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STATISTICAL PROPERTIES OF PARTITIONS

J.-L. NICOLAS*

In this paper, I recall a few personal souvenirs of Paul Erdds, his way of life and
his great way of doing mathematics.

1. PauL Erpds AND FRANCE

Before speaking about mathematics, I would like to say a few words about
Paul Erdés and France. I guess that his parents gave him a certain idea
of France, as the country of liberty, of human rights and of Bastille day.
I am not sure whether France is really that country, but I certainly wish it
strongly. When he was young, he read French novelists and I remember that
Paul mentioned to me that he had read Anatole France who, I am afraid,
is no longer read nowadays.

He was very much inferested in history. Thirteen hundred years ago,
the Arabs invaded Europe through Spain and the south of France, and were
stopped at the battle of Poitiers in 732. One of Paul’s favourite questions
was “how many people were killed in this battle™? '

I do not know when he visited France for the first time. In the spring of |
1963, he gave a talk in the Number Theory seminar in Paris (the so-called
Delange-Pisot—Poitou seminar) with the title “Problémes et résultats sur les
nombres premiers”. H. Delange attended this lecture, and he told me that,
as usual, Paul offered money for his problems. Thinking that the problem
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would not be solved for a very long time, he offered § 10119 for showing
that a multiplicative function g such that Ig(n)[ <lforalln>1hasa
mean value (i.e. the sequence 23" . g(m) has a limit). The problem was
solved by Wirsing a few years later {cf. [33) and [9], vol. T, p. 254).

I exchanged my first letters with P. Erdés in 1967, I met him for
the first time in Montreal in 1968, and for the first time in France in
June 1970, when he was invited to Paris by C. Berge and the late M. P,
Schutzenberger. Further, I met him with his mother in Nice, in September
1970, at the International Congress of Mathematicians where he was an
invited lecturer. Since then, he spent at least two weeks a year in France
mainly visiting Bordeaux, Limoges, Nancy, Grenoble, Marseille, Strasbourg,
Lyon and Paris.

Paul enjoyed good food, and perhaps to thank us, he used to invite my
wife. and me to good restaurants. He was also curious about food, asking
for instance “what is this soup made with”? He was especially fond of
French cheese. For his last visit to Lyon, he flew from Zurich. I drove to the
airport in the evening to pick him up. I asked him: Paul, have you eaten?
He answered: yes, I ate in the plane, but if you have a little bit of cheese. ..
And, at home, he ate some cheese with a cubic centimeter of wine.

- Let us return to mathematics. Paul Erdés was well known as a problem
poser and a problem solver and, because of this, he was not much appre-
ciated by Bourbaki, though J. Dieudonné once said (cf. [7]): “rien de ce
que fait Erdds n’est facile; c’est toujours exirémement astucieus”t. In Sec-
tions 4 and 5, by means of two examples in the theory of partitions, I would
like to show how deep his way of thinking was, and how the problems he
posed were often just steps to reach a more general peoint of view.

2. a; + aj IS NOT A SQUARE

In this Section, I would like to show with an example how P. Erdés used to
work, how he was a link between mathematicians, bringing mathematical
news from university to university all over the world.

In a lecture in Limoges in June 1980, Paul stated one of his problems
(cf. [19], [15], p. 87, 107 and [13]): Jet 1 € a1 < a2 < +- < ax < n be a
sequence of integers with the property that a; - a; is never a square for all

1 : o . .
Nothing that Erdds does is easy; it is always extremely ingenious.
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1<¢<j <k How large can k be in terms of n? Further, he mentioned
that, if you choose a; = 3¢+ 1, then a; +a; = 2 (mod 3) cannot be a square
and so k = k(n) 2 n/3. At that time, I was involved in the number of
squares modulo n (see [28]), so I asked myself: “why 3”7 Why not to try to
replace 3 by a larger integer such that the number of residue classes which
are squares is small? I asked J.-P. Massias to carry out a few calculations,
and he found, modulo 32, 11 residue classes the sum of no two of which is
a square (cf. {27]). As % > %, by choosing a; in all these 11 residue classes,
it was possible to improve the preceding result to k£ 2 11n/32.

