On Large Values of the Divisor Function

P. ERDŐS
J.-L. NICOLAS jlnicola@in2p3.fr
Institut Girard Desargues, UPRES-A-5028, Mathématiques, Bat. 101, Université Claude Bernard (LYON 1), F-69622 Villeurbanne cédex, France

A. SÁRKÖZY*
sarkozy@cs.elte.hu
Eötvös Loránd University, Dept. of Algebra and Number Theory, H-1088 Budapest, Múzeum krt. 6-8, Hungary

Jean-Louis Nicolas and Andràs Sárközy dedicate this paper to the memory of Paul Erdős

Received June 10, 1997; Accepted January 7, 1998

Abstract. Let $d(n)$ denote the divisor function, and let $D(X)$ denote the maximal value of $d(n)$ for $n \leq X$. For $0<z \leq 1$, both lower and upper bounds are given for the number of integers n with $n \leq X, z D(X) \leq d(n)$.

Key words: division function, highly composite numbers, maximal order
1991 Mathematics Subject Classification: Primary 11N56

1. Introduction

Throughout this paper, we shall use the following notations: \mathbf{N} denotes the set of the positive integers, $\pi(x)$ denotes the number of the prime numbers not exceeding x, and p_{i} denotes the i th prime number. The number of the positive divisors of $n \in \mathbf{N}$ is denoted by $d(n)$, and we write

$$
D(X)=\max _{n \leq X} d(n)
$$

Following Ramanujan we say that a number $n \in \mathbf{N}$ is highly composite, briefly h.c., if $d(m)<d(n)$ for all $m \in \mathbf{N}, m<n$. For information about h.c. numbers, see [13, 15] and the survey paper [11].

The sequence of h.c. numbers will be denoted by $n_{1}, n_{2}, \ldots: n_{1}=1, n_{2}=2, n_{3}=4$, $n_{4}=6, n_{5}=12, \ldots$ (for a table of h.c. numbers, see [13, Section 7, or 17]. For $X>1$, let $n_{k}=n_{k(X)}$ denote the greatest h.c. number not exceeding X, so that

$$
D(X)=d\left(n_{k(X)}\right) .
$$

*Research partially supported by Hungarian National Foundation for Scientific Research, Grant No. T017433 and by C.N.R.S, Institut Girard Desargues, UPRES-A-5028.

It is known (cf. [13, 8]) that n_{k} is of the form $n_{k}=p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{\ell}^{r_{\ell}}$, where $r_{1} \geq r_{2} \geq \cdots$ $\geq r_{\ell}$,

$$
\begin{align*}
\ell & =(1+o(1)) \frac{\log X}{\log \log X} \tag{1}\\
r_{i} & =(1+o(1)) \frac{\log p_{\ell}}{\log 2 \log p_{i}} \quad\left(\text { for } X \rightarrow \infty \text { and } \frac{\log p_{i}}{\log p_{\ell}} \rightarrow 0\right) \tag{2}
\end{align*}
$$

and, if m is the greatest integer such that $r_{m} \geq 2$,

$$
\begin{equation*}
p_{m}=p_{\ell}^{\theta}+O\left(p_{\ell}^{\tau_{\ell} \theta}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta=\frac{\log (3 / 2)}{\log 2}=0.585 \ldots \tag{4}
\end{equation*}
$$

and τ_{0} is a constant <1 which will be given later in (8).
For $0<z \leq 1, X>1$, let $S(X, z)$ denote the set of the integers n with $n \leq X, d(n) \geq$ $z D(X)$. In this paper, our goal is to study the function $F(X, z)=\operatorname{Card}(S(X, z))$.

In Section 4, we will study $F(X, 1)$, further we will prove (Corollary 1) that for some $c>0$ and infinitely many X 's with $X \rightarrow+\infty$, we have $F(X, z)=1$ for all z and X satisfying

$$
1-\frac{1}{(\log X)^{c}}<z \leq 1
$$

Thus, to have a non trivial lower bound for $F(X, z)$ for all X, one needs an assumption of the type $z<1-f(X)$, cf. (6).

