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1. Introduction

Throughout this paper, we shall use the following notations:N denotes the set of the positive
integers,π(x) denotes the number of the prime numbers not exceedingx, and pi denotes
the i th prime number. The number of the positive divisors ofn ∈ N is denoted byd(n),
and we write

D(X) = max
n≤X

d(n).

Following Ramanujan we say that a numbern ∈ N is highly composite, briefly h.c., if
d(m) < d(n) for all m ∈ N,m< n. For information about h.c. numbers, see [13, 15] and
the survey paper [11].

The sequence of h.c. numbers will be denoted byn1, n2, . . . : n1 = 1, n2 = 2, n3 = 4,
n4 = 6, n5 = 12, . . . (for a table of h.c. numbers, see [13, Section 7, or 17]. ForX > 1, let
nk = nk(X) denote the greatest h.c. number not exceedingX, so that

D(X) = d
(
nk(X)

)
.

∗Research partially supported by Hungarian National Foundation for Scientific Research, Grant No. T017433 and
by C.N.R.S, Institut Girard Desargues, UPRES-A-5028.
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It is known (cf. [13, 8]) thatnk is of the formnk = pr1
1 pr2

2 · · · pr`
` , wherer1 ≥ r2 ≥ · · ·

≥ r`,

` = (1+ o(1))
log X

log logX
, (1)

ri = (1+ o(1))
log p`

log 2 logpi

(
for X→∞ and

log pi

log p`
→ 0

)
(2)

and, ifm is the greatest integer such thatrm ≥ 2,

pm = pθ` + O
(
pτoθ
`

)
(3)

where

θ = log(3/2)

log 2
= 0.585. . . (4)

andτ0 is a constant<1 which will be given later in (8).
For 0< z ≤ 1, X > 1, let S(X, z) denote the set of the integersn with n ≤ X, d(n) ≥

zD(X). In this paper, our goal is to study the functionF(X, z) = Card(S(X, z)).
In Section 4, we will studyF(X, 1), further we will prove (Corollary 1) that for some

c > 0 and infinitely manyX’s with X → +∞, we haveF(X, z) = 1 for all z and X
satisfying

1− 1

(log X)c
< z≤ 1.

Thus, to have a non trivial lower bound forF(X, z) for all X , one needs an assumption of
the typez< 1− f (X), cf. (6).

In Section 2, we shall give lower bounds forF(X, z). Under a strong, but classical,
assumption on the distribution of primes, the lower bound given in Theorem 1 is similar
to the upper bound given in Section 3. The proofs of the lower bounds will be given in
Section 5: in the first step we construct an integern̂ ∈ S(X, z) such thatd(n̂) is as close
to zD(X) as possible. This will be done by using diophantine approximation ofθ (defined
by (4)), following the ideas of [2, 8]. Further, we observe that slightly changing large
prime factors of̂n will yield many numbersn not much greater than̂n, and so belonging to
S(X, z). The proof of the upper bound will be given in Section 7. It will use the superior
h.c. numbers, introduced by Ramanujan (cf. [13]). Such a numberNε maximizesd(n)/nε.
The problem of finding h.c. numbers is in fact an optimization problem

max
n≤x

d(n)

and, in this optimization problem, the parameterε plays the role of a Lagrange mul-
tiplier. The properties of the superior h.c. numbers that we shall need will be given in
Section 6.
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In [10, p. 411], it was asked whether there exists a positive constantc such that, fornj

large enough,

d(nj+1)

d(nj )
≤ 1+ 1

(lognj )c
.

In Section 8, we shall answer this question positively, while in Section 4 we shall prove
that for infinitely manynj , one hasd(nj+1)/d(nj ) ≥ 1+ (lognj )

−0.71.
We are pleased to thank J. Rivat for communicating us reference [1].

2. Lower bounds

We will show that

Theorem 1. Assume thatτ is a positive number less than1 and such that

π(x)− π(x − y) > A
y

logx
for xτ < y < x (5)

for some A> 0 and x large enough. Then for allε > 0, there is a number X0 = X0(ε)

such that, if X > X0(ε) and

exp(−(log X)λ) < z< 1− log X)−λ1 (6)

whereλ is any fixed positive real number<1 andλ1 a positive real number≤0.03, then
we have:

F(X, z)>exp((1− ε)min{2(A log 2 logX log(1/z))1/2, 2(log X)1− τ log logX log(1/z)}).
(7)

Note that (5) is known to be true with

τ = τ0 = 0.535 and A = 1/20 (8)

(cf. [1]) so that we have

F(X, z) > exp((1− ε)2(log X)0.465 log logX log(1/z))

for all z satisfying (6), and assuming the Riemann hypothesis, (5) holds for allτ > 1/2
so that

