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Abstract Let us denote by d(n) the number of divisors of n, by li(t) the
logarithmic integral of t, by β2 the number log 3/2

log 2 = 0.584 . . . and by R(t)

the function t 7→ 2
√
t+

∑
ρ t
ρ/ρ2

log2 t
, where ρ runs over the non-trivial zeros of

the Riemann ζ function. In his PHD thesis about highly composite numbers,
Ramanujan proved, under the Riemann hypothesis, that

log d(n)

log 2
6 li(log n) + β2 li(log

β2 n)− logβ2 n

log log n
−R(log n) +O

( √
log n

(log log n)3

)
holds when n tends to infinity. The aim of this paper is to give an effective
form to the above asymptotic result of Ramanujan.

1 Introduction

Let us denote by d(n) the number of divisors of n and by li(t) the logarithmic
integral of t (see, below, §2.2). In [24, (235)], under the Riemann hypothesis,
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Ramanujan proved that when N →∞, D(N) = max16n6N d(n) satisfies

logD(N)

log 2
= li(logN) + β2 li(log

β2 N)− logβ2 N

log logN
−R(logN) +

O(
√
logN)

(log logN)3
,

(1.1)
with, for k > 1,

βk =
log(1 + 1/k)

log 2
(1.2)

and, for t > 1,

R(t) =
2
√
t+ S(t)

log2 t
with S(t) =

∑
ρ

tρ

ρ2
, (1.3)

where ρ runs over the non-trivial zeros of the Riemann ζ function. Moreover,
in [24, (226)], Ramanujan writes under the Riemann hypothesis

|S(t)| =

∣∣∣∣∣∑
ρ

tρ

ρ2

∣∣∣∣∣ 6∑
ρ

∣∣∣∣ tρρ2
∣∣∣∣ = √t∑

ρ

1

ρ(1− ρ)

=
√
t
∑
ρ

(
1

ρ
+

1

1− ρ

)
= 2
√
t
∑
ρ

1

ρ
= τ
√
t (1.4)

with
τ = 2 + γ0 − log(4π) = 0.046 191 417 932 242 0 . . . (1.5)

where γ0 is the Euler constant. The value of τ = 2
∑
ρ 1/ρ can be found in

several books, for instance [8, p. 67] or [5, p. 272]. (1.4) implies that R(t)
defined in (1.3) satisfies

(2− τ)
√
t

log2 x
6 R(t) 6 (2 + τ)

√
t

log2 t
. (1.6)

It is convenient to use the following notation for t > 1

F (t) = li(t) + β2 li(t
β2)− tβ2

log t
with β2 =

log 3/2

log 2
= 0.584 . . . (1.7)

The aim of this paper is to give an effective form to the result (1.1) of Ra-
manujan and, more precisely, to prove

Theorem 1.1. (i) Under the Riemann hypothesis, for n > 183783600,

log d(n)

log 2
6 F (log n)−R(log n)− 5.12

√
log n

(log log n)3
+

1.52 logβ3 n

log log n
(1.8)

with β3 = (log(4/3))/ log 2 = 0.415 . . .
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(ii) If the Riemann hypothesis is not true, there exists infinitely many n’s
for which (1.8) does not hold. In other words, (i) is equivalent to the Riemann
hypothesis.

(iii) Independently of the Riemann hypothesis, there exists infinitely many
n’s such that

log d(n)

log 2
> F (log n)−R(log n)− 25.3

√
log n

(log log n)3
− 1.45 logβ3 n

log log n
. (1.9)

Corollary 1.2. Under the Riemann hypothesis, we have, for n > 122522400,

log d(n)

log 2
6 F (log n)− (2− τ)

√
log n

(log log n)2
−5.12

√
log n

(log log n)3
+

1.52 logβ3 n

log log n
(1.10)

for n /∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 18, 24},

log d(n)

log 2
6 li(log n) + β2 li(log

β2 n), (1.11)

for 4324320 < n 6 exp(108) or for n > exp(1.56× 1017),

log d(n)

log 2
6 F (log n) (1.12)

and, for N (1) < n < exp(108) or for n > exp(1.11× 1040)

log d(n)

log 2
6 F (log n)−R(log n), (1.13)

where

N (1) = 210365473
19∏
p=11

p2
157∏
p=23

p = 1.245143 . . .× 1075. (1.14)

Corollary 1.2 is easy to prove from Theorem 1.1 and some computation
(see below Section 4.3). Under the Riemann hypothesis, (1.12) probably holds
for all n > 4324320 and also (1.13) for all n > N (1) but we have not been
able to prove it.

Let us recall some effective upper bounds for log d(n)
log 2 , obtained without

any hypothesis:

log d(n)

log 2
6 1.5379398606 . . .

log n

log log n
, n > 3 (1.15)

with equality for n = 6983776800 = 253352
(∏19

p=7 p
)
,
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log d(n)

log 2
6

log n

log log n
+ 1.9348509679 . . .

log n

(log log n)2
, n > 2, (1.16)

with equality for n = 28355372112132
(∏83

p=17 p
)
and

log d(n)

log 2
6

2∑
i=1

(i− 1)! log n

(log log n)i
+ 4.7623501211 . . .

log n

(log log n)3
, n > 2 (1.17)

with equality for n = 211365473
(∏23

p=11 p
2
)(∏293

p=29 p
)
.

Inequality (1.15) is proved in [18]. Inequalities (1.16) and (1.17) are proved
in [28, pp. 41–49], cf. also [19, Section VII].

1.1 Notation

d(n) =
∑
m|n

1 is the divisor function.

π(x) =
∑
p6x

1 is the prime counting function. Π(x) =
∑
pk6x

1

k
=
∑
k>1

π(x1/k)

k
.

pi denotes the i-th prime. P = {2, 3, 5, 7, 11, . . .} is the set of primes.

θ(x) =
∑
p6x

log p and ψ(x) =
∑
pk6x

log p are the Chebychev functions.

li(x) denotes the logarithmic integral of x (cf. below Section 2.2).

F is defined in (1.7), R(t) and S(t) in (1.3).

G is defined in (2.32), G1 in (2.33), G2 in (4.10), G3 in Section 4.3.2, H in
(2.34) and H0 in (4.9).

τ is defined in (1.5), βk in (1.2), ξ in (3.12) and ξk = ξβk in (3.13).

A(x) = li(θ(x))− π(x), A1(x) and A2(x) are defined in (2.41)–(2.43).

σ2 is defined in Definition 2.4.

ξ(0) = 108 + 7 is defined in (3.21) and ξ(0)k in (3.22).

The value of N (0) is given in (3.23) and the one of logN (0) in (3.24). The
value of N (1) and N (2) are given respectively in (1.14) and in (4.7).

Highly composite (hc) numbers are defined in Section 3.4. Mj denotes the
j-th hc number.

As logN and log logN occur many times in the article, they are often replaced
by L and λ. Similarly, L0 means logN (0) and λ0 means log logN (0).
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We often implicitly use the following results : for u and v positive and w
real, the function

t 7→ (log t− w)u

tv
is decreasing for t > exp(w + u/v) (1.18)

and
max
t>ew

(log t− w)u

tv
=
(u
v

)u
exp(−u− vw). (1.19)

1.2 Plan of the article

The proof of Theorem 1.1 follows the proof of (1.1) in [24]. We have replaced
the asymptotic estimates in number theory used by Ramanujan by effective
ones.

In Section 2, we recall and prove some results that we use in the sequel,
first, in Section 2.1, about effective estimates of classical functions of prime
number theory and later, in Section 2.2, about the logarithmic integral. In
Section 2.3, the function S, defined in (1.3), is studied and, finally, in Section
2.4, several lemmas in calculus are proved.

Under the Riemann hypothesis, Ramanujan proved that, A(x) = li(θ(x))−
π(x) is positive for x large enough, and it was an important argument for
his proof of (1.1). In [20], it is proved that, under the Riemann hypothesis,
A(x) > 0 holds for x > 11. In Section 2.5, some results of [20] about A(x)
are recalled to be used in the proof of Theorem 1.1.

Section 3 is devoted to the study of superior highly composite (shc) num-
bers. These numbers, introduced by Ramanujan to study the large values of
the divisor function, play an important role in the proof of Theorem 1.1. In
Section 3.2, the definition of shc numbers is recalled, and some properties
and examples are given.

A shc number N is associated to a parameter ε and its largest prime
factor is 6 ξ = 21/ε. In Section 3.7 (without any hypothesis) and in Section
3.8 (under the Riemann hypothesis) effective estimates of N in terms of ξ are
given.

Let ε be a positive real number. The theorem of the six exponentials
implies that there are at most four shc numbers associated to ε. However, no
ε is known with more than two shc numbers associated to it. This question
is discussed in Section 3.1 and in Proposition 3.7.

The definition of highly composite numbers (hc) introduced by Ramanujan
is recalled in Section 3.4. These numbers are used to determine the largest
number (i.e. 183783600) not satisfying (1.8), see Lemma 3.14 and Section 4.2.
The notion of benefit, recalled in Section 3.5, is convenient to find, on some
interval, the numbers with a large number of divisors.
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In Section 3.6, an argument of convexity is given, which is used in Lemma
4.3 to shorten the computation in the proof of Theorem 1.1.

The proofs of Theorem 1.1 and Corollary 1.2 are given in Section 4.
The computations, both algebraic and numerical, have been carried out

with Maple. On the website [32], one can find the code and a Maple sheet
with the results.

2 Preliminary results

2.1 Effective estimates

Without any hypothesis, Büthe [4, Theorem 2] has shown by computation
that

θ(x) < x, for 1 < x 6 1019 (2.1)

while, Platt and Trudjan, [23, Theorem 1, Corollary 1] proved for x > 0,

θ(x) < (1 + η)x with η = 1 + 7.5 · 10−7. (2.2)

Without any hypothesis, Dusart [7, Théorème 5.2] has proved that

|θ(x)− x] < x

log3 x
for x > 89 967 803. (2.3)

From (2.3) and the computation of θ(x) for x < 89 967 803, it is possible to
show (cf. [6, Table 1, p. 114] or [33]) that we have θ(x) > bx for x > a for
each of the following pairs of values of a and b

a 127 367 1993 47491

b 0.8499 0.9134 0.9629 0.9927
(2.4)

We shall also use the inequality (cf. [29, (3.5)]):

π(x) >
x

log x
for x > 17. (2.5)

Lemma 2.1. For each of the following pairs of values of a and b, we have
π(x) < bx/ log x for x > a.

a 2 376 2090

b 1.25506 1.19768 1.15963
(2.6)

Proof : For a = 2, the result is quoted in [29, (3.6))]. For the two other values
of a, we start from the inequality (cf. [7, Théorème 6.9]) valid for x > 60184
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π(x) 6
x

log x− 1.1
6

x

(log x)(1− 1.1/ log 60184)
6 1.1114

x

log x
.

Furthermore, if p and p′ are two consecutive primes, on the interval [p, p′),
the function f(t) = π(t)(log t)/t is decreasing. For a = 376, we check that
f(376) < 1.19768 holds and that for all prime p satisfying 376 < p < 60184,
we also have f(p) < 1.19768. A similar computation shows the result for
a = 2090. �

Under the Riemann hypothesis, we shall use the upper bounds (cf. [30,
(6.2) and (6.3)])

|ψ(x)− x| 6 1

8π

√
x log2 x, for x > 73.2 (2.7)

and
|θ(x)− x| 6 1

8π

√
x log2 x, for x > 599. (2.8)

Let us introduce

δ(t) =

{
0 if t 6 1019

1 if t > 1019.
(2.9)

Then (2.1) and (2.8) imply

θ(x) 6 x+
δ(x)

8π

√
x log2 x, for x > 0. (2.10)

Lemma 2.2. Let us denote by pi the i-th prime. Then, for pi > 127, we have

pi+1 − pi
pi+1

6
149− 139

149
6 0.0672. (2.11)

We order the prime powers pm, with m > 1, in a sequence (ai)i>1 =
(2, 3, 4, 5, 7, 8, 9, 11, . . .). Then, for ai > 127,

ai+1 − ai
ai+1

= 1− ai
ai+1

6 0.0672 . (2.12)

Proof : In [7, Proposition 5.4], it is proved that, for x > 89693, there exists a
prime p satisfying x < p 6 x(1 + 1/ log3 x). This implies that for pi > 89693,
we have pi+1 6 pi + pi/ log

3 pi and

pi+1 − pi
pi+1

6
pi+1 − pi

pi
6

1

log3 pi
6

1

log3 89693
= 0.00067423 . . .

For 2 6 pi < 89693, the computation of (pi+1− pi)/pi+1 completes the proof
of (2.11).