In Section 2, we shall give lower bounds for $F(X, z)$. Under a strong, but classical, assumption on the distribution of primes, the lower bound given in Theorem 1 is similar to the upper bound given in Section 3. The proofs of the lower bounds will be given in Section 5: in the first step we construct an integer $\hat{n} \in S(X, z)$ such that $d(\hat{n})$ is as close to $z D(X)$ as possible. This will be done by using diophantine approximation of θ (defined by (4)), following the ideas of $[2,8]$. Further, we observe that slightly changing large prime factors of \hat{n} will yield many numbers n not much greater than \hat{n}, and so belonging to $S(X, z)$. The proof of the upper bound will be given in Section 7. It will use the superior h.c. numbers, introduced by Ramanujan (cf. [13]). Such a number N_{ε} maximizes $d(n) / n^{\varepsilon}$. The problem of finding h.c. numbers is in fact an optimization problem

$$
\max _{n \leq x} d(n)
$$

and, in this optimization problem, the parameter ε plays the role of a Lagrange multiplier. The properties of the superior h.c. numbers that we shall need will be given in Section 6.

In [10, p. 411], it was asked whether there exists a positive constant c such that, for n_{j} large enough,

$$
\frac{d\left(n_{j+1}\right)}{d\left(n_{j}\right)} \leq 1+\frac{1}{\left(\log n_{j}\right)^{c}} .
$$

In Section 8, we shall answer this question positively, while in Section 4 we shall prove that for infinitely many n_{j}, one has $d\left(n_{j+1}\right) / d\left(n_{j}\right) \geq 1+\left(\log n_{j}\right)^{-0.71}$.

We are pleased to thank J. Rivat for communicating us reference [1].

2. Lower bounds

We will show that
Theorem 1. Assume that τ is a positive number less than 1 and such that

$$
\begin{equation*}
\pi(x)-\pi(x-y)>A \frac{y}{\log x} \quad \text { for } x^{\tau}<y<x \tag{5}
\end{equation*}
$$

for some $A>0$ and x large enough. Then for all $\varepsilon>0$, there is a number $X_{0}=X_{0}(\varepsilon)$ such that, if $X>X_{0}(\varepsilon)$ and

$$
\begin{equation*}
\left.\exp \left(-(\log X)^{\lambda}\right)<z<1-\log X\right)^{-\lambda_{1}} \tag{6}
\end{equation*}
$$

where λ is any fixed positive real number <1 and λ_{1} a positive real number ≤ 0.03, then we have:
$F(X, z)>\exp \left((1-\varepsilon) \min \left\{2(A \log 2 \log X \log (1 / z))^{1 / 2}, 2(\log X)^{1-\tau} \log \log X \log (1 / z)\right\}\right)$.

Note that (5) is known to be true with

$$
\begin{equation*}
\tau=\tau_{0}=0.535 \quad \text { and } \quad A=1 / 20 \tag{8}
\end{equation*}
$$

(cf. [1]) so that we have

$$
F(X, z)>\exp \left((1-\varepsilon) 2(\log X)^{0.465} \log \log X \log (1 / z)\right)
$$

for all z satisfying (6), and assuming the Riemann hypothesis, (5) holds for all $\tau>1 / 2$ so that

$$
F(X, z)>\exp \left((\log X)^{1 / 2-\varepsilon} \log (1 / z)\right)
$$

for all $\varepsilon>0, X$ large enough and z satisfying (6). Moreover, if (5) holds with some $\tau<1 / 2$ and $A>1-\varepsilon / 2$ (as it is very probable), then for a fixed z we have

$$
\begin{equation*}
F(X, z)>\exp \left((2-\varepsilon)((\log 2)(\log X) \log (1 / z))^{1 / 2}\right) \tag{9}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
F(X, 1 / 2)>\exp \left((1-\varepsilon)(\log 2)(\log X)^{1 / 2}\right) \tag{10}
\end{equation*}
$$

