g0(C) > A= T L 19999L = 47 T L L

But

2.043&1/3 L L12 _ g3
L L L

1.12 51/3 1.12 g3
2.043 + ) <2 043 + ) 2,055
( E3) S L 1000
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and so,
& 2.05&73

10g9(5)2/1<1—ﬁ— — )=/1(1—m

with @ = &, /(AL) +2.05£'/3 /(AL). Note that u is close to u/A. A similar computa-
tion shows that (cf. [43])

7 < 1.49/(AVL) < 1.49/(log(10°)V/10%) < @, = 0.000003,

2(1 — i) = 1.999994

and
. P 2.05¢/3 1.49)?
loglog0(&) > log A—i— — 24— > 1og/1—§— e U4
2(1 — 1) AL AL 1.99999442L
But
1.49)? 1.49)
205613 4 LB 51/3(2.05 + (1.49) ) < 2.066'3
1.999994 1.999994 1og(109)10%/3

and, from (4.56), (4.61), (4.26) and (4.29),

2.06&!/3
log log 0(2) > log A — S 20687 g & 2.06x1.0006
AL AL AL log(10%)&2/3
0.001v/2
> log A — & —0.00li—£>logﬂ— b _ \/_—0'1
¢logé gie. g3 glogé &3 &3
&0l V2 V2x0323 011
Zlogﬁ———z—ﬂzlog/l— + ~
Elogé & \/Elogcf \/Elogf &2/
which completes the proof of (4.69) and of Lemma 4.17. [l

5 Proof of Theorem 1.1

5.1 The case n large

First, we prove (1.6) for a large CA number.
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Proposition 5.1. Let N be a CA number N > N9 defined by (4.37), and S, be
defined by (1.3). Then, under the Riemann hypothesis,

2(v2-1)

N
o) < ey<loglogN — ——+ 85,(log N)
N \01og N
0.024loglog N
v/log N loglog N log”” N
and,
N 2(vV2 -1
o(N) > ey<loglogN - L + .5,(log N)
N log N
0.48loglog N
+ 0.9567 _ 25/%3 g > (5.2)
v/log N loglog N log”” N

Proof. The numbers & = E(N), &, = &,(N) and K = K(N) are defined by Defini-
tion 4.3, and, from Lemma 4.8 and (4.36), £ > £© = 10° + 7, &, > & > 44023

and & > & > 1418 hold. From (4.22), it follows that

N
_“Ll:éi—lUglog<agv)><U (5.3)
with
K 1— l/pk+1
U=10g<H I1 m>:U1+U2+U3—U4—U5 (5.4)
k=1 &1 <p<éy
with
< I 1
UI:Z Z log<1—pk+1>, U, = Z 10g<1—E>,
k=3 &4 1<p<é; &<pgé,
1 1 1
Us; = 210g<1 ——2>, U, = Zlog(l——2> and U5 = Zlog(l ——).
P>$ p p>¢ p p<é P

Observing that, from (4.26), p > &, implies p**! > &1 > &, we have, from (1.15)

with u = 1/& and uy = 1/€©), (2.5), (4.26) and (4.36),

. 1,262,
0> U, > s@iog (1-3) >~ s
1/3 1/3
1.26(3¢) S 1.26(3¢) > 0251 55

TS /e l0ge%)e ~ (- 1/€0)log 1418)E ~ &2
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Next, from (1.15) withu = 1/p* and u, = 1 /(§§°>)3, (2.15) and (4.26),

Z log(l——) - Z—

6 5, 1/@(0))3 5 P
0.086 ., _0.087
- > 9567

(1-1/1418%)&2 = &

(5.6)

As the trinomial 2/log?y — 2/logy + 1 is positive, from (2.11), it follows that
0>U, > Z,,>¢ log(1 —1/p%) = —1/(Elog &) and that, from (4.26) and log & > 1,

0<-U, <

1_2_ 2 log*&, < (2 log* & ) 1 __06
¢ 52 £(& log" &) g J&log's,  glogte,
In the same way, from (1.15),

1 < 2 0.6

1
—log(l—-=) < S <X
( §§> E(1-1/E"?2) & &log's,
whence, from (2.10),

U3—U4<Z"log<1—l%>—10g<1—é:—12>—U4
2

26

vt 2 1146
&logs, g log?e, & loglé, & logté,
Aslogé&, > log & > 11.46/2 holds, from (4.42) and (4.43), it follows that