F(X, z) > exp((log X)1/2−ε log(1/z))

for all ε > 0, X large enough andzsatisfying (6). Moreover, if (5) holds with someτ < 1/2
andA > 1− ε/2 (as it is very probable), then for a fixedz we have

F(X, z) > exp((2− ε)((log 2)(log X) log(1/z))1/2). (9)
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In particular,

F(X, 1/2) > exp((1− ε)(log 2)(log X)1/2). (10)

While we need a very strong hypothesis to prove (9) for allX, we will show without any
unproved hypothesis that, for fixedz and with another constant in the exponent, it holds for
infinitely manyX ∈ N:

Theorem 2. If z is a fixed real number with0 < z < 1,and ε > 0, then for infinitely
many X∈ N we have

F(X, z) > exp((1− ε)(log 4 logX log(1/z)1/2) (11)

so that, in particular

F(X, 1/2) > exp((1− ε)
√

2 log 2(log X)1/2). (12)

We remark that the constant factor
√

2 log 2 on the right hand side could be improved by
the method used in [12] but here we will not work out the details of this. It would also be
possible to extend Theorem 2 to allz depending onX and satisfying (6).

3. Upper bounds

We will show that:

Theorem 3. There exists a positive real numberγ such that, for z ≥ 1− (log X)−γ , as
X→ +∞ we have

log F(X, z) = O
(
(log X)(1−γ )/2

)
, (13)

and ifλ, η are two real numbers, 0< λ < 1, 0< η < γ, we have for

1− (log X)−γ+η ≥ z≥ exp(−(log X)λ), (14)

and X large enough:

F(X, z) ≤ exp

(
24√
1− γ (log(1/z) log X)1/2

)
. (15)

The constantγ will be defined in Lemma 5 below. One may takeγ = 0.03. Then for
z= 1/2, (15) yields

log F(X, 1/2) ≤ 21(
√

log X)

which, together with the results of Section 2, shows that the right order of magnitude of
log F(X, 1/2) is, probably,

√
log X.
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4. The casesz = 1 andz close to 1

Let us first define an integern to be largely composite (l.c.) ifm ≤ n ⇒ d(m) ≤ d(n).
S. Ramanujan has built a table of l.c. numbers (see [14, p. 280 and 15, p. 150]). The
distribution of l.c. numbers has been studied in [9], where one can find the following
results:

Proposition 1. Let Q`(X) be the number of l.c. numbers up to X. There exist two real
numbers0.2< b1 < b2 < 0.5 such that for X large enough the following inequality holds:

exp((log X)b1) ≤ Q`(X) ≤ exp((log X)b2).

We may take any number<(1− log 3/2
log 2 )/2= 0.20752 for b1, and any number>(1− γ )/2

with γ > 0.03defined in Lemma 5, for b2.

From Proposition 1, it is easy to deduce:

Theorem 4. There exists a constant b2 < 0.485such that for all X large enough we have

F(X, 1) ≤ exp((log X)b2). (16)

There exists a constant b1 > 0.2 such that, for a sequence of X tending to infinity, we have

F(X, 1) ≥ exp((log X)b1). (17)

Proof: F(X, 1) is exactly the number of l.c. numbersn such thatnk ≤ n ≤ X. Thus
F(X, 1) ≤ Q`(X) and (16) follows from Proposition 1.

The proof of Proposition 1 in [9, Section 3] shows that for anyb1 < 0.207, there exists
an infinite number of h.c. numbersnj such that the number of l.c. numbers betweennj−1

andnj (which is exactlyF(nj −1, 1)) satisfiesF(nj −1, 1) ≥ exp((lognj )
b1) for nj large

enough, which proves (17). 2

We shall now prove:

Theorem 5. Let(nj ) be the sequence of h.c. numbers. There exists a positive real number
a, such that for infinitely many nj ’s, the following inequality holds:

d(nj )

d(nj−1)
≥ 1+ 1

(lognj )a
. (18)

One may take any a> 0.71 in (18).

Proof: Let X tend to infinity, and definek = k(X) by nk ≤ X < nk+1. By [8], the
numberk(X) of h.c. numbers up toX satisfies

k(X) ≤ (log X)µ (19)
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for X large enough, and one may choose forµ the valueµ = 1.71, cf. [10, p. 411 or 11,
p. 224]. From (19), the proof of Theorem 5 follows by an averaging process: one has

∏
√

X<nj≤X

d(nj )

d(nj−1)
= D(X)

D(
√

X)
.

The number of factors in the above product isk(X)−k(
√

X) ≤ k(X) so that there exists
j, k(
√

X)+ 1≤ j ≤ k(X), with

d(nj )

d(nj−1)
≥
(

D(X)

D(
√

X)

)1/k(X)

. (20)

But it is well known that logD(X) ∼ (log 2)(log X)
log logX , and thus

log(D(X)/D(
√

X)) ∼ log 2

2

log X

log logX
.