While we need a very strong hypothesis to prove (9) for all X, we will show without any unproved hypothesis that, for fixed z and with another constant in the exponent, it holds for infinitely many $X \in \mathbf{N}$:

Theorem 2. If z is a fixed real number with $0<z<1$, and $\varepsilon>0$, then for infinitely many $X \in \mathbf{N}$ we have

$$
\begin{equation*}
F(X, z)>\exp \left((1-\varepsilon)\left(\log 4 \log X \log (1 / z)^{1 / 2}\right)\right. \tag{11}
\end{equation*}
$$

so that, in particular

$$
\begin{equation*}
F(X, 1 / 2)>\exp \left((1-\varepsilon) \sqrt{2} \log 2(\log X)^{1 / 2}\right) \tag{12}
\end{equation*}
$$

We remark that the constant factor $\sqrt{2} \log 2$ on the right hand side could be improved by the method used in [12] but here we will not work out the details of this. It would also be possible to extend Theorem 2 to all z depending on X and satisfying (6).

3. Upper bounds

We will show that:

Theorem 3. There exists a positive real number γ such that, for $z \geq 1-(\log X)^{-\gamma}$, as $X \rightarrow+\infty$ we have

$$
\begin{equation*}
\log F(X, z)=O\left((\log X)^{(1-\gamma) / 2}\right) \tag{13}
\end{equation*}
$$

and if λ, η are two real numbers, $0<\lambda<1,0<\eta<\gamma$, we have for

$$
\begin{equation*}
1-(\log X)^{-\gamma+\eta} \geq z \geq \exp \left(-(\log X)^{\lambda}\right) \tag{14}
\end{equation*}
$$

and X large enough:

$$
\begin{equation*}
F(X, z) \leq \exp \left(\frac{24}{\sqrt{1-\gamma}}(\log (1 / z) \log X)^{1 / 2}\right) \tag{15}
\end{equation*}
$$

The constant γ will be defined in Lemma 5 below. One may take $\gamma=0.03$. Then for $z=1 / 2$, (15) yields

$$
\log F(X, 1 / 2) \leq 21(\sqrt{\log X})
$$

which, together with the results of Section 2, shows that the right order of magnitude of $\log F(X, 1 / 2)$ is, probably, $\sqrt{\log X}$.

4. The cases $z=1$ and z close to 1

Let us first define an integer n to be largely composite (1.c.) if $m \leq n \Rightarrow d(m) \leq d(n)$. S. Ramanujan has built a table of 1.c. numbers (see [14, p. 280 and 15, p. 150]). The distribution of l.c. numbers has been studied in [9], where one can find the following results:

Proposition 1. Let $Q_{\ell}(X)$ be the number of l.c. numbers up to X. There exist two real numbers $0.2<b_{1}<b_{2}<0.5$ such that for X large enough the following inequality holds:

$$
\exp \left((\log X)^{b_{1}}\right) \leq Q_{\ell}(X) \leq \exp \left((\log X)^{b_{2}}\right)
$$

We may take any number $<\left(1-\frac{\log 3 / 2}{\log 2}\right) / 2=0.20752$ for b_{1}, and any number $>(1-\gamma) / 2$ with $\gamma>0.03$ defined in Lemma 5, for b_{2}.

From Proposition 1, it is easy to deduce:
Theorem 4. There exists a constant $b_{2}<0.485$ such that for all X large enough we have

$$
\begin{equation*}
F(X, 1) \leq \exp \left((\log X)^{b_{2}}\right) \tag{16}
\end{equation*}
$$

There exists a constant $b_{1}>0.2$ such that, for a sequence of X tending to infinity, we have

$$
\begin{equation*}
F(X, 1) \geq \exp \left((\log X)^{b_{1}}\right) \tag{17}
\end{equation*}
$$

Proof: $\quad F(X, 1)$ is exactly the number of 1.c. numbers n such that $n_{k} \leq n \leq X$. Thus $F(X, 1) \leq Q_{\ell}(X)$ and (16) follows from Proposition 1.