The following day, Paul flew to New York to visit J. Lagarias and A. M.
Qdlyzko at Bell Labs. He told them the result of Massias, and they were
able {cf. [24} and [25]) in the following weeks, to show that, in the modular
case, 4l is maximal, and, in the general case, that k < .475n.

P. Brdfis was very interested in the evolution of his problem. In all
the letters he sent me in the next months, a few lines were devoted to the
subject. On July 11, he wrote: “There was a meeting in 1977 or 78 in For{
Collins, Colorade on combinatorial analysis; the volume of the meeting will
soon appear. In my paper there, I mention the conjecture a;+a; # n? implies

Poaczl = (1 +0(1)) £ which was disproved by Massias”. Further, on July

3
23, he wrote: “Hawve you heard engthing more about the computation of

Massias? It would now be essential to prove that if 1 < a1 <~ <o < n
and a; + a; is never a square then k < (% - c)n where ¢ is an absolute
constant (we can of course assume n > ng). I do not think that this could
be hard but for the moment I do not see the proof”. Later, on September 18,
he wrote “I spoke to Graham in the phone. Odlyzko and Logarias proved

that if ay,@g,...,0x are residues mod mso that a;+ a; # v2 (mod m) then
k< %m. Thus your colleague’s counierezample is best possible. They have

results in the non modular case too but this is not yet so sharp”.

3. It 1s OBVIOUS BY SIEVE METHOD. ..

Paul Erdés had a very deep understanding of the sieve method. Even though
I knew this to be so, I was always surprised when, in a discussion, he said
“this is obvious by sieve method”, because it had not come to my mind, and
moreover, I needed a couple of hours to see how it was “obvious”.

Many of his papers used sieve methods, and I shall give here examples
of four articles which later had a strong influence in nmumber theory and
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which were emphasized during the Budapest conference, in July 1999, by
C. Pomerance, B. Bollobds, P. D. T. A. Elliott, H. Maier and A. Hildebrand.

In [10] it is proved that there is a positive proportion of primes p such
that all the prime factors of p — 1 are smaller than p® where o is a fixed real
constant smaller than 1, This result is an essential ingredient in the proof
of the existence of infinitely many Carmichael numbers (cf. {1]).

In [16], the famous Erdés-Kac theorem is proved, and we may learn
from Elliott (cf. [9], vol. II, p. 24) how they proved it. M. Kac was giving
a talk in Princeton, and Paul was in the audience. At some point, the
lecturer said that he would be able to prove what has become the Erdés-
Kac theorem, provided some specific property of the integers is true. Very
suddenly, Paul realised that this specific property was “obvious by sieve
method”, and before the end of the talk, the proof was completed.

Let us denote by p,, the n-th prime. In [11], it is proved that

log pn

The best known upper bound for the left hand side is 0.25542 (cf. [26]).

Let d(n} denote the number of divisors of 7. In [14], it is said: “Brun’s
method easily gives that, for infinitely many n's,

¢ < ____d(n) < €3

d{n +1)

“and, in fact, that the sef of limit points of E(‘%-El-)ﬂ conteins intervals”. This
is probably the most striking example of this Section. Ask any number. the-
oretist, even one well aware of sieve methods, to prove the above assertion;
he will spend a lot of time. For the motivation of the question, see (23], and
the references init.

4. Tug THEOREM OF ErRDOS-LEHNER

Let us recall first that a partition of n is a representation of n as the sum
of any number of integral parts where the order of the parts is irrelevant,
so that we can write a partition (II) of n :

(I5) n=ni+ngt...bng, 0> > >
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The total number of partitions of n will be denoted by p(n). By the circle
method, Hardy and Ramanujan gave (cf. [22]) a very nice formula for p(n)
from which the following estimation can be deduced:

£V - 00

) pln) ~ 5™,

(2) : C=1r\/g=2.565...