Observing thatX < n2
j , it follows from (19) and (20) forX large enough:

d(nj )

d(nj−1)
≥ exp

(
1

3

1

(log X)µ−1 log logX

)
≥ exp

(
1

3

1

(2 lognj )µ−1 log(2 lognj )

)
≥ exp

(
1

(lognj )a

)
≥ 1+ 1

(lognj )a

for anya > µ− 1, which completes the proof of Theorem 5. 2

A completely different proof can be obtained by choosing a superior h.c. number fornj

and following the proof of Theorem 8 in [7, p. 174], which yieldsa = log(3/2)
log 2 = 0.585. . .

See also [10, Proposition 4].

Corollary 1. For c > 0.71, there exists a sequence of values of X tending to infinity such
that F(X, z) = 1 for all z, 1− 1/(log X)c < z≤ 1.

Proof: Let us chooseX = nj , with nj satisfying (18), andc > a. For all n < X, we
have

d(n) ≤ d(nj−1) ≤ d(nj )

1+ (lognj )−a
= D(X)

1+ (log X)−a
< zD(X).

ThusS(X, z) = {nj }, andF(X, z) = 1. 2
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5. Proofs of the lower estimates

Proof of Theorem 1: Let us denote byαi /βi the convergents ofθ , defined by (4). It is
known thatθ cannot be too well approximated by rational numbers and, more precisely,
there exists a constantκ such that

|qθ − p| À q−κ (21)

for all integersp,q 6= 0 ( cf. [4]). The best value ofκ

κ = 7.616 (22)

is due to G. Rhin (cf. [16]). It follows from (21) that

βi+1 = O
(
βκi
)
. (23)

Let us introduce a positive real numberδ which will be fixed later, and definej = j (X, δ)
so that

β j ≤ (log X)δ < β j+1. (24)

By Kronecker’s theorem (cf. [6], Theorem 440), there exist two integersα andβ such that∣∣∣∣βθ − α − logz

log 2
− 2

β j

∣∣∣∣ < 2

β j
(25)

and

β j

2
≤ β ≤ 3β j

2
. (26)

Indeed, asα j andβ j are coprime, one can writeB, the nearest integer to(β j
logz
log 2 + 2), as

B= u1α j − u2β j with |u1| ≤ β j /2, and thenα = α j + u2 andβ = β j + u1 satisfy (25).
With the notation of Section 1, we write

n̂ = nk
pm+1 pm+2 · · · pm+β
p`p`−1 · · · p`−α+1

(27)

for X large enough. By (26), (24), and (6), (25) yields

α ≤ βθ + log(1/z)

log 2
¿ max((log X)δ, (log X)λ) (28)

and

α ≥ βθ − logz

log 2
− 4

β j
> βθ − 6

β
+ log(1/z)

log 2
> 0
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for X large enough. Thus, if we chooseδ < 1, from (3) and (1) we haver` = r`−1 = · · · =
r`−α+1 = 1. By (1) and the prime number theorem, we also have

p` ∼ log X (29)

and by (3), we haverm+1 = rm+2 = · · · = rm+β = 1 so that, by (25),

d(n̂) = d(nk)
(3/2)β

2α
= d(nk) exp(log 2(βθ − α)) ≥ zd(nk) = zD(X). (30)

Now we need an upper bound forn̂/nk. First, it follows from (5) that fori = o(m)we have

pm+i − pm ≤ max

(
pτm+i ,

i

A
log pm+i

)
(31)

and consequently,

β∏
i=1

pm+i

pm
= exp

(
β∑

i=1

log
pm+i

pm

)
≤ exp

(
β∑

i=1

pm+i − pm

pm

)

≤ exp

(
β

pm
max

(
pτm+β,

β

A
log pm+β

))
≤ exp

(
O
(

max
(
(log X)δ+θ(τ−1), (log X)2δ−θ log logX

)))
(32)

by (26), (24), (3) and (1). Similarly, we get

α−1∏
i=0

p`
p`−i
≤ exp

(
α

p`−α+1
max

(
pτl ,

α

A
log p`

))
≤ exp

(
O

(
max

(
(log X)δ − logz

(log X)1−τ
,
((log X)δ − logz)2

log X
log logX

)))
(33)

by (28). Further, it follows from (3) and (25) that

pβm
pα`
= pβθ−α`

(
1+ O

(
p(τ−1)θ
`

))β ≤ p
logz
log 2+ 4

β j

` exp
(
O
(
βp(τ−1)θ

`

))
≤ exp

{(
logz

log 2
log p`

)
+ 4 log p`

β j
+ β

p(1−τ)θ`

}
. (34)

It follows from (23) and (24) that

β j À (log X)δ/κ . (35)

Multiplying (32), (33) and (34), we get from (27) and (29):

n̂/nk ≤ exp

{
(1+ o(1))

logz log logX

log 2

}
(36)
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if we chooseδ in such a way that the error terms in (32), (33) and (34) can be neglected.
More precisely, from (6) and (36),δ should satisfy:

δ + θ(τ − 1) < −λ1

2δ − θ < −λ1

κλ1 < δ < 1.