If pj is the largest prime 6 ai then ai+1 6 pj+1 holds, so that, by (2.11),
for ai > 127,
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ai+1 − ai
ai+1

= 1− ai
ai+1

6 1− pj
pj+1

6 0.0672

holds, which proves (2.12). �

2.2 The logarithmic integral

For x real > 1, we define li(x) as (cf. [1, p. 228])

li(x) =

∫ x

0

− dt

log t
= lim
ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

dt

log t

)
=

∫ x

2

dt

log t
+ li(2). (2.13)

For 0 < x < 1, (cf. [22, p. 1–3]),

li(x) = γ0 + log(− log(x)) +

∞∑
k=1

logk x

k · k!

where γ0 is the Euler constant. We have the following values:

x 0.5 1 1.45136 . . . 1.96904 . . . 2
li(x) −0.37867 . . . −∞ 0 1 1.145163 . . .

(2.14)

From the definition of li(x), it follows that

d

dx
li(x) =

1

log x
and

d2

dx2
li(x) = − 1

x log2 x
. (2.15)

The function x 7→ li(x) is increasing for x > 1. For x > 1 the second derivative
of li(x) is negative and increasing. Therefore, from Taylor’s formula, if a, c and
h are three real numbers satisfying a > 1, a+h > 1 and c = min(a, a+h) > 1,
one has

li(a) +
h

log a
− h2

2c log2 c
6 li(a+ h) 6 li(a) +

h

log a
. (2.16)

We also have for x→∞

li(x) =

N∑
k=1

(k − 1)!x

(log x)k
+O

(
x

(log x)N+1

)
. (2.17)



Highly Composite Numbers and the Riemann hypothesis 9

2.3 Study of the function S(t) defined by (1.3)

Lemma 2.3. If a, b are fixed real numbers satisfying 1 6 a < b < ∞, and g
any function with a continuous derivative on the interval [a, b], then

∑
ρ

∫ b

a

g(t)tρ

ρ
dt =

∫ b

a

g(t)

[
t− ψ(t)− log(2π)− 1

2
log

(
1− 1

t2

)]
dt, (2.18)

where ρ runs over the non-trivial zeros of the Riemann ζ function.

Proof : This is Théorème 5.8(b) of [10, p. 169] or Theorem 5.8(b) of [9, p.
162]. �

Definition 2.4. One defines σ2 by

σ2 =
∑
ρ

1

ρ2
= 1− π2

8
+ 2γ1 + γ20 = −0.046 154 317 295 804...

where the coefficients γm are defined by the Laurent expansion of ζ(s) around
1 (see [5, p. 206 and 272])

ζ(s) =
1

s− 1
+

∞∑
m=0

(−1)m γm
m!

(s− 1)m

Lemma 2.5. For x > 1, one has

S(x) =

∫ x

1

t− ψ(t)
t

dt− (log(2π)) log x+ σ2 +
π2

24
−
∞∑
j=1

1

4j2x2j
. (2.19)

Proof : Applying Lemma 2.3 with g(t) = 1/t, a = 1, b = x yields

S(x) =
∑
ρ

xρ

ρ2
=

∫ x

1

[
t− ψ(t)− log(2π)− 1

2
log

(
1− 1

t2

)]
dt

t
+σ2 (2.20)

which, by expanding log(1− 1/t2)/(2t) in power series, implies (2.19). �

Lemma 2.6. Let a be a real number > 1/2. The function Y := t 7→ −a/t−
log(1− 1/t2)/(2t) is increasing and negative for t > 2.

Proof : We have Y = −a/t+
∑∞
j=1 1/(2jt

2j+1),

Y ′ =
a

t2
−
∞∑
j=1

2j + 1

2jt2j+2
>

a

t2
−
∞∑
j=1

3

2t2j+2
>

a

t2
−
∞∑
j=1

3/2

22jt2
=
a− 1/2

t2
> 0.
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Therefore, for t > 2, Y in increasing and, as limt→∞ Y = 0, Y is negative. �

Lemma 2.7. Let S be defined by (1.3) and x and y be real numbers. Then,
under the Riemann hypothesis,

S(x)− S(y) 6 0.18(x− y) for 2 6 y 6 x, (2.21)

S(x)− S(y) 6 0.0398
|x− y| log2 y

√
y

for 108 6 y 6 x (2.22)

and ∣∣∣∣ S(x)log2 x
− S(y)

log2 y

∣∣∣∣ 6 0.04
|x− y|
√
y

for 108 6 y 6 x. (2.23)

Proof : In a first step, we assume that x and y satisfy ai 6 y < x 6 ai+1

for some i > 1, with ai defined as in Lemma 2.2. Then, from (2.20), we get

S(x)− S(y) =
∫ x

y

[
1− ψ(ai)

t
− log(2π)

t
− log(1− 1/t2)

2t

]
dt. (2.24)

From Lemma 2.6, the above square bracket is increasing for t > 2 and (2.24)
yields

S(x)− S(y 6
∫ x

y

[
1− ψ(ai)

ai+1
− log(2π)

ai+1
−

log(1− 1/a2i+1)

2ai+1

]
dt

= (x− y)
(
1− ψ(ai)

ai+1
− log(2π)

ai+1
−

log(1− 1/a2i+1)

2ai+1

)
. (2.25)

For a1 = 2 6 ai 6 a43 = 127, one computes the parenthesis of the right-
hand side of (2.25). The maximum 0.1759 . . . is attained for a1 = 2.

For ai > a44 = 128, we use the inequality ψ(ai) > ai−(
√
ai log

2 ai)/(8π) >

ai − (
√
ai+1 log

2 ai+1)/(8π) (cf. (2.7)), whence, from (2.25) and Lemma 2.6,

S(x)− S(y)
x− y

6 1− ψ(ai)

ai+1
6 1− ai

ai+1
+

log2 ai+1

8π
√
ai+1

and, from (2.12) and (1.18),

S(x)− S(y)
x− y

6 0.0672 +
log2 128

8π
√
128

= 0.149994 . . .

In the general case, if 2 < y < x holds, we determine the two integers i > 1
and j > 1 such that ai 6 y 6 ai+1 6 ai+j 6 x 6 ai+j+1. We have
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S(x)− S(y)

= S(ai+1)− S(y) +

(
j−1∑
k=1

S(ai+k+1)− S(ai+k)

)
+ S(x)− S(ai+j)

6 0.18

(
ai+1 − y +

(
j−1∑
k=1

ai+k+1 − ai+k

)
+ x− ai+j

)
= 0.18(x− y),

which completes the proof of (2.21).
From (2.7) and (1.18), for 73.2 6 y 6 x, one has∣∣∣∣∫ x

y

t− ψ(t)
t

dt

∣∣∣∣ 6 ∫ x

y

log2 t

8π
√
t
dt 6

|x− y|
8π

(
log2 y
√
y

)
, (2.26)

∫ x

y

dt

t
= log(x/y) 6 x/y − 1 = |x− y|/y (2.27)

and∣∣∣∣∫ x

y

− log(1− 1/t2)

2t
dt

∣∣∣∣ = ∫ x

y

1

2t

∞∑
j=1

1

jt2j
dt 6

|x− y|
2y

∞∑
j=1

1

jy2j

6
|x− y|
2y

∞∑
j=1

1

y2j
=
|x− y|

2y(y2 − 1)
, (2.28)

whence, from (2.20), (2.26), (2.27) and (2.28), with y0 = 108,

|S(x)− S(y)| 6 |x− y|
(
log2 y

8π
√
y
+

log(2π)

y
+

1

2y(y2 − 1)

)
=
|x− y| log2 y

√
y

(
1

8π
+

1
√
y log2 y

(
log(2π) +

1

2(y2 − 1)

))

6
|x− y| log2 y

√
y

(
1

8π
+

1
√
y
0
log2 y0

(
log(2π) +

1

2(y20 − 1)

))

6 0.0397 . . .
|x− y| log2 y

√
y

which proves (2.22).

To prove (2.23), one writes∣∣∣∣ S(x)log2 x
− S(y)

log2 y

∣∣∣∣ 6 |S(x)− S(y)|log2 x
+

∣∣∣∣S(y)( 1

log2 x
− 1

log2 y

)∣∣∣∣ . (2.29)

From (2.22), it follows
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|S(x)− S(y)|
log2 x

6
|S(x)− S(y)|

log2 y
6 0.0398

|x− y|
√
y

. (2.30)

(1.4) and (1.5) imply |S(y)| 6 τ√y 6 0.0462
√
y, whence, with y0 = 108,∣∣∣∣S(y)( 1

log2 x
− 1

log2 y

)∣∣∣∣ = |S(y)|∫ x

y

2dt

t log3 t
6 2|S(y)| |x− y|

y log3 y

6 2τ
|x− y|
√
y log3 y

6
0.0924

log3 y0

|x− y|
√
y

= 0.000014827 . . .
|x− y|
√
y

,

which, together with (2.29) and (2.30), proves (2.23). �

2.4 Four lemmas in calculus

Lemma 2.8. The function

f(t) =
1.52 tβ3

log t
− 5.12

√
t

log3 t

is positive for 7.38 < t < 1.1 × 1040 and negative for 1 < t < 7.37 and
t > 1.11× 1040.

Proof : Let us write f(t) = (tβ3/ log t)[1.52 − 5.12 t1/2−β3/ log2 t]. From
(1.18), the above square bracket is maximal for t = t0 = exp(2/(1/2−β3)) =
1.67 . . . 1010, is increasing for t < t0, decreasing for t > t0 and vanishes for
t = 7.3735 . . . and 1.10026 . . . 1040. �

Lemma 2.9. Let a be a positive real number and, for n > 0, ϕn = log(n +
1)− an.
(i) If, for some positive integer k, a is equal to log(1+1/k), (i.e. k = 1/(ea−
1)), then the sequence (ϕn)n>0 attains its maximum on the two points k and
k−1. More precisely, for 0 6 n 6 k−2 or n > k+1, ϕn < ϕk−1 = ϕk holds.

(ii) If log(1 + 1/(k + 1)) < a < log(1 + 1/k) holds (log(1 + 1/0) = ∞
is assumed), then the maximum of ϕn is attained on only one point k =
b1/(ea − 1)c. More precisely, for 0 6 n 6 k− 1 or n > k+1, ϕn < ϕk holds.

Proof : For n > 1, we have ∆n = ϕn − ϕn−1 = log(1 + 1/n)− a.
If a = log(1+1/k) holds, then ∆n is positive for n < k, vanishes for n = k

and is negative for n > k, which implies (i).
If log(1+1/(k+1)) < a < log(1+1/k) holds, then ∆n is positive for n 6 k,

and is negative for n > k, which implies (ii). Note that k < 1/(ea−1) < k+1
holds and thus, k = b1/(ea − 1)c. �
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Lemma 2.10. Let us set βk = (log(1 + 1/k))/ log 2 as in (1.2) above. The
function

Φ(t) = 0.352 exp((β3−β2/2)t)+0.9132 exp((β4−β2/2)t)−0.0143 t2 (2.31)

is positive for t > 0.

Proof : Let a = β3−β2/2 = 0.1225 . . . and b = β4−β2/2 = 0.02944 . . .. One
has Φ′ = 0.352 a exp(a t)+0.9132 b exp(b t)−0.0286 t and Φ′′ = 0.352 a2 exp(a t)+
0.9132 b2 exp(b t)− 0.0286, The third derivative is positive and thus, the sec-
ond derivative is increasing. The variation of Φ′ and Φ is displayed in the
array below (cf. [32]).

t 0 3.294 13.43 20.62 ∞
Φ′′ −0.02 − −0.019 − 0 + 0.039 + ∞

0.07 ∞
Φ′ ↘ 0 ↘ ↗ 0 ↗

−0.12
1.37 ∞

Φ ↗ ↘ 0.6 ↘ ↗
1.26 0.002

The minimum of Φ(t) for t > 0 is > 0.0019, which proves lemma 2.10. �

Lemma 2.11. Let a, b, c be three real numbers satisfying 0 6 a 6 3, 0 6 b 6
30 and c > 0. F (t) is defined by (1.7), S(t) by (1.3) and βk by (1.2).

(i) The function G defined by

G = G(a, b, c, t) = F (t)− a
√
t

log2 t
− b
√
t

log3 t
+
c tβ3

log t
(2.32)

is increasing for t > 12.

(ii) The function

G1(t) = G(2 + τ, 0, 0, t) = F (t)− (2 + τ)
√
t

log2 t
(2.33)

is increasing and concave for t > 1.