The first paper of Paul Erdés about partitions seems to be [12], where
an elementary proof of the asymptotic estimate (1) was given. At about the
same time, he wrote with J. Lehner the paper [17], where they studied the
statistical distribution of the nurnber of parts in a random partition of n.

Tt is well known that the number p(n, m) of partitions of n with at most
m parts is equal to the number of partitions of n with parts at most m, and
s0 the generating function is

o0 ) m 1
(3) > p(n,m)g" =[] 7%
n=0 k=1 q
By Cauchy’s formula, (3) yields
1 1 (v7 1
@) ,_ Piﬂim’—ﬁfczm(gm)dz

where C is a circle of center O and radius smaller than 1. It is possible to
use (4) together with the saddle point method to study the behaviour of
p(n, m), and this was done later by Szekeres in [31] and [32] in a very precise
way. But, in [17], the sieve method was used to prove '

Theorem. Let
(5) m=-1c,-\/ﬁlogn+$\/ﬁ,

with C defined by (2). We have, for any fixed x, when n — o0,

(6) limZ g:’n';’“) = exp ("’2(5 exp (w %—x) ) .
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The sketch of the proof given in ([17]) runs as follows: the number of
partitions of n containing a part equal to a is clearly p(n — a), and so, to
count the number of partitions with parts at most m, you have to take off
the partitions of n containing m + 1, m + 2, ..., up to n, the total number
of which is 377" p(n — (m-+r)}). But, in so doing, we have subtracted the
partitions containing two large parts, say m + ry and m + 9, twice and the
sieving process appears and yields the formula

(7) pln,my=p(n) —S1+ 2 — S+ -+ (—1)*Sp +---

with

(8) Sk = >

0<ri<ro< <y,
LEr drpdecbr Sn—mk

plrn—(m+r)—(m+ra) - — (m+rg)).

By using the Hardy-Ramanujan result (1), the sum S} in (8) can be evalu-
ated, and for the value of m given by (5}, the following relation holds:

(9) ;,%"" -kl—' (%exp (—gm))k

But, it is well known from V. Brun that, in the alternating sum (7}, the
partial sums are alternately above and below the total value. From this, it
is not difficult to deduce from (7) and (8) that, for the value of m given by
(5), the following estimate holds:

00) plr,m) = p(r) (14 3 (1255} ~ ptm)xp (- Zewp (- o))

k>1

and (6} is an equivalent form of (10).

The paper [17] with .J. Lehner was written soon after Kac’s lecture
mentioned in the preceding Section and the publication of the Erdés—Kac
Theorem [16]. Clearly, Erdés had in mind that the additive structure of
a partition, made of parts, is, in some sense, similar to the multiplicative

structure of an integer, made of primes, which explains the use of a sieve

method to prove (6). In the long series of papers [21], written with P. Turén,
this idea was extended to the symmetric group on n letters, in order to study
the statistical structure of a permutation, made of cycles.

In August 1998, attending the International Congress of Mathemati-
cians in Berlin, I was pleased to hear two talks mentioning statistical stud-
ies of algebraic structures. In the abstract of his lecture (cf. [30]), A. Shalev
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says: “We survey recent progress, made using probabilistic methods, on sev-
eral conjectures concerning finite groups”. Further, in the introduction, he
indicates: “The roots of the subject lie in a series of 7 papers of Erdds and
Turdn... " (precisely, the papers [21]). Also, the aim of the lecture [6] of
P. Diaconis was to show an intimate connexion between different areas of
mathematics, specially algebra and probability.