It is possible to find such aδ if λ1 satisfies

λ1 < min

(
(1− τ)θ

1+ κ ,
θ

1+ 2κ

)
.

(4), (8) and (22) yieldλ1 < 0.03157.
For convenience, let us write

n̂ = pr̂1
1 pr̂2

2 · · · pr̂t
t (37)

with, by (27),t = `− α. It follows from (1) and (28) that

t = (1+ o(1))
log X

log logX
; pt ∼ log X (38)

and from (24) and (26) that

r̂ i = 1 for i ≥ t − t9/10. (39)

Now, consider the integersv satisfying

P(t, v)
def= pt+1 pt+2 · · · pt+v

pt−v+1 pt−v+2 · · · pt
≤ exp

(
(1− ε) log(1/z) log X

log 2

)
(40)

and

v ≤ t9/10. (41)

By a calculation similar to that of (32) and (33), by (5) and the prime number theorem, for
all v satisfying (41) and for all 1≤ i ≤ v we have:

pt+i

pt−v+i
= 1+ pt+i − pt−v+i

pt−v+i
≤ 1+ (1+ o(1))

1

pt
max

(
pτt+v,

v

A
log pt+v

)
= 1+ (1+ o(1))

1

t
max

(
tτ (log t)τ−1,

v

A

)
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so that, by (38), the left hand side of (40) is

P(t, v) =
v∏

i=1

pt+i

pt−v+i

≤ exp

(
v(1+ o(1))

1

t
max

(
tτ (log t)τ−1,

v

A

))
= exp

(
(1+ o(1))v

log logX

log X
max

(
(log X)τ

log logX
,
v

A

))
= exp

(
(1+ o(1))v max

(
(log X)τ−1,

v

A

log logX

log X

))
. (42)

By (42), (40) follows from

exp

(
(1+ o(1))vmax

(
(log X)τ−1,

v

A

log logX

log X

))
<exp

((
1− ε

2

)
log(1/z) log X

log 2

)
.

(43)

An easy computation shows that with(
1− 5ε

6

)
min

((
A log X

log 2
log(1/z)1/2

)
, (log X)1−τ

log logX

log 2
log(1/z)

)
in place ofv both (41) and (43) hold. Thus fixingv now as the greatest integerv satisfying
(41) and (43), we have

v >

(
1− 3ε

4

)
min

((
A log X

log 2
log(1/z)1/2

)
, (log X)1−τ

log logX

log 2
log(1/z)

)
. (44)

Then it follows from (39) and (41) that

r̂ t−v+i = 1 for i = 1, 2, . . . , v. (45)

Let nowA denote the set of the integersa of the form

a = 2r̂1 pr̂2
2 · · · pr̂t−v

t−v pi1 · · · piv wheret − v + 1≤ i1 < i2 < · · · < iv ≤ t + v. (46)

Then, by (37), (46) and (30) we have

d(a) = d(n̂) ≥ zD(X). (47)

Moreover, by (40) and (36) such ana satisfies

a = pi1 pi2 · · · piv

pt−v+1 pt−v+2 · · · pt
n̂ ≤ P(t, v)n̂ ≤ nk. (48)

It follows from (47) and (48) thata ∈ S(X, z) and

F(X, z) ≥ |A|. (49)

The numbersi1, i2, . . . , iv in (46) can be chosen in(2vv ) ways so that

|A| =
(

2v

v

)
> exp

((
1− ε

8

)
(log 4)v

)
. (50)
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Now (7) follows from (44), (49) and (50), and this completes the proof of Theorem 1.2

Proof of Theorem 2: By a theorem of Selberg [19, 9], if the real functionf (x) is
increasing,f (x) > x1/6 and f (x)

x ↘0, then there are infinitely many integersy such that

π(y+ f (y))− π(y) ∼ f (y)

log y
and π(y)− π(y− f (y)) ∼ f (y)

log y
. (51)

We use this result withf (y) = (1− ε
3) log y( y log(1/z)

log 4 )1/2 and for ay value satisfying (51),
definet by

pt ≤ y < Pt+1. (52)