(iii) The function H defined by

H = H(a, b, c, t) = F (t)− a
√
t

log2 t
− S(t)

log2 t
− b
√
t

log3 t
+
c tβ3

log t
(2.34)

is continuous for t > 1 and increasing for t > 12.
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Proof : Let T = log t and assume t > 1. It is convenient to define

g1 = li(t), g′1 = 1/T, g′′1 = −1/(t T 2), (2.35)

g2 = β2 li(t
β2)− tβ2

log t
, g′2 =

1

t1−β2T 2
, g′′2 = − (1− β2)T + 2

t2−β2T 3
, (2.36)

g3 =
li(t)

6
− a

√
t

log2 t
, g′3 =

√
t T 2 − 3 a T + 12 a

6
√
t T 3

,

g′′3 = − 2
√
t T 2 − 3a T 2 + 72 a

12 t3/2 T 4
, (2.37)

g4 =
li(t)

6
− b

√
t

log3 t
, g′4 =

√
t T 3 − 3 b T + 18 b

6
√
t T 4

, (2.38)

g5 = c
tβ3

log t
, g′5 = c

β3(T − 1/β3)

t1−β3 T 2
. (2.39)

From (2.35) and (2.36), it is clear that g1 and g2 are increasing and concave
for t > 1.

If T 6 4, −3aT + 12a > 0 holds while, if T > 4, then
√
t T 2 > 16e2 > 9 >

3a so that, from (2.37), g3 is increasing for t > 1.
If T 6 4 then −3aT 2 + 72a > 0 while, if T > 4, 2

√
t > 2e2 > 9 > 3a so

that g3 is concave for t > 1.
If T 6 6, one has 3bT 6 18b. If T > 6,

√
t T 3 > 36e3T > 90T > 3bT so

that, from (2.38), g4 is increasing for t > 1.
From (2.39), g5 is increasing for t > exp(1/β3) = 11.12 . . .
In conclusion, G = 2g1/3 + g2 + . . . + g5 is increasing for t > 12, which

proves (i) and G1 = 5g1/6+g2+g3 (with a = 2+τ) is increasing and concave
for t > 1, which proves (ii).

Proof of (iii). From (2.19), S(t) is continuous for t > 1 , and consequently
also H(a, b, c, t). Moreover, we introduce

g6 =
2 li(t)

3
− S(t)

log2 t
. (2.40)

so that, H = g2 + . . .+ g6. We shall prove the increasingness of g6 for t > 2.
For that, we consider two real numbers satisfying 2 6 y < x < y4/3. From
(2.40), we get

g6(x)− g6(y) =
2

3

∫ x

y

dt

log t
−
(
S(x)

log2 x
− S(y)

log2 y

)
=

2

3

∫ x

y

dt

log t
− S(x)− S(y)

log2 x
− S(y)

∫ x

y

2

t log3 t
dt
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and, from (2.21) and (1.4),

g6(x)− g6(y) >
2(x− y)
3 log(y4/3)

− 0.18(x− y)
log2 y

−
2τ
√
y(x− y)

y log3 y

=
x− y
log y

(
1

2
− 0.18

log y
− 2τ
√
y log2 y

)

>
x− y
log y

(
1

2
− 0.18

log 2
− 2τ√

2 log2 2

)
= 0.104 . . .

x− y
log y

> 0,

which proves (iii) and ends the proof of Lemma 2.11. �

2.5 Study of A(x) = li(θ(x)) − π(x)

Let us set
A(x) = li(θ(x))− π(x) = A1(x) +A2(x), (2.41)

A1(x) = li(ψ(x))−Π(x), (2.42)

A2(x) = li(θ(x))− li(ψ(x)) +Π(x)− π(x) (2.43)

with

ψ(x) =
∑
pm6x

log p, κ =

⌊
log x

log 2

⌋
and Π(x) =

κ∑
k=1

π(x1/k)

k
.

In [20], under the Riemann hypothesis, the following results are given.

For x > 11 (cf. [20, Theorem 1.1, (1.8)]),

A(x) > 0, (2.44)

for x > 2 (cf. [20, Theorem 1.1, (1.10)]),

A(x) 6 5.07
√
x/ log2 x, (2.45)

for x > 599, (cf. [20, Proposition 3.3] and (1.3)),

A1(x) >
S(x)

log2 x
−
√
x

log3 x

[
2

300
+

0.0009 log5 x√
x

]
(2.46)

and

A1(x) 6
S(x)

log2 x
+

√
x

log3 x

[
2

300
+

(log 2) log3 x√
x

.

]
, (2.47)

for x > 941, (cf. [20, p. 604, l. 8]),
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A2(x) >
2
√
x

log2 x
+

√
x

log3 x

[
8− log3 x

8πx1/4
− 9 log5 x

10000
√
x

]
, (2.48)

and, for x > 108, (cf. [20, Proposition 3.5 and Lemma 3.6]),

A2(x) 6
2
√
x

log2 x
+

√
x

log3 x

[
4F̃2(
√
x) +

κ1∑
k=3

kF̃1(x
1/k) log x

x1/2−1/k

+
7.23 κ31
x1/2−1/κ1

+ 2.35
log3 x√

x
+

0.94

log2 x
+

9 log5 x

10000
√
x

]
, (2.49)

where κ1 = 5 and F̃1 and F̃2 are the non-increasing functions defined by (cf.
[20, Lemma 2.1 and (3.16)])

F̃1(t) =

{
1.785 if t 6 95
li(t)− t

log t

t/ log2 t
if t > 95

and F̃2(t) =

{
4.05 if t 6 381
li(t)− t

log t−
t

log2 t

t/ log3 t
if t > 381.

(2.50)

Proposition 2.12. For x > 108,

S(x)

log2(x)
− 0.198

√
x

log3(x)
6 A1(x) 6

S(x)

log2(x)
+ 0.44

√
x

log3(x)
, (2.51)

2
√
x

log2(x)
+ 5.32

√
x

log3(x)
6 A2(x) 6

2
√
x

log2(x)
+ 24.77

√
x

log3(x)
(2.52)

and

R(x) + 5.12

√
x

log3(x)
6 A(x) 6 R(x) + 25.3

√
x

log3(x)
. (2.53)

Proof : For x > 108, the terms in the square brackets of (2.46) and (2.47)
are decreasing in x, so, these two brackets are maximal for x = 108, which
proves (2.51). For x > 108, the bracket of (2.48) is increasing and minimal for
x = 108 while the one of (2.49) is non-increasing and maximal for x = 108,
which, by choosing κ1 = 5, proves (2.52) (cf. [32]). Finally, from (2.41) and
(1.3), (2.53) results from the addition of (2.51) and (2.52). �

For k > 2, let us set Sk(x) =
∑
ρ x

ρ/ρk. Note that S2 = S and, as |ρ| > 14

holds, from (1.4), one has |Sk(x)| 6 τ
√
x/(14)k−2. From the formulas [20, p.

598, l. -5] and [20, p. 601, l. -7], with the prime number theorem, one gets,
for x→∞,

A(x) =
∑
ρ

∫ ∞
0

xρ−t

ρ− t
dt− 1

log x

∑
ρ

xρ

ρ
+

li(
√
x)

2
−
√
x

log x
+O

(
x1/3

log x

)
.

By partial integration and (2.17), one can deduce, for x→∞,
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A(x) = R(x) +
8
√
x+ 2S3(x)

log3 x
+ . . .

+
(k − 1)!(2k−1

√
x+ Sk(x))

logk x
+O

( √
x

logk+1 x

)
.

In particular, as |S3(x)/
√
x| 6 τ/14 6 0.0033 holds, for x large enough,

7.99
√
x/ log3 x 6 A(x)−R(x) 6 8.01

√
x/ log3 x. (2.54)

Therefore, the coefficient 5.12 in (2.53) and (1.8) cannot be replaced by a
number exceeding 8.01 (see below (4.22)) .

3 Superior Highly Composite (shc) Numbers

3.1 The Theorem of the 6 exponentials

In the next section (Section 3.2) introducing the shc numbers, we need some
diophantine properties of the set

E =

{
log(1 + 1/k)

log p
, k > 1, p prime

}
. (3.1)

Let us recall first two main results (cf. for instance [31, Theorem 1.12, p. 13
and Theorem 1.4, p. 3] or [14, Theorem 1, chap. 2]).

Lemma 3.1. (Six Exponentials Theorem.) Let x1, x2 be two complex
numbers linearly independent over Q and y1, y2, y3 three complex numbers
linearly independent over Q. Then one of the six numbers exp(xiyj) is tran-
scendantal.

Lemma 3.2. (Gelfond-Schneider Theorem.) If α is algebraic and differ-
ent of 0 and 1 an if β is algebraic and irrationnal, then αβ is transcendental.

First, let us observe that the elements of E but log(1 + 1/1)/ log 2 = 1

are irrationnal. Indeed, assume that ε = log(1+1/k)
log p = a/b 6= 1 with a and b

positive integers. One would have

(1 + 1/k)b = pa

which is impossible, because, for k > 1, the left-hand side is a fraction while
the right-hand side is an integer and k = 1 implies p = 2, a = b and ε = 1.

Lemma 3.3. Three elements of E are always distinct. In other words, there
do not exist three distinct primes q1, q2, q3 and three positive integers k1, k2, k3
such that
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log(1 + 1/k1)

log q1
=

log(1 + 1/k2)

log q2
=

log(1 + 1/k3)

log q3
.

Proof : Ab absurdum, let us assume that log(1+1/k1)
log q1

= log(1+1/k2)
log q2

=
log(1+1/k3)

log q3
= ε holds. In the Six Exponentials Theorem (cf. Lemma 3.1),

we choose x1 = 1 and x2 = ε. As ε is irrationnal, x1 and x2 are linearly
independent over Q. Afterwards, we choose yj = log qj that are also linearly
independent over Q. The six exponentials exp(xiyj) are q1, q2, q3, 1+1/k1, 1+
1/k2, 1 + 1/k3. They are all rationnal, which contradicts the theorem of the
six exponentials. �

It was known by Siegel (cf. [2, p. 455] or [31, p. 14]) or [14, Historical Note,
p. 19–20] that for real t and three different primes q1, q2, q3, the numbers
qt1, q

t
2, q

t
3 cannot be all rational, except when t is an integer.

Remark 3.4. It has not been proved that it cannot exist two distinct primes
q, q′ and two positive integers k, k′ such that

log(1 + 1/k)

log q
=

log(1 + 1/k′)

log q′
. (3.2)

No example is known. In particular, there is no example with q, q′ < 108.

It is possible to show that ε = log(1+1/k)
log q ∈ E \ {1} is transcendental.

Indeed, by the Gelfond-Scneider Theorem (cf. Lemma 3.2), as ε is irrational,
if ε were algebraic, qε should be transcendental. But qε = 1+1/k is rational.

3.2 Definition of shc numbers

Definition 3.5. A number N is said superior highly composite (shc) if there
exists ε > 0 such that (cf. [24, Section 32] and Remark 3.8 below)

d(M)

Mε
6
d(N)

Nε
(3.3)

holds for all positive integer M . The number ε is called a parameter of the
shc number N .

From the definition (3.3), note that two shc numbers N of parameter ε and
N ′ of parameter ε′ satisfy the following implication

N < N ′ =⇒ ε > ε′. (3.4)

It is convenient to order the elements of E ∪ {∞} defined in (3.1) in the
decreasing sequence
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ε1 =∞ > ε2 = 1 > ε3 =
log 2

log 3
> ε4 =

log 3/2

log 2
> . . . > εi > . . . (3.5)

From Remark 3.4, there could exist two equal elements in the set E defined
by (3.1), but not three. We call εi extraordinary if

εi =
log(1 + 1/ki)

log qi
=

log(1 + 1/k′i)

log q′i
(3.6)

with ki > k′i > 1 and qi < q′i. If εi is not extraordinary, it is said ordinary
and satisfies in only one way

εi =
log(1 + 1/ki)

log qi
. (3.7)

For ε > 0, let us introduce

Nε =
∏
p∈P

pb1/(p
ε−1)c (3.8)

which will be proved shc of parameter ε. We observe that Nε is a non-
increasing function of ε. More precisely, if ε 6 ε′ then Nε′ divides Nε.