2
RTINS B V2 3.353 5

&logé, £ log? gz \/_ Elog & \/_ Elog? &

From (2.11), we get

1 1 1 2
u,-U,>U,> 10g(1——>>— + - :
=Ui> U2 ) glogé,  glog?e, & logt s,

2
2293 p
But, 2/log &, < 2/log £ < 0.19 and therefore, from (4.42) and (4.43),

2
U5 L, 081 V2 25627 55

&logé, & log?e, VElogé  [Elog* &
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From (1.11) and (4.69), U5 = Zpsg log(1 — 1/p) satisfies

2-V2 1606 _Si® 011

U; < —y—logi-— (5.9)
5 X \/Elogdf \/glogz £ logcj 4:2/3
while , from (1.11) and (4.68),
2-14/2 S
Uy 3 —1—log i - V2 0436 SO 00015 5.10)
VEloge  yfElog?e logé &/
Therefore, from (5.4), (5.5), (5.6), (5.7) and (5.10), we deduce
2v/2-2 S
U<ylopi V2=2, 378 SO 00015 (5,
VEloge  \fElogre logé &
while, from (5.4), (5.5), (5.6), (5.8) and (5.9), we get
2v2-2 S
U>y+logh- V2 09567, Si©) —0'42‘438. (5.12)
\/Elogéj \/Elogzcj log¢ &/
In (5.11), from (4.56), we have
0.0015/£% < 0.0015 x (1.0006)*3/L** < 0.00151/L*/? (5.13)
and, similarly, in (5.12),
—0.448 /3 > —0.448 x (1.0006)** /L** > —0.449/ L. (5.14)
Also, from (4.59), (4.60) and (4.62),
(22 = 2) x 0.00052 + 3.789 x 0.000027 + 0.021 < 0.0216
so that
2V2-2 3789 Si@©) _ 2v2-2 3789 SiD) | 0.0216
Vélogé  \fEloge loge VLlogL +Llog?L logL = L*
(5.15)
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and similarly

2V2-2 09567 S 2v2-2 09567 SiL) _0.0215

+ Z
VEloge  yfElogie  10g¢ VLlogL +/Llog*L 1ogL

Consequently, (5.3), (5.11), (5.13) and (5.15) yield

N
log<U(N)><U<y+log/1—u

with
_2v2-2 3789 Si(L) 002311

via  Noe A PP

and, from (5.12), (5.14) and (5.16),

u

2v2-2 L 0.9567 | Si(L) 04705
Vii  Noe A L

From (5.18), (1.4) and (1.5), one remarks that

UZ>y+logi—

6
04 _ 21/2-2-3.789/ 4 — v — 023114,/ L)/

VLA VLA

0

Lu

< 2V2-2+7 0875

VLA VLA

and thus, (5.17) implies
U <y+logl.

The mapping ¢ — (loglogt)/t'/3 is decreasing for ¢ > 18, so we may write

U y+logi 10006/ y  loglog10°\ 0.0037
E+1 & 123 \ 1093 109/3

Therefore, it follows from (5.3) that

O'(N)>_U> U__ 00037

> — —
0/10g< N Fr1” L5
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L2/3

123
(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)



which, from (5.19), yields

N
log(G(N)>>y+log/1—v (5.22)

with
L_2V2-2 09567 _ Sil) 04742
vii  VLe A P
Furthermore, from (5.20),
2 2 2 -6
w0875 0.875 1o
2 7 2LA* T 2% 1093(log? 109)L2/3 L3
which, with (1.18) and (5.17), yields (5.1). Finally, (1.18) and (5.22) prove (5.2).

[
Corollary 5.2. Let n be an integer satisfying n > N9 defined by (4.37). Then
2(vV2-1
oln) < ey(loglogn - L + 5, (log n)
h logn
0.0261oglo
S CE— ). (5.23)
v/lognloglogn log”" n

Proof. By applying Proposition 4.6, we define the two consecutive CA numbers N’
and N satisfying N’ < n < N, so that (4.24) gives
!/
o(n) < o(N") + o(N)
n N’ EN
where & = £(N) is defined by Definition 4.3. Aslog N > log N© > 20 holds, (1.1)
or (5.1) implies 6(N)/N < e’ loglog N and, from (4.56),
o(N) < 1.0006e4 _ 1.0006e” 4 _ 0.0021oglog N < 0.0021loglogn
EN = L 1093123 10g2/3N = logwn

(5.24)

(5.25)