Further, we defineβ j (instead of (24)) so thatβ j ≥ 4 log 2
ε log(1/z) andα, β by (25) and (26); we

set` = t + α and chooseX = nk a h.c. number whose greatest prime factor isp` (such a
number exists, see [13] or (59), (60) below). We definen̂ by (27), and (30) and (38) still
hold, while (36) becomes

n̂

nk
≤ exp

(
(1+ o(1)) log logX

(
logz

log 2
+ 4

β j

))
≤ exp

(
(1+ o(1))

log logX

log 2
logz(1− ε)

)
≤ exp

(
log logX

log 2
logz

(
1− ε

2

))
(53)

for X large enough. Letv denote the greatest integer with

pt+v ≤ y+ f (y) and pt−v ≥ y− f (y), (54)

so that by the definition ofy we have

v ∼ f (y)

log y
. (55)

By (38) and (52), we have

y ∼ logx. (56)

Moreover, by (38), (54) and (55), we have

P(t, v)
def=

v∏
i=1

pt+i

pt−v+i
≤
(

y+ f (y)

y− f (y)

)v
≤ exp

(
(1+ o(1))

f (y)

log logX
log

(
1+ 2

f (y)

y

))
= exp

(
(2+ o(1))

f 2(y)

y log logX

)
=
(

1

log 2
+ o(1)

)(
1− ε

3

)2

log logX log(1/z).

(57)
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It follows from (53) and (57) thatP(t, v) < nk/n̂ for X large enough andε small enough.
Again, as in the proof of Theorem 1, we consider the setA of the integersa of the form

(48). Then as in the proof of Theorem 1, by using (38) and (55) finally we obtain

F(X, z) ≥ |A| =
(

2v

v

)
> exp

((
1− ε

3

)
(log 4)v

)
> exp((1− ε)(log 4)1/2(log X)1/2(log(1/z))1/2)

which completes the proof of Theorem 2. 2

6. Superior highly composite numbers and benefits

Following Ramanujan (cf. [13]) we shall say that an integerN is superior highly composite
(s.h.c.) if there existsε > 0 such that for all positive integerM the following inequality
holds:

d(M)/Mε ≤ d(N)/Nε. (58)

Let us recall the properties of s.h.c. numbers (cf. [13], [7, p. 174], [8–11]). To any
ε, 0< ε < 1, one can associate the s.h.c. number:

Nε =
∏
p≤x

pαp (59)

where

x = 21/ε, ε = (log 2)/ logx (60)

and

αp =
⌊

1

pε − 1

⌋
. (61)

For i ≥ 1, we write

xi = xlog(1+1/ i )/ log 2 (62)

and then (61) yields:

αp = i ⇐⇒ xi+1 < p ≤ xi . (63)

A s.h.c. number is h.c. thus from (1) we deduce:

x ∼ log Nε. (64)

Let P > x be the smallest prime greater thanx. There is a s.h.c. numberN ′ such that
N ′ ≤ NPandd(N ′) ≤ 2d(N).
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Definition. Let ε, 0 < ε < 1, andNε satisfy (58). For a positive integerM , let us define
the benefit ofM by

benM = ε log
M

Nε
− log

d(M)

d(Nε)
. (65)

From (58), we have benM ≥ 0. Note that benN depends onε, but not onNε: If N(1) and
N(2) satisfy (58), (65) will give the same value for benM if we setNε = N(1)or Nε = N(2).

Now, let us write a generic integer:

M =
∏

p

pβp,

for p > x, let us setαp = 0, and define:

benp(M) = ε(βp − αp) log p− log

(
βp+1

αp+1

)
. (66)

From the definition (61) ofαp, we have benp(M) ≥ 0, and (65) can be written as

benM =
∑

p

benp(M). (67)

If βp = αp, we have benp(M) = 0. If βp > αp, let us set

ϕ1 = ϕ1(ε, p, αp, βp) = (βp − αp)

(
ε log p− log

αp + 2

αp + 1

)
= (βp − αp)ε log

(
p

xαp+1

)
ψ1 = ψ1(αp, βp) = (βp − αp) log

(
1+ 1

αp + 1

)
− log

(
1+ βp − αp

αp + 1

)
.

We have

benp(M) = ϕ1+ ψ1,

ϕ1 ≥ 0, ψ1 ≥ 0 andψ1(αp, αp + 1) = 0. Similarly, forβp < αp, let us introduce:

ϕ2 = ϕ2(ε, p, αp, βp) = (αp − βp)

(
log
αp + 1

αp
− ε log p

)
= (αp − βp) ε log

(
xαp

p

)
ψ2 = ψ2(αp, βp) = (αp − βp)log

(
1− 1

αp + 1

)
− log

(
1− αp − βp

αp + 1

)
.

We haveϕ2 ≥ 0, ψ2 ≥ 0, ψ2(α2, αp − 1) = 0. Moreover, observe thatψ1 is an increasing
function ofβp − αp, andψ2 is an increasing function ofαp − βp, for αp fixed.