Lemma 3.6. Let εi−1 and εi be two consecutive elements of the sequence
(3.5) and ε a number satisfting εi−1 > ε > εi. Then, with the notation (3.8),
we have

Nε = Nεi−1
. (3.9)

Proof : From (3.8), we have Nε =
∏
p p
b1/(pε−1)c. As ε 6 εi−1 is assumed,

it follows that Nε > Nεi−1
. Assume that Nε > Nεi−1. Then there exists a

prime p such that b1/(pε − 1)c > b1/(pεi−1 − 1)c thus, there exists an integer
k such that 1/(pε − 1) > k > 1/(pεi−1 − 1). We can write k = 1/(pη − 1),
i.e. η = log(1 + 1/k)/ log p, with εi−1 > η > ε > εi, which is impossible since
η ∈ E . �

Proposition 3.7. If εi (with i > 2) belongs to the sequence (3.5) and ε
satisfies εi−1 > ε > εi, there is only one shc number of parameter ε, namely
Nε = Nεi−1

defined by (3.8).
If εi is ordinary and satisfies (3.7), there are two shc numbers of parameter

εi, namely Nεi and Nεi−1
satisfying

Nεi = qiNεi−1
(3.10)

with qi defined by (3.7).
If εi in (3.5) is extraordinary of the form (3.6), there are four shc numbers

of parameter εi, namely Nεi−1
, qiNεi−1

, q′iNεi−1
, Nεi = qiq

′
iNεi−1

.
In conclusion, if there is no extraordinary εi, any shc number is of the

form Nεi (with i > 1). If it exists extraordinary εi’s, for each of them, there
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are two extra shc numbers Nεi/q′i and Nεi/qi which have only one parameter
εi. In both cases, the set of parameters of Nεi is [εi+1, εi] and two consecutive
shc numbers Nεi−1

, Nεi have one and only one common parameter εi.

Proof : For ε > 0, what is the maximum of d(n)/nε? Writing n under
the form

∏
p p

αp implies d(n)/nε =
∏
p(αp + 1)/pαpε and, for each prime

p, we have to maximize (t + 1)/ptε for t integer, i.e. to maximize ϕ(t) =
log(t+ 1)− ε t log p.
• If ε /∈ E , then, for each prime p, ε log p 6= log(1 + 1/k) for all integer
k and, from Lemma 2.9 (ii), ϕ(t) attains its maximum in only one point
αp =

⌊
1/(eε log p − 1)

⌋
= b1/(pε − 1)c so that the maximum of d(n)/nε is

attained in Nε defined by (3.8). Moreover, if εi−1 > ε > εi is assumed, then,
by Lemma 3.6, Nε is constant and equal to Nεi−1

.
• If ε = εi with εi an ordinary element (3.7) of the sequence (3.5) then, for
p 6= qi, ϕ(t) attains its maximum in one integer αp = b1/(pεi − 1)c while, if
p = qi, Lemma 2.9 (i) claims that ϕ(t) attains its maximum in two integers
ki = 1/(qεii − 1) and ki − 1. Therefore, d(n)/nεi attains its maximum in two
numbers Nεi andNεi/qi = Nεi−1

.
• If ε = εi with εi an extraordinary element (3.6) of the sequence (3.5) then,
for p 6= qi, q

′
i, ϕ(t) attains its maximum in one integer t = b1/(pεi − 1)c while,

if p = qi or p = q′i, Lemma 2.9 (i) claims that ϕ(t) attains its maximum in
two integers ki, ki− 1 or k′i, k′i− 1. Therefore, d(n)/nεi attains its maximum
in four numbers Nεi , Nεi/qi, Nεi/q′i and Nεi/(qiq′i) = Nεi−1

. �

Remark 3.8. Our definition 3.5 of shc numbers is slightly different of the
definition given by Ramanujan in [24, Section 32]. Ramanujan calls shc of
parameter ε a number N such that

for M < N,
d(M)

Mε
6
d(N)

Nε
and for M > N,

d(M)

Mε
<
d(N)

Nε
. (3.11)

Clearly, if N satisfies (3.11), it also satisfies definition 3.5.
If ε /∈ E , we have seen in the proof of Proposition 3.7 that the mapping

n 7→ d(n)/nε has a unique maximum on say N , and thus, for M 6= N ,
d(M)/Mε < d(N)/Nε so that N satisfies (3.11).

If εi is an ordinary number, the mapping n 7→ d(n)/nε attains its maximum
on two numbers Nεi−1

and Nεi . Only Nεi satisfies (3.11) with ε = εi and the
set of parameters for which N = Nεi satisfies (3.11) is [εi, εi−1).

If εi is an extraordinary number, from Proposition 3.7 with the same no-
tation, there are four numbers maximizing d(n)/nεi and only the largest one
N = Nεi satisfies (3.11) with ε = εi. The three other ones Nεi/(qiq′i), Nεi/qi
and Nεi/q′i do not satisfies (3.11) with ε = εi. Since Nεi/qi and Nεi/q′i have
only one parameter εi, they are not considered as shc by (3.11). But, as
the existence of extraordinary numbers is highly unprobable, the difference
between the two definitions of shc numbers does not matter so much.
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Definition 3.9. Let N be a shc number satisfying Nεi−1
< N 6 Nεi (where

εi is an element of the sequence (3.5) and Nε is defined by (3.8)). From
Proposition 3.7, N is either equal to Nεi or εi is extraordinary. In both cases,
the largest parameter of N is εi. We define ξ = ξ(N) by

ξ = ξ(N) = 21/εi i.e. εi =
log 2

log ξ
, (3.12)

for k > 1, the numbers
ξk = ξβk = 2βk/εi , (3.13)

with βk defined in (1.2), and

K = K(N) =

⌊
1

2εi − 1

⌋
<

1

εi log 2
=

log ξ

(log 2)2
. (3.14)

We observe thatK+1 > 1/(2εi−1) holds, so that, for k > K+1, log(1+1/k) 6
log(1 + 1/(K + 1)) < εi log 2. Therefore, for k > K, ξk = ξβk < ξεi = 2.

Proposition 3.10. Let N be a shc number and εi the element of (3.5) such
that Nεi−1

< N 6 Nεi . The numbers ξ, ξk and K are defined by Definition
3.9. Then

logNεi − log ξ =

K∑
k=1

θ(ξk)− log ξ 6 logN 6 logNεi =

K∑
k=1

θ(ξk) (3.15)

and

log d(Nεi)

log 2
− 1 6

log d(N)

log 2
6

log d(Nεi)

log 2
=

K∑
k=1

βkπ(ξk) (3.16)

with ξk defined by (3.13), K by (3.14) and βk by (1.2).

Proof : By observing that, for k > 1, 1/(pεi − 1) = k is equivalent to
εi = (log(1 + 1/k))/ log p and also to p = ξk, from (3.8), it follows that

logNεi =
∑

16k6K

θ(ξk) (3.17)

and that
log d(Nεi) = (log 2)

∑
16k6K

βkπ(ξk). (3.18)

• If εi is ordinary, from Proposition 3.7, Nεi−1
and Nεi are two consecutive

shc numbers so that Nεi−1
< N 6 Nεi implies N = Nεi , so that (3.17) and

(3.18) prove (3.15) and (3.16).
• If εi is extraordinary and given by (3.6), from Proposition 3.7, N is equal

to Nεi , Nεi/qi, or Nεi/q′i. But qi and q′i divide Nεi and so are both 6 ξ, which
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proves (3.15). We also observe that d(Nεi)/d(Nεi/qi) = (ki + 1)/ki 6 2 and
d(Nεi)/d(Nεi/q

′
i) = (k′i + 1)/k′i 6 2 which, from (3.18), proves (3.16). �

Proposition 3.11. Let n > 2 be an integer. There exists two consecutive shc
numbers N ′ < N such that

N/ξ 6 N ′ < n 6 N and d(n) 6 d(N) 6 2d(N ′) (3.19)

where ξ = ξ(N) is defined in Definition 3.9.

Proof : First, we determine the element εi of the sequence (3.5) such that
Nεi−1 < n 6 Nεi .
• If εi is ordinary and given by (3.7), from Proposition 3.7, we choose N =

Nεi , N ′ = Nεi−1
= Nεi/qi > Nεi/ξ and, from (3.3), d(n) 6 d(N)(n/N)εi 6

d(N) follows. We also have d(N) = d(N ′qi) 6 2d(N ′).
• If εi is extraordinary and given by (3.6), from Proposition 3.7, there are

four consecutive shc numbers of parameter εi. We determine (N ′, N ] contain-
ing n among (Nεi/(qiq

′
i), Nεi/qi], (Nεi/qi, Nεi/q

′
i], (Nεi/q

′
i, Nεi ]. As qi and

q′i divide Nεi they are 6 ξ and, from Defition 3.9, ξ(Nεi/qi) = ξ(Nεi/q
′
i) =

ξ(Nεi) = 21/εi , it is easy to see that (3.19) is still satisfied. �

The first shc numbers are (for a longer table cf. [24, Section 37] or [32]):

i εi N = Nεi d(N) parameter ξ = ξ(N)

1 ∞ 1 1 [ε2, ε1) 1
2 1 2 2 [ε3 , ε2] 2

3 log 2
log 3 = 0.63 6 = 2 · 3 4 [ε4 , ε3] 3

4 log 3/2
log 2 = 0.58 12 = 22 · 3 6 [ε5 , ε4] 3.27

5 log 2
log 5 = 0.43 60 = 22 · 3 · 5 12 [ε6 , ε5] 5

6 log 4/3
log 2 = 0.41 120 = 23 · 3 · 5 16 [ε7 , ε6] 5.31

7 log 3/2
log 3 = 0.36 360 = 23 · 32 · 5 24 [ε8, ε7] 6.54

8 log 2
log 7 = 0.35 2520 = 23 · 32 · 5 · 7 48 [ε9, ε8] 7

(3.20)

3.3 Computation

How to compute shc numbers? For a short table, one determines the sequence
εi (cf. (3.5)) and, if εi satisfies (3.7), then Nεi = qiNεi−1 . In the proof of
Lemma 4.3, we have to compute the shc numbers up to N (0). Let us say
that Nεi is a shc number of type 2 if εi satisfies (3.7) with ki > 2. We have
precomputed the table of shc numbers of type 2 with ξi = 21/εi < 2× 108. If
N is of type 2 with its largest prime factor equal to the r-th prime pr, then
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the following shc numbers are Npr+1, Npr+1pr+2, etc. up to the next shc
number of type 2 (cf. [32]).

Note that we have not found any exceptionnal case (cf. Section 3.2). The
smallest difference εi−1−εi = 1.65 . . .×10−13 has been obtained with εi−1 =
log(3/2)/ log(62129) and εi = log(2)/ log(156383467).

By (3.8), we define N (0) = Nε(0) with ε(0) = log 2
log ξ(0)

∈ E and

ξ(0) = 21/ε
(0)

= ξ(N (0)) = 108 + 7, (3.21)

the smallest prime exceeding 108. For k > 1, we set ξ(0)k = (ξ(0))βk . From
(1.2), one has

ξ
(0)
2 = 47829.9, ξ

(0)
3 = 2090.7, ξ

(0)
4 = 376.2, ξ

(0)
5 = 127.1,

. . . , ξ
(0)
37 = 2.03, (3.22)

from (3.8),

N (0) = Nε(0) = 2373235167131110139178198
31∏
p=23

p7
59∏
p=37

p6
127∏
p=61

p5

373∏
p=131

p4
2089∏
p=379

p3
47819∏
p=2099

p2
100000007∏
p=47837

p (3.23)

from (3.14), K = K(N (0)) = 37, log d(N (0)) = 3995657.8341 . . .

logN (0) = 100037943.8694 . . . and log logN (0) = 18.421060 . . . (3.24)

Lemma 3.12. Let N be a shc number > N (0) = Nε(0) and εi, ξ, ξk and K
defined in Definition 3.9. Then εi 6 ε(0), ξ > ξ(0), ξk > ξ

(0)
k for k > 1, and

K = K(N) > 37.

Proof : By (3.15), N 6 Nεi holds. Since N (0) < N is assumed, this implies
N (0) < Nεi and, from (3.4), εi 6 ε(0). Moreover, one has ξ = ξ(N) = 21/εi >

21/ε
(0)

= ξ(0) = 108 + 7, ξk = ξβk > (ξ(0))βk = ξ
(0)
k and K = b1/(2εi − 1)c >⌊

1/(2ε
(0) − 1)

⌋
= 37. �

Lemma 3.13. Let N be a shc number satisfying N > N (0) defined by (3.23);
ξ = ξ(N), ξk and K are defined by Definition 3.9, so that, from Lemma 3.12,
ξ > ξ(0) and K > 37 hold. Then

T5 =

K∑
k=5

ξk
ξ3
6 0.1815 and T3 =

K∑
k=3

ξk
ξ3
6 1.3615. (3.25)
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Proof : Let us fix k0 = 34. As ξk/ξ3 = 1/ξβ3−βk is decreasing in ξ for k > 3,
one may write from (3.14)

T5 6
k0−1∑
k=5

ξk
ξ3

+
K − k0 + 1

ξβ3−βk0
6
k0−1∑
k=5

1

ξβ3−βk
+

log ξ − (k0 − 1) log2 2

(log2 2)ξβ3−βk0
.