Applying (5.1) to N’ with the notation (3.11) with a = 2(\/5 — 1), b =3.789 and
¢ =0.024 yields 6(N')/N’ < H(a, b, c,log N) and, from Lemma 3.6 proving that
H in increasing, as N’ < n, 6(N')/ N’ < H(a,b, c,logn). Therefore, from (5.24)
and (5.25), it follows that

0.002 log 1
o) < Ha,b,c.logn) + — 208 H(a,b,c +0.002,logn),
h log Bn
which proves (5.23). [
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5.2 The case n small

Lemma 5.3. Let n be an integer satisfying 2 < n < N9 defined by (4.37). Then

2(v2 -1
o) ey<loglogn - L + .5, (log n)
h logn
0.0983 log1
TR L 1), (5.26)
vl1ognloglogn log/ n

Proof. We use the notation of Lemma 3.6 so that, from (1.4), it suffices to show
that, for2< n < NO,

o(n)/n < €' G(2(V2 = 1) +17,3.789,-0.0983, log n). (5.27)

¢ If 55440 < n < N©, as log 55440 > 10, Lemma 3.6 implies that the mapping

= G(2(\/_—1)+1, 3.789, —0.0983, t) is increasing and concave for ¢ > log 55440.
Therefore, as 55440 is CA, from Lemma 4.15, to prove (5.27), it suffices to prove it
for all CA numbers N satisfying 55440 < N < N©. For n > 2, it is convenient to
define ¢(n) by

¢'G(2(V2 - 1) +7,3.789,&(n), log n) = 6(n)/n.

For all CA numbers N satisfying 55440 < N < N©, we have computed ¢(N) (cf.
[43]). The largest value, —0.098377958 ..., is obtained for

199 1123 31249 504457601

N =223205137111 19 138177197Hp Hp [ 11” 11 » II »

p=23 p=41 p=79 p=211 p=1129 p=31253

and log N = 5.04466 ... 108.

o If n < 55440, then one computes ¢(n) for all n’s satisfying 2 < n < 55440
(cf. [43]). The largest value of ¢(n) is obtained for n = 55440 and ¢(55440) =
—0.52488 ... < —0.0983, which completes the proof of Lemma 5.3. [

5.3 Proof of Theorem 1.1 (i)

Part (i) follows from Corollary 5.2 and Lemma 5.3.
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5.4 Proof of Theorem 1.1 (ii)

G. Robin has proved (cf. [37, Section 4]) that, if the Riemann hypothesis fails, then
there exists b < 1/2 such that the CA number N satisfies

o(N)/(N loglog N) = ¢’ (1 + Q,(log™" N)). (5.28)

Consequently, (5.28) implies the existence of infinitely many »’s that do not satisfy
(1.6), which proves (ii).

5.5 Proof of Theorem 1.1 (iii)

If the Riemann hypothesis is true, then (iii) follows from Proposition 5.1, (5.2). If it
is false, then (iii) follows from (5.28). ]

6 Proof of Corollary 1.2

6.1 Preliminary lemmas

Lemma 6.1. Let N’ > 55440 and N be two consecutive CA numbers with a(N')
(defined in (1.9)) and a(N) positive. Let n such that N’ < n < N. Then,

a(n) = min(a(N'), a(N)). (6.1)

Proof. First, note that the positivity of a(N') and a(N) follows from (1.1), but in
each computation, it will be checked. Let us set a = min(a(N'), a(N)) > 0 and
f@) =e’(logt —a/ \/;). This function is increasing and concave for ¢t > 1. More-
over, o(N')/N' = e’ (loglog N’ — a(N")/+/log N') < f(log N') and, similarly,
oc(N)/N < f(log N). So, we may apply Lemma 4.15 that yields e”(loglogn —
a(n)/4/logn) = o(n)/n < f(logn), and a(n) > a follows. O

Lemma 6.2. Let a be a real number belonging to [0, 1], N a CA number of param-
eter e, M' and M two integers such that 8 < M' < M, and an integer n satisfying
M' < n < M and a(n) < a. Then ben_(n) defined in (4.44) satisfies

ben, (n) < max (g(log M), g(log M)) —y+log(c(N)/N)—¢elogN  (6.2)

with

g(t) = et—log(logt—a/\/;).
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Proof. First, for t > log8 and 0 < a < 1, log — a/+/t is positive and
dg(t) _ 1/1* +3a/@4r7) | (1/t+a/@r"2)
dr? logt—a/\/; (1Ogt—a/\/;)2

thus g(7) is convex. Next, from (4.44),

ben, (n) = log(c(N)/N) —log(c(n)/n) + elogn — elog N.
But, from (1.9), as a(n) < a is assumed,

a(n)
logn

o)
n

=ey<loglogn— >>e7<loglogn—

=)
logn
so that e logn — log(o(n)/n) < g(logn) — y and
ben, (n) < g(logn) —y +log(c(N)/N) —elog N.