We will prove:

Theorem 6. Let x→+∞, ε be defined by(60) and Nε by (59). Letλ < 1 be a positive
real number, µ a positive real number not too large(µ < 0.16) and B= B(x) such that
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x−µ ≤ B(x) ≤ xλ. Then the number of integers M such that the benefit of M(defined by
(65)) is smaller than B, satisfies

ν ≤ exp

(
23√

1− µ
√

Bx

)
(68)

for x large enough.

In [9], an upper bound forν was given, withB = x−γ . In order to prove Theorem 6, we
shall need the following lemmas:

Lemma 1. Let p1 = 2, p2 = 3, . . . , pk be the kth prime. For k≥ 2 we have klogk ≥
0.46pk.

Proof: By [18] for k ≥ 6 we have

pk ≤ k(logk+ log logk) ≤ 2k logk

and the lemma follows after checking the casesk = 2, 3, 4, 5. 2

Lemma 2. Let p1 = 2, p2 = 3, . . . , pk be the kth prime. The number of solutions of the
inequality

p1x1+ p2x2+ · · · + pkxk + · · · ≤ x (69)

in integers x1, x2, . . . , is exp((1+ o(1)) 2π√
3

√
x

logx ).

Proof: The numberT(n) of partitions ofn into primes satisfies (cf. [5]) logT(n) ∼
2π√

3

√
n

logn , and the number of solutions of (69) is
∑

n≤x T(n). 2

Lemma 3. The number of solutions of the inequality

x1+ x2+ · · · + xr ≤ A (70)

in integers x1, . . . , xr is≤ (2r )A.

Proof: Let a = bAc. It is well known that the number of solutions of (70) is(
r + a

a

)
= r + a

a

r + a− 1

a− 1
· · · r + 2

2

r + 1

1
≤ (r + 1)a ≤ (2r )a.

2

Proof of Theorem 6: Any integerM can be written as

M = A

D
Nε, (A, D) = 1 andD dividesNε.
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First, we observe that, ifpy dividesA and benM ≤ B, we have forx large enough:

y ≤ x. (71)

Indeed, by (61), we have

αp ≤ 1

pε − 1
≤ 1

ε log p
= logx

log 2 logp
≤ logx

(log 2)2
≤ 3 logx.

It follows that

B ≥ benM ≥ benp(ANε) ≥ ψ1(αp, αp + y)

= y log

(
1+ 1

αp + 1

)
− log

(
1+ y

αp + 1

)
≥ y

αp
− log(1+ y) ≥ y

3 logx
− log(1+ y),

and sinceB ≤ xλ, this inequality does not hold fory > x andx large enough.
Further we writeA = A1A2 · · · A6 with (Ai , Aj ) = 1 and

p | A1 H⇒ p > 2x

p | A2 H⇒ x < p ≤ 2x

p | A3 H⇒ 2x2 < p ≤ x

p | A4 H⇒ x2 < p ≤ 2x2

p | A5 H⇒ 2x3 < p ≤ x2

p | A6 H⇒ p ≤ 2x3,

wherex2 andx3 are defined by (62). Similarly, we writeD= D1D2 . . . D5,with (Di , Dj )= 1
and

p | D1 H⇒ x/2< p ≤ x

p | D2 H⇒ x2 < p ≤ x/2

p | D3 H⇒ x2/2< p ≤ x2

p | D4 H⇒ 2x3 < p ≤ x2/2

p | D5 H⇒ p ≤ 2x3.

We have

benM =
6∑

i=1

ben(Ai Nε)+
5∑

i=1

ben(Nε/Di ),

and denoting byνi (resp.ν ′i ) the number of solutions of

ben(Ai Nε) ≤ B (resp. ben(Nε/Di ) ≤ B),
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we have

ν ≤
6∏

i=1

νi

5∏
i=1

ν ′i . (72)

In (72), we shall see that the main factors areν2 andν ′1 and the other ones are negligible.

Estimation ofν2. Let us denote the primes betweenx and 2x by x < P1 < P2 < · · · <
Pr ≤ 2x, and let

A2 = Py1
1 Py2

2 · · · Pyr
r , yi ≥ 0.

From the Brun-Titchmarsh inequality, it follows fori ≥ 2 that

i = π(Pi )− π(x) ≤ 2
Pi − x

log(Pi − x)
≤ 2

Pi − x

log 2(i − 1)

and it follows from Lemma 1:

Pi − x ≥ i

2
log 2(i − 1) ≥ i log i

2
≥ 0.23pi .