By applying (1.18) with u = 1, v = β3 − βk0 = 0.3732 . . . and w = (k0 −
1) log2 2 = 15.85 . . ., we have

T5 6
k0−1∑
k=5

1

(ξ(0))
β3−βk

+
(u/v)u exp(−u− vw)

log2 2
= 0.181497 . . .

which proves the upper bound for T5. Furthermore, one has

T3 = 1 +
ξ4
ξ3

+ T5 = 1 +
1

ξβ3−β4
+ T5 6 1 +

1

(ξ(0))
β3−β4

+ T5 6 1.3615,

which completes the proof of Lemma 3.13. �

3.4 Highly composite numbers

A positive integer M is said highly composite, (for short hc) if n < M implies
d(n) < d(M). This notion was introduced by Ramanujan in [24] and studied
in [2, 11, 12, 15, 19, 21, 26].

Lep pk denote the k-th prime and Nk the subset of N made of the numbers
whose prime factors are 6 pk. Let us call k-hc number (cf. [3]) an integer
M ∈ Nk such that n < M and n ∈ Nk imply d(n) < d(M). A k-hc number
(and, as well, a hc number) has the property that the p-adic valuation vp(M)
is a non-increasing function of p. The 1-hc numbers are the powers of 2 and,
by induction on k, it is easy to compute the set of k-hc numbers 6 n0. If the
product p1p2 . . . pk exceeds n0, then this set is the set of hc numbers 6 n0.
We have computed the 1381 hc numbers < 10100 and we shall refer to them
as Mj , 1 6 j 6 1381.

Lemma 3.14. Let MJ and MJ+1 be two consecutive hc numbers and f
an increasing function on [logMj , logMj+1] such that (log d(Mj))/ log 2 6
f(logMj). Then, for Mj 6 n < Mj+1, (log d(n))/ log 2 6 f(log n) holds.

Proof. From the defintion of hc numbers, Mj 6 n < Mj+1 implies d(n) 6
d(Mj) so that (log d(n))/ log 2 6 (log d(Mj))/ log 2 6 f(logMj) 6 f(log n)
holds, since f is assumed to be increasing.
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3.5 Benefit

Definition 3.15. Let ε be a positive real number and N a shc number of
parameter ε. For a positive integer n, we introduce the benefit of n

benε(n) = log

(
d(N)

d(n)

)
+ ε log

( n
N

)
. (3.26)

Note that that this notion depends only of ε but not on N . Indeed, if Ñ
is another shc number of parameter ε, (3.3) yields d(N)/Nε 6 d(Ñ)/Ñε

and d(Ñ)/Ñε 6 d(N)/Nε, so that d(Ñ)/Ñε = d(N)/Nε, which implies
log d(Ñ)− ε log Ñ = log d(N)− ε logN .

From (3.3), it follows that, for any n,

benε(n) > 0 (3.27)

holds. Let us write N =
∏
p∈P p

ap and n =
∏
p∈P p

bp . We define

Benp,ε(n) = log

(
ap + 1

bp + 1

)
+ ε(bp − ap) log p = benε(Np

bp−ap) > 0 (3.28)

so that, from (3.26),
benε(n) =

∑
p∈P

Benp,ε(n). (3.29)

This notion of benefit has been used in [15, 16, 19, 21, 17, 12] for theoretical
results on numbers having many divisors.

For t > 0, the mapping t 7→ log((ap + 1)/(t + 1)) + ε(t − ap) log p is
convex, vanishes for t = ap, and, from (3.28), is non-negative for t integer.
Therefore, Benp,ε defined in (3.28), is non-increasing in bp for 0 6 bp 6 ap
and, for bp > ap, is non-decreasing and tends to infinity with bp. Consequently,
formulas (3.28) and (3.29) yield an algorithm to compute all integers n such
that benε(n) 6 B for a B not too large. With B close to ε/3, this algorithm
has been used in [26] to compute the hc numbers between two consecutive
shc numbers of common parameter ε.

Lemma 3.16. Let N be a shc number of parameter ε,Mj andMj+1 two con-
secutive hc numbers and f : [logMJ , logMj+1]→ R a continuous increasing
function such that f(logMj) < (log d(Mj))/ log 2 < f(logMj+1). Let us de-
note by µ ∈ (Mj ,Mj+1) the number satisfying f(logµ) = (log d(Mj))/ log 2.
If n ∈ (Mj ,Mj+1) is any integer such that f(n) 6 (log d(n))/ log 2, then one
has

benε(n) 6 log d(N)− (log 2)f(logMj) + ε(logµ− logN). (3.30)

Proof : From the defnition 3.15 of hc numbers, Mj < n < Mj+1 im-
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plies d(n) 6 d(Mj) so that, as f is assumed to be increasing, f(logMj) <
f(log n) 6 (log d(n))/ log 2 6 (log d(Mj))/ log 2 = f(logµ) implies n 6 µ and
log d(n) > (log 2)f(logMj). Therefore, (3.30) follows from (3.26). �

3.6 Convexity

Lemma 3.17. Let N ′ and N be two consecutive shc numbers and f a concave
function on the interval [logN, logN ′] such that

log d(N) 6 f(logN) and log d(N ′) 6 f(logN ′). (3.31)

Let n be an integer satisfying N ′ 6 n 6 N . Then we have

log d(n) 6 f(log n).

Proof : From Proposition 3.7, N and N ′ share a common parameter, say
ε. From the definition (3.3) of shc numbers, one deduces that log d(N) −
ε logN = log d(N ′)− ε logN ′. For n ∈ (N ′, N), from (3.3), one has

log d(n)− ε log n 6 log d(N)− ε logN = log d(N ′)− ε logN ′. (3.32)

In view of using a convexity argument, one writes

log n = λ logN + µ logN ′ with 0 6 λ 6 1 and µ = 1− λ.

From (3.32), it follows

log d(n) 6 ε log n+ λ(log d(N)− ε logN) + µ(log d(N ′)− ε logN ′)
= ε(λ logN + µ logN ′) + λ log d(N) + µ log d(N ′)

− λε logN − µε logN ′ = λ log d(N) + µ log d(N ′).

From (3.31) and from the concavity of f , the above result implies

log d(n) 6 λf(logN) + µf(logN ′) 6 f(λ logN + µ logN ′) = f(log n),

which completes the proof of Lemma 3.17. �

3.7 Estimates of shc numbers without any hypothesis

To get shorter formulas, we use the notation L = logN , λ = log logN ,
L0 = logN (0), and λ0 = log logN (0) (cf. (3.24)).
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Lemma 3.18. Let N be a shc number > N (0) = Nε(0) (cf. (3.23)) with
εi, ξ, ξk and K defined in Definition 3.9. Then∑

16k64

θ(ξk) 6 L = logN 6 θ(ξ) + θ(ξ2) + 1.362 ξ3, (3.33)

0.99949 L 6 ξ 6 1.00017 L, (3.34)

0.99997 λ 6 log ξ 6 1.00001 λ, (3.35)

π(ξ)+β2π(ξ2)+
0.9997 Lβ3

λ
6

log d(N)

log 2
6 π(ξ)+β2π(ξ2)+

1.604Lβ3

λ
, (3.36)

√
ξ log2 ξ

8π
6 0.0398

√
Lλ2 (3.37)

and √
ξ2 log

2 ξ2
8π

6 0.0137Lβ2/2λ2, (3.38)

Proof : Since N > N (0) = Nε(0) is assumed, Lemma 3.12 implies K =

K(N) > 37, εi 6 ε(0), ξ > ξ(0) = 108 + 7, and, from (3.22), ξ5 > ξ
(0)
5 > 127,

ξ4 > ξ
(0)
4 > 376 and ξ3 > ξ

(0)
3 > 2090.

From (3.15), we have

L = logN >
K∑
k=1

θ(ξk)− log ξ >
4∑
k=1

θ(ξk) + (θ(ξ5)− log ξ). (3.39)

From (2.4), θ(ξ5) > 0.8499 ξ5 holds. As log ξ = (log ξ5)/β5 = 3.80 . . .× log ξ5,
it follows that θ(ξ5) − log ξ > 0.8499 ξ5 − 3.81 log ξ5. But the function t 7→
0.8499 t−3.81 log t is increasing for t > 4.49 and positive for t > 11. Therefore,
the lower bound of (3.33) follows from (3.39).

From (3.15) we also have

L 6 logNεi =

K∑
k=1

θ(ξk) = θ(ξ) + θ(ξ2) +Σ with Σ =

K∑
k=3

θ(ξk).

From (2.2) and (3.25), one gets

Σ 6 (1 + η)

K∑
k=3

ξk = (1 + η)T3 ξ3 6 1.00000075× 1.3615 ξ3 6 1.362 ξ3,

which proves the upper bound of (3.33).

To prove the upper bound of (3.34), from (3.33) and (2.3), one writes

L > θ(ξ) > ξ

(
1− 1

log3 ξ

)
> ξ

(
1− 1

log3 ξ(0)

)
=

ξ

1.00016001 . . .
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From (3.33) and (2.2), it follows that

L 6 (1 + η)(ξ + ξ2) + 1.362 ξ3 = ξ
(
(1 + η)(1 + ξβ2−1) + 1.362 ξβ3−1

)
6 ξ

(
(1 + η)(1 + (ξ

(0)
2 )β2−1) + 1.362 (ξ(0))β3−1

)
= ξ/0.99949273 . . . ,

which proves the lower bound of (3.34).

From (3.34), we deduce log ξ 6 λ(1 + 0.00017/λ) 6 λ(1 + 0.00017/λ0) =
1.0000092 . . . λ which proves the upper bound of (3.35). Similarly, we have
log ξ > λ(1 + log(0.99949)/λ0) = 0.9999723 . . . λ which completes the proof
of (3.35).

From (3.16) and (3.18), one has

log d(N)

log 2
>

log d(Nεi)

log 2
− 1 >

4∑
k=1

βkπ(ξk)− 1.

But, from (3.22), one gets

β4π(ξ4) > β4π(ξ
(0)
4 ) > β4π(376) = 74β4 > 1

which implies
log d(N)

log 2
>

3∑
k=1

βkπ(ξk).

Then, as ξ3 > ξ
(0)
3 > 2090 holds, we may apply (2.5) to get, with (3.34)

and (3.35), β3π(ξ3) > β3ξ3/ log ξ3 = ξ3/ log ξ > (0.99949L)β3/(1.00001λ) >
0.9997Lβ3/λ which proves the lower bound of (3.36).

From (3.16), one has

log d(N)

log 2
6 π(ξ) + β2π(ξ2) +Σ′ with Σ′ =

K∑
k=3

βkπ(ξk). (3.40)

From (2.6), (3.22), (3.25), (3.34) and (3.35), one gets

Σ′ 6 1.15963β3
ξ3

log ξ3
+ 1.19768β4

ξ4
log ξ4

+ 1.25506

K∑
k=5

βk
ξk

log ξk

=
ξ3

log ξ

(
1.15963 + 1.19768

ξ4
ξ3

+ 1.25506T5

)
6

1.00017β3

0.99997

(
1.15963 + 1.19768

ξ
(0)
4

ξ
(0)
3

+ 125506× 0.1815

)
Lbe3

λ

= 1.60309 . . .
Lbe3

λ
,
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which, with (3.40), proves the upper bound of (3.36).

From (3.34) and (3.35), one has
√
ξ log2 ξ

8π
6

√
1.00017 (1.00001)2

8π

√
Lλ2 = 0.039792 . . .

√
Lλ2

which proves (3.37).

From (3.34) and (3.35), one may write
√
ξ2 log

2 ξ2
8π

6
(1.00017L)β2/2

8π
(1.00001β2λ)

2 = 0.0136159 . . . Lβ2/2λ2

which proves (3.38) and completes the proof of Lemma 3.18. �

Lemma 3.19. Let N be a shc number tending to infinity. There is a positive
number α such that

log d(N)

log 2
= li(logN) +O((logN)e−α

√
log logN ). (3.41)

Let n be a number tending to infinity. One has

log d(n)

log 2
6 li(log n) +O((log n)e−α

√
log logn). (3.42)

Proof : These results are due to Ramanujan, cf. [24, Section 1 and Section
39]. Equation (3.41) follows from (3.36), (3.33), (2.16) and from the prime
number theorem under the forms θ(x) = x + O(xe−α

√
log x) and π(x) =

li(x) +O(xe−α
√
log x).