As g(?) is convex, its maximum on the interval [log M’,log M is attained at one of
its extremities, whence (6.2). O

Lemma 6.3. Ifn > N,  the 24th CA number of parameter €,, = F(41, 1),

€2

N, =9200527969062830400 = 2°3*5%7°11...41 =9.2...10"%,  (6.3)

£

then a(n) > 0.582 holds.

Proof. First, we consider the case n > N? (defined by (4.37)) with L, = log N© >
10° and 4, = loglog N© > log 10° (cf. (4.38)). From (1.8) and (1.12),

0.0264
(—2(\/5—1)+r+3'789+ 1/6())
ylogn 4o L

0
0.582 )
logn

o)
n

< @ <log logn +

< ey< loglogn — (6.4)

Next, we consider the case N, < n < N @, One computes a(N) for all CA
numbers N < N©. The largest value of a(N) found is 0.92019 ... for the CA
number whose largest prime factor is 1019 (cf. [43]). For all CA numbers N’s

satisfying N, < N < NO a(N) > a(N, ) = 0.603... holds, which, from
Lemma 6.1, completes the proof of Lemma 6.3. [
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6.2 Proof of Corollary 1.2 (i).

If N > 12 and N are two consecutive CA numbers, then Lemma 6.2, with & the
common parameter of N’ and N (cf. Proposition 4.2), M" = N', M = N and
a € [0,1], allows us to compute an upper bound f = p(N,a) of ben, (n) when
N’ < n< N and a(n) < a. From Section 4.6, there exists an algorithm to determine
the list £,,, = L,.,(N,a) of those integers n € [N’, N] such that ben,(n) < f.
By pruning L, , i.e. by taking off the n’s with a(n) > a, we determine the list
L, = L,(N,a) of integers n satisfying N’ < n < N, a(n) < a and n > 5040.

With the notation of Table 1, vic = N, is the CA number preceding N, . For
nzN,, (1.10) follows from Lemma 6.3. To complete the proof of (1.10), we
have to check that there are no n satisfying a(n) < 0.582 and vis < n < N_ ,in
other words, we have to check that the set £a(N£24, 0.582) is empty, which is true
(ct. [43]).

6.3 Proof of Corollary 1.2 (ii).

For each CA number N such that N, = 5040 < N < N, (cf. (6.3)), one computes

L,(N,0.582). By bringing together these sets, one can get L, the set of 161 numbers
n satisfying 5040 < n < N(524 and a(n) < 0.582 (cf. [43]). Among them, 15 are CA
and 58 are SA (but not CA).

Let us write £ = {n,=v, <n, <..<nyg =V} Togetthe v,’s of Table 1,
we prune L in the following way: for k from 16 downwards to 2, v,_, is the largest
n; < v, such that a(n;,) < a(v,). ]

7 Open questions

Find an asymptotic expansion of the upper bound of ¢(n)/n more precise than (1.2).
In particular, find the asymptotic coefficient of 1/(y/log nloglogn) in (1.2). Proba-
bly, for that, it would be necessary to improve the estimate (1.11) of Hp «(1=1/p).

In [34] (see also [2, Chapter 8]), under the Riemann hypothesis, Ramanujan
considers

a_s(n)zz‘%, for 0<s<I
dln
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(note that o_,(n) = o(n)/n), defines

— xl)—l
5500 == z,,“ p(p — 5)

and gives an asymptotic expansion of the maximal order ~_ (n) of o_(n). For ex-
ample, for s = 1/2, (cf. [34, Equation (380)]),

NI 2log2 — 1+, ,(logn) o)
P e S
12(n) 5 ¢ 5 ) &P i(vlognm) loglogn (loglog n)?

(7.1)
where li denotes the logarithmic integral. It would be interesting to get an effective
form to the asymptotic expansion of X_ (n). The general case 0 < s < 1 might be
difficult to deal with. But in the case s = 1/2, it is maybe possible to get an effective
form to the expansion (7.1).
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