By (60) and (61) we haveαPi = 0 and

ben(A2Nε) ≥
r∑

i=2

ϕ1(ε, Pi , 0, yi ) =
r∑

i=2

εyi log(Pi /x)

≥
r∑

i=2

εyi
Pi − x

Pi
≥

r∑
i=2

εyi

2x
(Pi − x) ≥

r∑
i=2

0.115
εyi

x
pi .

By (71), the number of possible choices fory1 is less than(x + 1), so thatν2 is certainly
less than(x + 1) times the number of solutions of:

∞∑
i=2

pi yi ≤ Bx

ε(0.115)
≤ 12.6Bx logx,

and, by Lemma 2,

ν2 ≤ (x + 1) exp

{
(1+ o(1))

2π√
3

√
12.6Bx logx

log(Bx)

}
≤ exp

(
13
√

Bx√
1− µ

)
.

Estimation ofν1. First we observe that, if a large primeP dividesM and benM ≤ B then
we have:

B ≥ benM ≥ benp(M) ≥ ϕ1(ε, P, 0, βp) ≥ ε log(P/x),
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so that

P ≤ x exp(B/ε) = x exp

(
B logx

log 2

)
.

If λ is large, we divide the interval [0, λ] into equal subintervals: [λi , λi+1], 0≤ i ≤ s−1,
such thatλi+1 − λi <

1−λ
2 . We setT0 = 2x, Ti = x exp(xλi ) for 1 ≤ i ≤ s− 1, and

Ts = x exp( B logx
log 2 ). If λ < 1

3, there is just one interval in the subdivision. Further, we write
A1 = a1a2 . . .as with p | ai H⇒ Ti−1 < p ≤ Ti , and if we denote the number of solutions
of ben(ai Nε) ≤ B by ν(i )1 clearly we have

ν1 ≤
s∏

i=1

ν
(i )
1 .

To estimateν(i )1 let us denote the primes betweenTi−1 andTi byTi−1 < P1 < · · · < Pr ≤ Ti ,
and letai = Py1

1 · · · Pyr
r . We have

B ≥ ben(ai Nε) ≥
r∑

i=1

ϕ1(ε, Pi , 0, yi ) =
r∑

i=1

εyi log
Pi

x

≥
r∑

i=1

εyi log
Ti−1

x
.

If i = 1, T0 = 2x, this implies
∑r

i=1 yi ≤ B(logx)
(log 2)2 ≤ 3B logx, and by Lemma 3,

ν
(1)
1 ≤ exp(3B logx log(2r )) ≤ exp(3B logx logT1) ≤ exp((1+ o(1))Bxλ1).

If i > 1, we have
∑r

i=1 yi ≤ B
εxλi−1

, and by Lemma 3,

ν
(i )
1 ≤ exp

(
B

εxλi−1
logTi

)
≤ exp

{
(1+ o(1))Bxλi−λi−1

}
,

and from the choice of theλi ’s, one can easily see that, forB ≤ xλ, ν1 =
∏s

i=1 ν
(i )
1 is

negligible compared withν2.
The other factors of (72) are easier to estimate:

Estimation ofν3. Let us denote the primes between 2x2 andx by 2x2 < Pr < Pr−1 <

· · ·<P1 ≤ x. By (62) and (4),x2 = xθ , and by (63),αPi = 1. Let us writeA3 = Py1
1 · · · Pyr

r .
We have

B ≥ ben(A3M) ≥
r∑

i=1

ϕ1(ε, Pi , 1, 1+ yi ) =
r∑

i=1

εyi log
Pi

x2
≥

r∑
i=1

(log 2)2

logx
yi .

So,
∑r

i=1 yi ≤ B logx/(log 2)2 ≤ 3B logx, and by Lemma 3,

ν3 ≤ exp(3B logx log(2r )) ≤ exp(3B(logx)2).
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Estimation ofν4. Replacingx by x2 the upper bound obtained forν2 becomes:

ν2 = exp(O(
√

Bx2)) = exp(O(
√

Bxθ )).

Estimation ofν5. Replacingx by x2, the upper bound obtained forν3 becomes:

ν5 ≤ exp(3B logx logx2) = exp(3θB(logx)2).

Estimation ofν6. Let p1, p2, . . . , pr ≤ 2x3 be the first primes and writeA6 = py1
1 py2

2 · · ·
pyr

r . By (71), yi ≤ x, and thus by (62),

ν6 ≤ (x + 1)r ≤ (x + 1)x3 = exp(x1−θ log(x + 1))

and forB ≥ x−µ andµ < 0.16, this is negligible compared withν2.

Estimation ofν ′1. Let us denote the primes betweenx
2 andx by x

2 < Pr < Pr−1 < · · · <
P1 ≤ x, and letD1 = Py1

1 · · · Pyr
r . We haveαPi = 1 and sinceD1 dividesNε, yi = 0 or 1.