By observing that the function t 7→ li(t)+Ate−α
√
log t is concave for t large

enough, one deduces (3.42) from (3.41) and from Lemma 3.17. �

3.8 Estimates of shc numbers under the Riemann
hypothesis

Lemma 3.20. Let N be a shc number > N (0) (defined by (3.23)) with εi, ξ
and ξk defined in Definition 3.9. Then, under the Riemann hypothesis, with
β2 and β3 defined by (1.2), we have

−2.92Lβ2 6 ξ − L 6 0.0266λ2
√
L, (3.43)

−1.71L2β2−1 6 ξ2 − Lβ2 6 0.0156Lβ2−1/2 λ2, (3.44)

−0.0143Lβ2/2λ2 6 θ(ξ2)− Lβ2 6 0.0141Lβ2/2 λ2, (3.45)
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−0.0245Lβ2/2 λ 6 li(θ(ξ2))− li(Lβ2) 6 0.0242Lβ2/2 λ, (3.46)

for 2 6 k 6 3,

√
L

λk
− 1.461

Lβ2−1/2

λk
6

√
ξ

logk ξ
6

√
L

λk
+ 0.02, (3.47)

θ(ξ) + Lβ2 + 0.61Lβ3 6 L 6 θ(ξ) + Lβ2 + 1.872Lβ3 , (3.48)

li(L)− Lβ2

λ
− 1.873

Lβ3

λ
6 li(θ(ξ)) 6 li(L)− Lβ2

λ
− 0.61Lβ3

λ
. (3.49)

and ∣∣∣∣ S(ξ)log2 ξ
− S(L)

λ2

∣∣∣∣ 6 0.12Lβ2−1/2. (3.50)

Proof : As β2 exceeds 1/2, from (3.34) and (2.8), it follows that, for N large
enough, L = logN > ξ(N) holds. But, ξβ2 is smaller than

√
ξ log2 ξ/(8π) for

ξ < 1024 and we have not been able to replace the upper bound of (3.43) by
0.

From Lemma 3.12, ξ > ξ(0) holds and, from (3.21), (3.33), (2.8) and (3.37),
one has

L > θ(ξ) + θ(ξ2) > ξ −
√
ξ log2 ξ

8π
+ θ(ξ2)

> ξ − 0.0398
√
Lλ2 + θ(ξ2). (3.51)

But ξ2 > ξ
(0)
2 holds, and from (3.22), (2.4), and (3.34), we get

θ(ξ2) > 0.9927 ξ2 > 0.9927× (0.99949L)β2 > 0.9924Lβ2

= 0.9924
√
Lλ2

(
Lβ2−1/2

λ2

)
. (3.52)

From (1.19), the above parenthesis is > (β2 − 1/2)2e2/4 > 0.013334, which,
from (3.51), shows that

L− ξ > (−0.0398 + 0.9924× 0.013334)
√
Lλ2 = −0.0265673 . . .

√
Lλ2

and yields the upper bound of (3.43).
Furthermore, one writes

L 6 θ(ξ) + θ(ξ2) + 1.362 ξ3 from (3.33)
6 ξ + δ(ξ)

√
ξ(log2 ξ)/(8π) from (2.10)

+ξ2(1 + η + 1.362 ξ3/ξ2) from (2.2)
6 ξ + 0.0398 δ(ξ)

√
Lλ2 from (3.37)

+(1.00017L)β2(1 + η + 1.362 ξ
(0)
3 /ξ

(0)
2 ) from (3.34)

= ξ +
(
0.0398 δ(ξ)λ2/Lβ2−1/2 + 1.0596 . . .

)
Lβ2 .

If ξ 6 1019 then (2.9) yields δ(ξ) = 0 so that
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L 6 ξ + 1.06Lβ2 . (3.53)

If ξ > 1019 then (2.9) implies δ(ξ) 6 1 and, from (3.34), L > 1019/1.00017.
Thus, as the function t 7→ (log2 t)/tβ2−1/2 is decreasing for t > 2× 1010,

L− ξ 6 Lβ2

(
1.06 +

0.0398 log2(1019/1.00017)

(1019/1.00017)β2−1/2

)
= 2.911556 . . . Lβ2

which, together with (3.53), proves the lower bound of (3.43).

For t > 0, from the concavity of t 7→ (1 + t)β2 for 0 6 t 6 1, one has
(1 + t)β2 6 1 + β2t, which, with (3.13) and (3.43), yields

ξ2 = ξβ2 6 Lβ2

(
1 +

0.0266λ2√
L

)β2

6 Lβ2

(
1 +

0.0266β2λ
2

√
L

)
,

which proves the upper bound of (3.44) since 0.0266β2 = 0.015560002 . . .
Let

h =
2.92

L1−β2
6 h0 =

2.92

L1−β2

0

= 0.00139 . . . (3.54)

and

b =
1− (1− h0)β2

h0
6 0.5852.

From (3.43), it follows that ξ > L(1 − h) holds. From the concavity of t 7→
(1− t)β2 for 0 6 t 6 1, one has

ξ2 > L
β2(1− h)β2 > Lβ2(1− bh)

> Lβ2 − 0.5852× 2.92L2β2−1 = Lβ2 − 1.708784L2β2−1,

which proves the lower bound of (3.44).

From (2.8) and (3.38), one deduces

−0.0137Lβ2/2λ2 6 θ(ξ2)− ξ2 6 0.0137Lβ2/2λ2. (3.55)

With the lower bound of (3.44), one gets

θ(ξ2)− Lβ2 > −1.71L2β2−1 − 0.0137Lβ2/2λ2

= −Lβ2/2λ2
(
0.0137 +

1.71

L1−3β2/2 λ2

)
> −Lβ2/2 λ2

(
0.0137 +

1.71

L
1−3β2/2
0 λ20

)
= −0.0142271 . . . Lβ2/2 λ2

which proves the lower bound of (3.45).
To find an upper bound of (3.45), from (3.55) and (3.44), one gets
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θ(ξ2)− Lβ2 6 Lβ2/2λ2 U (3.56)

with

U = 0.0137 +
0.0156

L1/2−β2/2
6 0.0137 +

0.0156

L
1/2−β2/2
0

= 0.0140411 . . . ,

which, from (3.56), proves the upper bound of (3.45).

From the upper bound of (3.45) and (2.16), one gets

li(θ(ξ2)) 6 li(Lβ2 + 0.0141Lβ2λ2) 6 li(Lβ2) +
0.0141Lβ2/2λ2

β2λ

which proves the upper bound of (3.46) since 0.0141/β2 = 0.0241041 . . .
From (3.52), one has θ(ξ2) > 0.9924Lβ2 > Lβ2/1.008 and (3.24) yields

log θ(ξ2) > (β2 − log 1.008/λ)λ > (β2 − log 1.008/λ0)λ > 0.5845λ. (3.57)

If θ(ξ2) > Lβ2 then L(θ(ξ2)) − li(Lβ2) is positive and the lower bound of
(3.46) clearly holds. If θ(ξ2) 6 Lβ2 then (2.13), (3.57) and (3.45) give

li(Lβ2)− li(θ(ξ2)) =

∫ Lβ2

θ(ξ2)

dt

log t
6
Lβ2 − θ(ξ2)
log θ(ξ2)

6
0.0143Lβ2/2 λ2

0.5845λ

which, from (3.45), proves the lower bound of (3.46) since 0.0143/0.5845 =
0.0244653 . . ..

From (3.43), one has ξ 6 L(1+0.0266λ2/
√
L) and, from the increasingness

of the function t 7→
√
t/ logk t for t > 108 and 2 6 k 6 3, one gets

√
ξ

logk ξ
6

√
L
(
1 + 0.0266λ2/

√
L
)1/2

(
λ+ log

(
1 + 0.0266λ2/

√
L
))k 6

√
L

λk

(
1 +

0.0266λ2√
L

)1/2

.

By using the inequality
√
1 + t 6 1 + t/2 valid for t > −1, one has

√
ξ

logk ξ
6

√
L

λk

(
1 +

0.0133λ2√
L

)
=

√
L

λk
+

0.0133

λk−2
6

√
L

λk
+ 0.0133,

which proves the upper bound of (3.47).
To prove the lower bound, from (3.43) and (3.54), we write ξ > L(1− h)

so that we have
√
ξ

logk ξ
>

√
L
√
1− h

(λ+ log(1− h))k
>

√
L
√
1− h
λk

.



Highly Composite Numbers and the Riemann hypothesis 33

From (3.54), h 6 h0 holds and, by setting b′ = (1− (1− h0)1/2)h0 6 0.5002,
the concavity of t 7→

√
1− t yields

√
ξ

logk ξ
>

√
L

λk
(1− b′h) >

√
L

λk
− (0.5002× 2.92)

Lβ2−1/2

λk

=

√
L

λk
− 1.460584

Lβ2−1/2

λk
,

which completes the proof of (3.47).

From (3.22), one has ξ3 > ξ
(0)
3 > 2090, ξ4 > ξ

(0)
4 > 376, from (2.4),

θ(ξ3) > 0.9629 ξ3, θ(ξ4) > 0.9134 ξ4 and, from (3.13) and (3.34),

θ(ξ3) > 0.9629× (0.99949L)β3 > 0.9626Lβ3

and
θ(ξ4) > 0.9134× (0.99949L)β4 > 0.9132Lβ4 .

Therefore, from (3.33) and (3.45), one gets

L >
4∑
i=1

θ(ξi) > θ(ξ) + Lβ2 − 0.0143 (Lβ2/2)λ2

+ 0.9626Lβ3 + 0.9132Lβ4 = θ(ξ) + Lβ2 + 0.6106Lβ3 + Lβ2/2 Φ(λ)

with Φ defined in (2.31). From Lemma 2.10, Φ(λ) is positive, which proves
the lower bound of (3.48).

From successively (3.33), (3.45) and (3.34), one has

L− θ(ξ) 6 θ(ξ2) + 1.362 ξ3

6 Lβ2 + 0.0141Lβ2/2λ2 + 1.362× 1.00017β3Lβ3

6 Lβ2 + Lβ3

(
1.363 +

0.0141λ2

Lβ3−β2/2

)
.

But, from (1.19), λ2/Lβ3−β2/2 6 4e−2/(β3 − β2/2)
2 6 36.05 and 1.363 +

0.0141× 36.05 = 1.871305, which completes the proof of (3.48).

From (3.48), we have θ(ξ) 6 L − Lβ2 − 0.61Lβ3 and the upper bound of
(3.49) follows from (2.16).

To prove the lower bound of (3.49), we set h = Lβ2 + 1.872Lβ3 . One has

h = Lβ2

(
1 +

1.872

Lβ2−β3

)
6 Lβ2

(
1 +

1.872

Lβ2−β3

0

)
6 1.082Lβ2 (3.58)

and
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L−h = L

(
1− 1

L1−β2
− 1.872

L1−β3

)
> L

(
1− 1

L1−β2

0

− 1.872

L1−β3

0

)
=

L

1.000517 . . .
.

Let us set c = L/1.0006 so that L− h > c holds. We have

c log2 c =
Lλ2

1.0006

(
1− log 1.0006

λ

)2

>
Lλ2

1.0006

(
1− 0.0006

λ0

)2

>
Lλ2

1.0007

and, from (3.58),

h2

2c log2 c
6

1.0007× (1.082)2L2β2

2Lλ2
. 6

0.5858L2β2

Lλ2

=

(
0.5858

λLβ3−2β2+1

)
Lβ3

λ
6

(
0.5858

λ0 L
β3−2β2+1
0

)
Lβ3

λ
6

0.00035Lβ3

λ
.

Now, from (3.48) and (2.16), we deduce θ(ξ) > L− h and

li(θ(ξ)) > li(L− h) > li(L)− h

λ
− h2

2c log2 c

> li(L)− h

λ
− 0.00035Lβ3

λ
= li(L)− Lβ2 − 1.87235Lβ3

λ
,

which proves the lower bound of (3.49).

Lemma 3.12 implies ξ > ξ(0). As N > N (0) is assumed, L > L(0) follows,
so that, from (3.21) and (3.24), min(ξ, L) > min(ξ(0), L0) = ξ(0) = 108 + 7.
Moreover, (3.34) yields min(ξ, L) > 0.99949L. Applying (2.23) gives∣∣∣∣ S(ξ)log2 ξ

− S(L)

λ2

∣∣∣∣ 6 0.04
|ξ − L|√
0.99949L

6 0.041
|ξ − L|√

L
. (3.59)

By (1.19), λ2/Lβ2−1/2 6 4e−2/(β2 − 1/2)2 6 75 holds, which from (3.43)
implies

−2.92Lβ2 6 ξ − L 6 0.0266λ2
√
L 6 0.0266× 75Lβ2 = 1.995Lβ2

so that |ξ−L| 6 2.92 Lβ2 holds. As 0.041× 2.92 = 0.11972, with (3.59), this
completes the proof of (3.50) and of Lemma 3.20. �
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4 Proof of Theorem 1.1

4.1 N is shc

As in Sections 3.7 and 3.8, we use the notation L = logN , λ = log logN ,
L0 = logN (0), and λ0 = log logN (0) (cf. (3.24)).