The proof of Proposition 1 in [9, Section 3] shows that for any $b_{1}<0.207$, there exists an infinite number of h.c. numbers n_{j} such that the number of l.c. numbers between n_{j-1} and $n_{j}\left(\right.$ which is exactly $\left.F\left(n_{j}-1,1\right)\right)$ satisfies $F\left(n_{j}-1,1\right) \geq \exp \left(\left(\log n_{j}\right)^{b_{1}}\right)$ for n_{j} large enough, which proves (17).

We shall now prove:
Theorem 5. Let $\left(n_{j}\right)$ be the sequence of h.c. numbers. There exists a positive real number a, such that for infinitely many n_{j} 's, the following inequality holds:

$$
\begin{equation*}
\frac{d\left(n_{j}\right)}{d\left(n_{j-1}\right)} \geq 1+\frac{1}{\left(\log n_{j}\right)^{a}} \tag{18}
\end{equation*}
$$

One may take any $a>0.71$ in (18).
Proof: Let X tend to infinity, and define $k=k(X)$ by $n_{k} \leq X<n_{k+1}$. By [8], the number $k(X)$ of h.c. numbers up to X satisfies

$$
\begin{equation*}
k(X) \leq(\log X)^{\mu} \tag{19}
\end{equation*}
$$

for X large enough, and one may choose for μ the value $\mu=1.71$, cf. [10, p. 411 or 11, p. 224]. From (19), the proof of Theorem 5 follows by an averaging process: one has

$$
\prod_{\sqrt{X}<n_{j} \leq X} \frac{d\left(n_{j}\right)}{d\left(n_{j-1}\right)}=\frac{D(X)}{D(\sqrt{X})}
$$

The number of factors in the above product is $k(X)-k(\sqrt{X}) \leq k(X)$ so that there exists $j, k(\sqrt{X})+1 \leq j \leq k(X)$, with

$$
\begin{equation*}
\frac{d\left(n_{j}\right)}{d\left(n_{j-1}\right)} \geq\left(\frac{D(X)}{D(\sqrt{X})}\right)^{1 / k(X)} \tag{20}
\end{equation*}
$$

But it is well known that $\log D(X) \sim \frac{(\log 2)(\log X)}{\log \log X}$, and thus

$$
\log (D(X) / D(\sqrt{X})) \sim \frac{\log 2}{2} \frac{\log X}{\log \log X}
$$

Observing that $X<n_{j}^{2}$, it follows from (19) and (20) for X large enough:

$$
\begin{aligned}
\frac{d\left(n_{j}\right)}{d\left(n_{j-1}\right)} & \geq \exp \left(\frac{1}{3} \frac{1}{(\log X)^{\mu-1} \log \log X}\right) \\
& \geq \exp \left(\frac{1}{3} \frac{1}{\left(2 \log n_{j}\right)^{\mu-1} \log \left(2 \log n_{j}\right)}\right) \\
& \geq \exp \left(\frac{1}{\left(\log n_{j}\right)^{a}}\right) \geq 1+\frac{1}{\left(\log n_{j}\right)^{a}}
\end{aligned}
$$

for any $a>\mu-1$, which completes the proof of Theorem 5 .

A completely different proof can be obtained by choosing a superior h.c. number for n_{j} and following the proof of Theorem 8 in [7, p. 174], which yields $a=\frac{\log (3 / 2)}{\log 2}=0.585 \ldots$ See also [10, Proposition 4].

Corollary 1. For $c>0.71$, there exists a sequence of values of X tending to infinity such that $F(X, z)=1$ for all $z, 1-1 /(\log X)^{c}<z \leq 1$.