By a computation similar to that ofν2, we obtain

B ≥ ben
Nε
D1
≥

r∑
i=2

ϕ2(ε, Pi , 1, yi ) =
r∑

i=2

εyi log
x

Pi
≥

r∑
i=2

εyi
x − Pi

x
,

and by using the Brun-Titchmarsch inequality and Lemma 1, it follows that

r∑
i=2

pi yi ≤ Bx

0.23ε
≤ 6.3 Bx logx.

Thus, asy1 can only take 2 values, by Lemma 2 we have

ν ′1 ≤ 2 exp((1+ o(1))
2π√

3

√
6.3Bx logx

log(Bx)
≤ exp(9.2

√
Bx).

Estimation ofν ′2. By an estimation similar to that ofν3, replacingϕ1 by ϕ2 and using
Lemma 3, we get

ν ′2 ≤ exp(3B log2 x).

Estimation ofν ′3. Replacingx by x2, it is similar to that ofν ′1 and we get

ν ′3 = exp(O(
√

Bx2)).

Estimation ofν ′4. Replacingx by x2, we get, as forν ′2,

ν ′4 ≤ exp(3B logx logx2) = exp(3θB log2 x).
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Estimation ofν ′5. As we have seen forν6, we have

D5 = py1
1 · · · pyr

r

with yi ≤ αpi ≤ 3 logx andr ≤ π(2x3) ≤ x3. Thus

ν ′5 ≤ (1+ 3 logx)r ≤ exp(x1−θ log(1+ 3 logx)).

By formula (68) and the estimates ofνi andν ′i , the proof of Theorem 6 is completed.2

By a more careful estimate, it would have been possible to improve the constant in (68).
However, using the Brun-Titchmarsch inequality we loose a factor

√
2, and we do not see

how to avoid this loss. A similar method was used in [3]. Also, the conditionµ < 0.16 can
be replaced easily byµ < 1.

7. Proof of Theorem 3

We shall need the following lemmas:

Lemma 4. Let nj the sequence of h.c. numbers. There exists a positive real number c such
that for j large enough, the following inequality holds:

nj+1

nj
≤ 1+ 1

(lognj )c
.

Proof: This result was first proved by Erd˝os in [2]. The best constantc is given in [8]:

c = log(15/8)

log 8
(1− τ0) = 0.1405. . .

with the value ofτ0 given by (8). 2

Lemma 5. Let nj be a h.c. number, and Nε the superior h.c. number preceding nj . Then
the benefit of nj (defined by(65)) satisfies:

bennj = O((lognj )
−γ ).

Proof: This is Theorem 1 of [8]. The value ofγ is given by

γ = θ(1− τ0)/(1+ κ) = 0.03157. . .

whereθ, τ0 andκ are defined by (4), (8) and (22). 2

To prove Theorem 3, first recall thatnk is defined so that

nk ≤ X < nk+1. (73)
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We defineNε as the largest s.h.c. number≤nk. Now letn ∈ S(X, z). We get from (65):

benn = ε log
n

Nε
− log

d(n)

d(Nε)
,

bennk = ε log
nk

Nε
− log

d(nk)

d(Nε)

and, subtracting,

benn = bennk + εlog
n

nk
− log

d(n)

d(nk)
.

But n ∈ S(X, z) so thatn ≤ X andd(n) ≥ zd(nk). Thus

benn ≤ bennk + εlog
X

nk
+ log(1/z).

By (73) and Lemma 4, we havenk ∼ X, and by (60), (64), (73) and Lemma 4, we have

εlog
X

nk
≤ ε log

nk+1

nk
≤ 1

(log X)c+o(1)
.

By Lemma 5,

benn ≤ B = log
1

z
+ O(log X)−γ .

Applying Theorem 6 completes the proof of Theorem 3. 2

8. An upper bound for d(nj+1)/d(nj)

We will prove:

Theorem 7. There exists a constant c> 0 such that for nj large enough, the inequality

d(nj+1)

d(nj )
≤ 1+ 1

(lognj )c

holds. Here c can be chosen as any number less thanγ defined in Lemma5.

Proof: Let Nε the s.h.c. number precedingnj . We have by Lemma 5 ben(nj ) =
O((lognj )

−γ ) and ben(nj+1) = O((lognj )
−γ ). Further, it follows from (65) that

log
d(nj+1)

d(nj )
= εlog

nj+1

nj
+ ben(nj+1)− ben(nj ) ≤ log

nj+1

nj
+ ben(nj+1)

which, by using Lemma 4 and Lemma 5, completes the proof of Theorem 7. 2



DIVISOR FUNCTION 245

References

1. R.C. Baker and G. Harman, “The difference between consecutive primes,”Proc. London Math. Soc.72(1996),
261–280.
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