Proposition 4.1. Let N be a shc number, F be defined by (1.7), R by (1.3)
and βk by (1.2). Then, under the Riemann hypothesis, for N > N (0) defined
by (3.23), we have

log d(N)

log 2
6 F (L)−R(L)− 5.12

√
L

λ3
+ 1.51

Lβ3

λ
(4.1)

and
log d(N)

log 2
> F (L)−R(L)− 25.3

√
L

λ3
− 1.45Lβ3

λ
. (4.2)

Proof : Defining ξ = ξ(N) and ξk = ξk(N) by Definition 3.9, from (3.36),
one has

log d(N)

log 2
6 π(ξ) + β2π(ξ2) + 1.604

Lβ3

λ
.

From Lemma 3.12 and (3.21), ξ > ξ(0) > 108 holds, so that (2.41) and (2.53)
imply π(ξ) = li(θ(ξ))−A(ξ) 6 li(θ(ξ))−R(ξ)− 5.12

√
ξ/ log3 ξ. From (2.44),

A(ξ2) is positive, which, from (2.41), implies π(ξ2) = li(θ(ξ2)) − A(ξ2) 6
li(θ(ξ2)). Therefore, from (1.3), one gets

log d(N)

log 2
6 li(θ(ξ))− 2

√
ξ

log2 ξ
− S(ξ)

log2 ξ
−5.12

√
ξ

log3 ξ
+β2 li(θ(ξ2))+1.604

Lβ3

λ
. (4.3)

From (3.49), (3.46), (3.47) and (3.50) we deduce

log d(N)

log 2
6 li(L)− Lβ2

λ
+ β2 li(L

β2)− 2
√
L

λ2
− S(L)

λ2
− 5.12

√
L

λ3
+B

with
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B = −0.61Lβ3

λ
+ 0.0242β2L

β2/2λ+
2× 1.461Lβ2−1/2

λ2
+ 0.12Lβ2−1/2

+
5.12× 1.461Lβ2−1/2

λ3
+ 1.604

Lβ3

λ

=

(
0.994 +

0.0242β2 λ
2

Lβ3−β2/2
+

2.922/λ+ 0.12λ+ 7.48032/λ2

Lβ3−β2+1/2

)
Lβ3

λ

6

(
0.994 +

0.0242β2 λ
2
0

L
β3−β2/2
0

+
2.922/λ0 + 0.12λ0 + 7.48032/λ20

L
β3−β2+1/2
0

)
Lβ3

λ

= 1.50193 . . .
Lβ3

λ
,

which, together with (1.3) and (1.7), proves (4.1).

To prove the lower bound (4.2), from (3.36) and (2.41), one gets

log d(N)

log 2
> li(θ(ξ))−A(ξ) + β2 li(θ(ξ2))− β2A(ξ2) + 0.9997

Lβ3

λ
. (4.4)

First, from (2.53), (1.3), (3.47) and (3.50), one has

A(ξ) 6
2
√
ξ

log2 ξ
+

S(ξ)

log2 ξ
+

25.3
√
ξ

log3 ξ

6
2
√
L

λ2
+ 0.04 +

S(L)

λ2
+ 0.12Lβ2−1/2 +

25.3
√
L

λ3
+ 0.506

= R(L) +
25.3
√
L

λ3
+

(
0.546λ

Lβ3
+

0.12λ

Lβ3−β2+1/2

)
Lβ3

λ

6 R(L) +
25.3
√
L

λ3
+

(
0.546λ0

Lβ3

0

+
0.12λ0

L
β3−β2+1/2
0

)
Lβ3

λ

= R(L) +
25.3
√
L

λ3
+ 0.00986633 . . .

Lβ3

λ
(4.5)

After, from (2.45), (3.13), (3.34), (3.35) and (3.24), we have successively

β2A(ξ2) 6 5.07β2

√
ξ2

log2 ξ2
6

(
5.07β2 × 1.00017β2/2

(0.9997β2)2

)
Lβ2/2

λ2

6 8.67
Lβ3

λ2Lβ3−β2/2
6 8.67

Lβ3

λλ0L
β3−β2/2
0

6 0.05
Lβ3

λ
. (4.6)

Finally, (4.4), (3.49), (4.5), (3.46) and (4.6) yield

log d(N)

log 2
> li(L)− Lβ2

λ
+ β2 li(L

β2)−R(L)− 25.3
√
L

λ3
+B′
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with

B′ = (−1.873− 0.0099− 0.05 + 0.9997)
Lβ3

λ
− 0.0245β2L

β2/2λ

= −
(
0.9332 + 0.0245β2

λ2

Lβ3−β2/2

)
Lβ3

λ

> −

(
0.9332 + 0.0245β2

λ20

L
β3−β2/2
0

)
Lβ3

λ
= −1.44188 . . . L

β3

λ

which, with (1.3) and (1.7), completes the proof of Proposition 4.1. �

Corollary 4.2. Let n be an integer > N (0) defined by (3.23).Then, under
the Riemann hypothesis, (1.8) holds.

Proof : From Proposition 3.11, there exists two consecutive shc numbers
N ′ and N satisfying N (0) 6 N ′ 6 n < N with d(n) 6 d(N) 6 2d(N ′). From
(2.34), let us set

H1(t) = H(2, 5.12, 1.51, t) = F (t)−R(t)− 5.12
√
t/ log3 t+ 1.51 tβ3/ log t.

Note that, from Lemma 2.11 (iii), H1(t) is increasing for t > 12. From (4.1),
one deduces

log d(n)

log 2
6

log d(N)

log 2
6 1 +

log d(N ′)

log 2
6 1 +H1(logN

′) 6 1 +H1(log n).

But

1 +
1.51 logβ3 n

log log n
=

logβ3 n

log log n

(
1.51 +

log log n

logβ3 n

)
6

logβ3 n

log log n

(
1.51 +

log logN (0)

logβ3 N (0)

)
= 1.5188 . . .

logβ3 n

log log n
,

which ends the proof of Corollary 4.2. �

It remains to consider the numbers n satisfying n 6 N (0). For that, we
start by proving the following lemma.

Lemma 4.3. Let us introduce the shc number

N (2) = N(log 2)/ log 179 = 210365473
19∏
p=11

p2
179∏
p=23

p = 1.049597 . . . 1084. (4.7)

For N (2) < n 6 N (0), the function G1 defined in (2.33) satisfies

log d(n)

log 2
6 G1(log n) = F (log n)− (2 + τ)

√
log n

(log(log n))2.
(4.8)
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Proof : Note that, from Lemma 2.11 (ii), the maping t 7→ G1(t) is increasing
and concave for t > 1. So, if N and Ñ are two consecutive shc numbers such
that (log d(N))/ log 2 6 G1(logN) and (log d(Ñ))/ log 2 6 G1(log Ñ), we
may apply Lemmma 3.17 to prove (4.8) for N 6 n 6 Ñ .

Therefore, one computes the difference G1(logN)−(log d(N))/ log 2 for all
shc number N satisfying N (2) 6 N 6 N (0). It turns out that this difference
is negative for N = N (2) but positive for all shc number N satisfying N (3) 6
N 6 N (0) where N (3) = 181N (2) is the shc number following N (2) and,
consequently, for all n’s satisfying N (3) 6 n 6 N (0).

Now, we have to look at the n’s satisfying N (2) < n < N (3). For that, we
consider the hc numbers Mj between N (2) and N (3). The 1125-th hc number
is M1125 = N (2) while M1162 = N (3). For j satisfying 1126 6 j 6 1161, we
check that the difference G1(logMj) − (log d(Mj)/ log 2 is positive, which,
from Lemma 3.14, proves (4.8) for M1126 6 n < N (3).

It remains to prove (4.8) for M1125 = N (2) < n < M1126 = 4M1125/3.
We apply Lemma 3.16 with N = N (2), ε = (log 2)/ log 179, j = 1125,
f = G1. We have G1(logM1125) = 49.928530 . . . < log d(M1125)/ log 2 =
49.928564 . . . < G1(logM1126) = 49.94718 . . . The number µ such that
G1(logµ) = (log d(M1125)/ log 2 is equal to exp(193.46573 . . .) and, if n ∈
(M1125,M1126) is a number satisfing (log d(n))/ log 2 > G1(log n), from
(3.30), its benefit would satisfy

benε(n) 6 log d(N)− (log 2)G1(logM1125) + ε(logµ− logN) = 0.0000471 . . .

Such a number n does not exist, since the number ν ∈ (M1225,M1126) with
the smallest benefit is ν = (181/179)N (2) and benε(ν) = 0.0148 . . .. �

4.2 Proof of Theorem 1.1 (i)

It is convenient to introduce, from (2.34),

H0(t) = H(2, 5.12, 1.52, t) = F (t)−R(t)− 5.12

√
t

log3 t
+

1.52 tβ3

log t
. (4.9)

Note that, from Lemma 2.11 (iii), H0(t) is continuous for t > 1 and increasing
for t > 12.

For n > N (0), (1.8) has been proved in Corollary 4.2. For N (2) < n < N (0),
from (4.7) and (3.24), we have 193 < log n < 1.1×108 so that, from (1.6) and
Lemma 2.8, H0 defined in (4.9) and G1 defined in (2.33) satisfy H0(log n) >
G1(log n), which, from Lemma 4.3, proves (1.8) for N (2) < n < N (0).

Now, we consider the hc numbers Mj for 60 6 j 6 1125. We have M60 =
183783600, M61 = 245044800, M1125 = N (2). For each j, we compute the
difference H0(logMj)− (log d(Mj))/ log 2. This difference is negative for j =
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60 but positive for 61 6 j 6 1125, which, by Lemma 3.14, proves that (1.8)
holds for M61 6 n 6 N (2).

If n is a number satisfyingM60 < n < M61 = 4M60/3 and (log d(n))/ log 2 >
H0(log n), we have

H0(logM60) < (log d(M60))/ log 2 < H0(logM61)

so that we may apply Lemma 3.16 with N = 367567200, ε = (log 2)/ log 17,
j = 60, f = H0. The number µ such that H0(logµ) = (log d(M60))/ log 2
is equal to exp(19.0876 . . .) and, from (3.30), the benefit of such an n would
satisfy

benε(n) 6 log d(N)− (log 2)H0(logM60) + ε(logµ− logN) = 0.0442 . . .

There is only one number between M60 and M61 with a benefit 6 0.045,
namely ν = 205405200 = 19M60/17. But, (log d(ν))/ log 2 = 9.9068 . . . <
H0(log ν) = 9.9293 . . . which completes the proof that M60 = 183783600 is
the largest number that does not satisfy (1.8).

4.3 Proof of Corollary 1.2

4.3.1 Proof of (1.10)

Let

G2(t) = F (t)− (2− τ)
√
t

log2 t
− 5.12

√
t

log3 t
+

1.52 tβ3

log t.
(4.10)

From (1.6), the inequality G2(t) > H0(t) (defined in (4.9)) holds for t > 1.
Therefore, (1.10) follows from (1.8) for n > M60 = 183783600.

Note that, from Lemma 2.11, G2(t) = G(2 − τ, 5.12, 1.52, t) is increasing
for t > 12. We have M58 = 122522400, M59 = 147026880 = 6M58/5. The
difference G2(logMj) − (log d(Mj))/ log 2 is positive for j ∈ {59, 60} but
negative for j = 58 so that, from Lemma 3.14, (1.10) holds for n >M59.

Assume that n satisfies M58 < n < M59 and G2(log n) 6 (log d(n))/ log 2.
We should apply Lemma 3.16 with N = 367567200, ε = (log 2)/ log 17, j =
58, f = G2 and get logµ = 18.653 . . . and

benε(n) 6 log d(N)− (log 2)G2(logM58) + ε(logµ− logN) < 0.0347 . . .

But there is no number between M58 and M59 with a benefit < 0.04, which
completes the proof that M58 = 122522400 is the largest number not satis-
fying (1.10).
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4.3.2 Proof of (1.11)

Let G3(t) = li(t) + β2 li(t
β2). For t > 1, this function is increasing and, from

(1.6), R(t) > 0 holds, so one has

H0(t) = G3(t)−R(t)−
tβ2

log t
− 5.12

√
t

log3 t
+
1.52 tβ3

log t
6 G3(t)+

tβ3

log t
(1.52−tβ2−β3)

which, for t > (1.52)1/(β2−β3) = 11.75 . . ., yields H0(t) 6 G3(t). Therefore,
from (1.8), (1.11) holds for n > 183783600.

Then, one computes the difference G3(logMj)− (log d(Mj))/ log 2 for the
hc numbers Mj satisfying M6 = 24 6 Mj 6 M60 = 183783600. This dif-
ference is negative for j = 6 but positive for 7 6 j 6 60, which, from
Lemma 3.14, proves (1.11) for n > M7 = 36. We could apply Lemma 3.16
to check that 24 is the largest exception to (1.8) but it is easier to compute
G3(log n) − (log d(n))/ log 2 for 2 6 n 6 35 in order to find the integers not
satisfying (1.11).