5. PRACTICAL PARTITIONS

Let A € N. We can consider partitions of n with parts in A. Let us
call pa(n) the number of these partitions. In the paper [3], jointly written
with P. Bateman, a necessary and sufficient condition on the set A is given
such that the function n — pa(n) is non decreasing from a certain point
on. These partition functions had already been considered, for example by
Hardy and Ramanujan, for particular values of A (the set of squares, of
primes,...) but, as far as I know, ounly to give an asymptotic estimation of
pa{n} as n goes to infinity. The paper [3] seems to be the first one for which
the mapping A — p4(n) was considered from another point of view.

In order to give an estimation of the number of fundamental invariants
of binary forms of degree d, J. Dixmier needed to study partition theory,
and he asked Erddés and myself to help him. This is explained in [8] and
was the beginning of a fruitful collaboration between the three of us and
A, Sdrkézy. Let n = n; +ng + ... + ng be a partition IT of n, and a an
integer. The partition II is said to represent o if & can be written as a
subsum'n,-l 474, + ... +ny, of the parts of II. One of the problems studied
in [8] is to estimate, for r > 2, the number of partitions of 7n which do not
represent n,2n,...,(r — )n. :

A partition of n is said to be practical if it represents all integers between
0 and n. In {20], P. Erdds and M. Szalay proved that almost all partitions
of n are practical (i.e. the number of non practical partitions of n is o(p(n})
as n — 00). In [18] this problem is extended to p4{n), for many sets 4, but
a nice counterexample due to D. Hickerson shows a set A C N such that,
for infinitely many n’s, most of the partitions are non practical.

Let us say that two partitions II and II' of the same number n are
equivalent if they represent the same integers or, in other words, if E(IT} ==
E(IT') where E(II) is the set of integers represented by II. Let us denote by
7{n) the number of equivalence classes that is to say the number of distinct
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sets E(II}) when IT runs over the p{n) partitions of n. From the above
mentioned result of [20], P(n) = o{p(n)) follows, and it was a question of
P. Erdds to find a better estimation of P(n). A first answer was given in
[29). The best result is in [6] and [2]: for n large enough, one has

(11) : p(n)*3% < B(n) < p(n)"7

During his last visit to Lyon in early April 1996, Paul was interested in
the same question for partitions with parts in A and specially for binary
partitions, and he asked M. Deléglise to build a table of Fa(n), when
A = {1,2,4,8,16,...} is the set of the powers of 2. I should say that
I was not very enthusiastic about this idea, and I guessed that, after solving
the question for binary partitions, Paul would have asked: “What can be
said if A is the set of squares, or the set of k-th powers, or the set of... %7

When, in September, we learnt that Paul had left, we decided, with
M. Deléglise to finish that work. From the table, it was then clear to us
that, for the set A of binary partitions, $a{n) is exactly equal to ga(2,n),
the number of partitions of n, with parts in A, and where each part occurs
at most twice (cf. [5]); in other words the generating function of g4(2,n) is

(12) > aal2n)g" = [0 +¢° +4%).
n=>0 eEA

Further, it was easy to prove that, for any set A which is 2-stable (j.e.
z € A= 2z € A) and for a given partition IT of n with parts in A, there is
a partition IT' of n, with parts in A, equivalent to II {i.e. representing the
same integers) with the property that each part in II' occurs at most twice.
In other words, if A is 2-stable, we have

(13) Pa(n) < ga(2,n).

Paul would have liked this simple result; unfortunately he did not see it,
but it convinced me even more, that, as M. Simonovits said, P. Exdés was
often fortunate in choosing his examples: essentially, looking at the binary
partitions (the only ones for which (13} is an equality) was the key to the
problem.

Curiously, the generating series defined by (12) with A = {1,2,4,8,...}
was also studied, from a completely different point of view, in {4], as I re-
cently learnt from R. Canfield.
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Another Paul’s question was to determine the largest classes of parti-
tions of n (when A = N}. Of course, it follows from [20] that the largest
class is the class of practical partitions, that is, the partitions representing
all possible integers. In a forthcoming paper with M. Szalay, we shall show
that the second largest class represents all integers between 0 and n except
1 and n—1, and we shall also investigate the next most popular classes after
these two.
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