4.3.3 Proof of (1.12)

From (4.10) and (1.7), we get

G2(t)− F (t) =
tβ3

log t

(
1.52−

[
(2− τ)t1/2−β3

log t
+

5.12 t1/2−β3

log2 t

])
.

From (1.18), the above square bracket is increasing in t for t > 1011 >
exp(2/(1/2 − β3)) and exceeds 1.52 for t > 1.56 × 1017. Therefore, from
(1.10), (1.12) holds for n > exp(1.56× 1017).

From Lemma 4.3, for N (2) < n 6 N (0), we also have G1(log n) < F (log n),
which, from (4.8) implies (1.12) for N (2) < n 6 N (0).

Next, we compute the difference F (logMj) − (log d(Mj))/ log 2 for the
hc numbers Mj satisfying M44 = 4324320 6 Mj 6 M1125 = N (2). This
difference is positive for 45 6 j 6 1125, which, from Lemma 3.14, proves
(1.12) for M45 6 n 6 N (0) and is negative for j = 44.

If n is an integer such that M44 < n < M45 = 6486480 = 3M44/2
and not satisfying (1.12), we apply Lemma 3.16 with N = 4324320, ε =
(log(4/3))/ log 3, j = 44 and f = F . We find logµ = 15.364 . . . and

benε(n) < log d(N)− (log 2)F (logM44) + ε(logµ− logN) = 0.0463 . . .

But there is no number between M44 and M45 with a benefit < 0.05, which
completes the proof of (1.12).



Highly Composite Numbers and the Riemann hypothesis 41

4.3.4 Proof of (1.13)

From Lemma 2.8 and (4.9), for t > 1.11× 1040, we have

F (t)−R(t) = H0(t)−
(
1.52 tβ3

log t
− 5.12

√
t

log3 t

)
> H0(t)

which, from (1.8), proves (1.13) for n > exp(1.11× 1040).
From (1.6) and (2.33), for t > 1, we also have F (t)−R(t) > G1(t), which,

from Lemma 4.3, proves (1.13) for N (2) < n 6 N (0).
For t > 12, from Lemma 2.11 (iii), the mapping t 7→ F (t) − R(t) =

H(2, 0, 0, t) is increasing and continuous. So, we may apply Lemma 3.14 to
the hc numbers Mj satisfying M975 = N (1) 6 Mj 6 M1125 = N (2). We
compute the difference F (Mj)− R(Mj)− (log d(Mj))/ log 2. This difference
is positive for 976 6 j 6 1125 and negative for j = 975, which proves (1.13)
for M976 = 4N (1)/3 6 n 6 N (0).

if n were a number between M975 and M976 not satisfying (1.13), Lemma
3.16 with N = N (1), ε = (log 2)/ log 157, j = 975 and f = F − R. would
yield logµ = 172.915 . . . and benε(n) < log d(N) − (log 2)(F (logM44) −
R(logM44)) + ε(logµ − logN) = 0.000742 . . . But, there is no number be-
tween M975 and M976 with a benefit < 0.005, which completes the proof of
(1.13) and of Corollary 1.2.

4.4 Proof of Theorem 1.1 (ii)

In this section, we assume that the Riemann hypothesis does not hold, i.e.
that Θ = lim sup<(ρ) when ρ runs over the non-trivial zeros of the Riemann
ζ function satisfies 1/2 < Θ 6 1. We shall use the following upper bounds
(cf. [13, Theorem 30] or [10, Théorème. 5.10] or [9, Theorem 5.10]:

π(x) = li(x) +O(xΘ log x) (4.11)

and
θ(x) = ψ(x) +O(

√
x) = x+O(xΘ log2 x). (4.12)

For A(x) defined in (2.41), we shall use the result of [27, Theorem 2]

∀ ω < Θ, A(x) = Ω±(x
ω). (4.13)

As A(x) = li(θ(x)) − π(x) is constant between two consecutive primes, note
that (4.13) implies the existence of a sequence of primes (prj )j>1 tending to
infinity such that, for ω < Θ,

lim
j→∞

A(prj )/p
ω
rj = −∞. (4.14)
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Let us consider, for j fixed, the shc number Nε with ε = (log 2)/ log prj .
From Definition 3.9, we have ξ = ξ(N) = 21/ε = prj and ξk = ξβk . Using the
notation L = logN , from (3.34), one has ξ � L and, for k fixed, ξk � Lβk .
As β3 < 1/2 holds, (3.33) implies

θ(ξ) = L− θ(ξ2) +O(
√
L). (4.15)

We distinguish two cases : Θ > β2 and 1/2 < Θ 6 β2 :

First case : Θ > β2. We have θ(ξ2) � Lβ2 and (4.15) yields θ(ξ) = L +
O(Lβ2), which from (2.16) implies

li(θ(ξ)) = li(L) +O(Lβ2). (4.16)

On the other hand, from (3.36), (2.41) and (4.16), we get

(log d(N))/ log 2 = π(ξ) +O(Lβ2) = li(θ(ξ))−A(ξ) +O(Lβ2)

= li(L)−A(ξ) +O(Lβ2). (4.17)

Choosing ω such that β2 < ω < Θ, as ξ = ξ(N) = prj , (4.17) and (4.14)
contradict (1.8) with n = N for j large enough.

Second case : 1/2 < Θ 6 β2. As Θ < 3/5 holds, from (4.12), we have
θ(ξ) = ξ +O(ξ3/5), which, from (4.15), yields ξ = L+O(L3/5) and

ξ2 = ξβ2 = Lβ2

(
1 +O

(
1/L2/5

))β2

= Lβ2 +O(Lβ2−2/5). (4.18)

From (4.12) and (4.18), one gets

θ(ξ2) = ξ2 +O(ξ3/52 ) = Lβ2 +O(
√
L)

so that (4.15) gives θ(ξ) = L− Lβ2 +O(
√
L) and (2.16) implies

li(θ(ξ)) = li(L)− Lβ2/ logL+O(
√
L). (4.19)

Then, from (4.11), (4.18) and (2.16), one gets

π(ξ2) = li(ξ2) +O(ξ3/52 ) = li(Lβ2) +O(
√
L). (4.20)

Finally, from (3.36), (2.41) and (4.19),

(log d(N))/ log 2 = π(ξ) + β2π2(ξ2) +O(
√
L)

= li(θ(ξ))−A(ξ) + β2π2(ξ2) +O(
√
L)

= li(L)− Lβ2/ logL−A(ξ) + β2 li(L
β2) +O(

√
L)

= F (L)−A(ξ) +O(
√
L). (4.21)
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Let us choose ω between 1/2 and Θ. As ξ is equal to prj and ξ � L, (4.14)
and (4.21) contradict (1.9) with n = N for infinitely many values of j.

4.5 Proof of Theorem 1.1 (iii)

If the Riemann hypothesis is true, then, from Proposition 4.1 (4.2), then (1.9)
holds for all shc numbers N > N (0).

Note that, by revisiting the proof of Proposition 4.1 with the upper bound
(2.54) instead of (2.53), it is possible to prove

−8.01
√
L

λ3
6

log d(N)

log 2
− F (L)−R(L) 6 −7.99

√
L

λ3
(4.22)

for N shc large enough.
If the Riemann hypothesis is not true, then, in the first case of the proof

of Theorem 1.1 (ii), (4.17) and (4.13) imply, for β2 < ω < Θ,

(log d(N))/ log 2 = li(L) +Ω+(L
ω). (4.23)

Similarly, in the second case, with 1/2 < ω < Θ, (4.21) and (4.13) imply

(log d(N))/ log 2 = F (L) +Ω+(L
ω) (4.24)

for 1/2 < ω < Θ. In both cases, (4.23) or (4.24) proves (1.9) for infinitely
many shc numbers.

Acknowledgements. I am pleased to thank Marc Deléglise for his compu-
tations and for several discussions about this paper.

References

1. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover Pub-
lications Inc., New-York, (1965).

2. L. Alaoglu and P. Erdős. On highly composite and similar numbers. Trans. Amer.
Math. Soc. 56, 448–469 (1944).

3. G. Bessi, and J.-L. Nicolas. Nombres 2-hautement composés. J. Math. pures et ap-
pliquées 5, 307–326 (1977).

4. J. Büthe. An analytic method for bounding ψ(x). Math. Comp. 87 (2018), No 312,
1991-2009.

5. H. Cohen. Number Theory. Volume II, analytic and modern tools. Springer (2007).
6. M. Deléglise and J.-L. Nicolas. Le plus grand facteur premier de la fonction de Landau.

The Ramanujan J. 27, 109–145 (2012).
7. P. Dusart. Explicit estimates of some functions over primes. Ramanujan J. 45 (2018),

227–251.
8. H.M. Edwards. Riemann’s Zeta function. Academic Press (1974).



44 Jean-Louis Nicolas

9. W. J. Ellison and F. Ellison. Prime numbers. John Wiley & Sons, Inc., New York;
Hermann, Paris (1985).

10. W. J. Ellison. Les Nombres Premiers. En collaboration avec Michel Mendès France,
Publications de l’Institut de Mathématique de l’Université de Nancago, No. IX, Actu-
alités Scientifiques et Industrielles, No. 1366. Hermann, Paris (1985).

11. P. Erdős. On highly composite numbers. J. London Math. Soc. 19, 130–133 (1944).
12. P. Erdős, J.-L. Nicolas and A. Sárközy. On large values of the divisor function. The

Ramanujan J. 2, 225–245 (1998).
13. A.E. Ingham. The distribution of prime numbers. Cambridge Mathematical Librairy,

Cambridge University Press, Cambridge (1990). Reprint of the 1932 original, with a
foreword by R.C. Vaughan.

14. S. Lang. Introduction to transcendental numbers. Addison Wesley Series in Math.
(1966).

15. J.-L. Nicolas. Ordre maximum d’un élément du groupe de permutations et highly
composite numbers. Bull. Soc. Math. France 97, 129–191 (1969).

16. J.-L. Nicolas. Répartition des nombres hautement composés de Ramanujan. Can. J,
Math. 23, 116–130 (1971).

17. J.-L. Nicolas. Répartition des nombres largement composés. Acta Arithmetica 34, 379–
390 (1979).

18. J.-L. Nicolas and G. Robin. Majorations explicites pour le nombre de diviseurs de n.
Bull. Can. Math. 26, 485–492 (1983).

19. J.-L. Nicolas. On highly composite numbers. In Ramanujan Revisited, Proceedings of
the Centenary Conference, University of Illinois at Urbana-Champaign, 1987, ed. G.E.
Andrews, R.A. Askey, B.C. Berndt, K.G. Ramanathan, R.A. Rankin. Academic Press,
215–244 (1988).

20. J.-L. Nicolas. Estimates of li(θ(x))−π(x) and the Riemann hypothesis. Analytic num-
ber theory, modular forms and q-hypergeometric series, Springer Proc. Math. Stat
221, 587–610 (2017).

21. J.-L. Nicolas. Nombres hautement composés. Acta Arithmetica 49, 395–412 (1988).
22. N. Nielsen. Theorie der Integrallogarithmus. Chelsea, (1906).
23. D. J. Platt and T. Trudgian. On the first sign change of θ(x) − x. Math. Comp. 85

(2016), No 299, 1539-1547.
24. S. Ramanujan. Highly composite numbers. Proc. London Math. Soc. Serie 2, 14 (1915),

347–409. Collected papers. Cambridge University Press, (1927), 78–128.
25. S. Ramanujan. Highly composite numbers, annotated and with a foreword by J.-L.

Nicolas and G. Robin. Ramanujan J. 1 (1997), 119–153.
26. G. Robin. Méthodes d’optimisation pour un problème de théorie des nombres. RAIRO-

Informatique théorique 17, No 3, 239–247 (1983).
27. G. Robin. Sur la différence Li(θ(x))−π(x). Ann. Fac. Sci. Toulouse Math. 6, 257–268

(1984).
28. G. Robin. Grandes valeurs de fonctions arithmétiques et problèmes d’optimisation en

nombres entiers. Thèse d’état, Université de Limoges 41–51 (1984).
29. J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime

numbers. Illinois J. Math. 6 (1962), 64–94.
30. L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Math.

Comp. 30 (1976), 337–360.
31. M. Waldschmidt. Diophantine approximation on linear algebraic groups. Grundlehren

der mathematischen Wissenschaften, 326. Springer Verlag (2000).
32. http://math.univ-lyon1.fr/homes-www/~nicolas/calculhcnHR.html (2016). Ac-

cessed April, 22, 2020.
33. http://math.univ-lyon1.fr/homes-www/~deleglis/Calculs/tableThmin18.txt

(2016). Accessed April, 22, 2020.