Proof: Let us choose $X=n_{j}$, with n_{j} satisfying (18), and $c>a$. For all $n<X$, we have

$$
d(n) \leq d\left(n_{j-1}\right) \leq \frac{d\left(n_{j}\right)}{1+\left(\log n_{j}\right)^{-a}}=\frac{D(X)}{1+(\log X)^{-a}}<z D(X) .
$$

Thus $S(X, z)=\left\{n_{j}\right\}$, and $F(X, z)=1$.

5. Proofs of the lower estimates

Proof of Theorem 1: Let us denote by α_{i} / β_{i} the convergents of θ, defined by (4). It is known that θ cannot be too well approximated by rational numbers and, more precisely, there exists a constant κ such that

$$
\begin{equation*}
|q \theta-p| \gg q^{-\kappa} \tag{21}
\end{equation*}
$$

for all integers $p, q \neq 0$ (cf. [4]). The best value of κ

$$
\begin{equation*}
\kappa=7.616 \tag{22}
\end{equation*}
$$

is due to G. Rhin (cf. [16]). It follows from (21) that

$$
\begin{equation*}
\beta_{i+1}=O\left(\beta_{i}^{\kappa}\right) \tag{23}
\end{equation*}
$$

Let us introduce a positive real number δ which will be fixed later, and define $j=j(X, \delta)$ so that

$$
\begin{equation*}
\beta_{j} \leq(\log X)^{\delta}<\beta_{j+1} \tag{24}
\end{equation*}
$$

By Kronecker's theorem (cf. [6], Theorem 440), there exist two integers α and β such that

$$
\begin{equation*}
\left|\beta \theta-\alpha-\frac{\log z}{\log 2}-\frac{2}{\beta_{j}}\right|<\frac{2}{\beta_{j}} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\beta_{j}}{2} \leq \beta \leq \frac{3 \beta_{j}}{2} . \tag{26}
\end{equation*}
$$

Indeed, as α_{j} and β_{j} are coprime, one can write B, the nearest integer to ($\beta_{j} \frac{\log z}{\log 2}+2$), as $B=u_{1} \alpha_{j}-u_{2} \beta_{j}$ with $\left|u_{1}\right| \leq \beta_{j} / 2$, and then $\alpha=\alpha_{j}+u_{2}$ and $\beta=\beta_{j}+u_{1}$ satisfy (25).

With the notation of Section 1, we write

$$
\begin{equation*}
\hat{n}=n_{k} \frac{p_{m+1} p_{m+2} \cdots p_{m+\beta}}{p_{\ell} p_{\ell-1} \cdots p_{\ell-\alpha+1}} \tag{27}
\end{equation*}
$$

for X large enough. By (26), (24), and (6), (25) yields

$$
\begin{equation*}
\alpha \leq \beta \theta+\frac{\log (1 / z)}{\log 2} \ll \max \left((\log X)^{\delta},(\log X)^{\lambda}\right) \tag{28}
\end{equation*}
$$

and

$$
\alpha \geq \beta \theta-\frac{\log z}{\log 2}-\frac{4}{\beta_{j}}>\beta \theta-\frac{6}{\beta}+\frac{\log (1 / z)}{\log 2}>0
$$

for X large enough. Thus, if we choose $\delta<1$, from (3) and (1) we have $r_{\ell}=r_{\ell-1}=\cdots=$ $r_{\ell-\alpha+1}=1$. By (1) and the prime number theorem, we also have

$$
\begin{equation*}
p_{\ell} \sim \log X \tag{29}
\end{equation*}
$$

and by (3), we have $r_{m+1}=r_{m+2}=\cdots=r_{m+\beta}=1$ so that, by (25),

$$
\begin{equation*}
d(\hat{n})=d\left(n_{k}\right) \frac{(3 / 2)^{\beta}}{2^{\alpha}}=d\left(n_{k}\right) \exp (\log 2(\beta \theta-\alpha)) \geq z d\left(n_{k}\right)=z D(X) \tag{30}
\end{equation*}
$$

Now we need an upper bound for \hat{n} / n_{k}. First, it follows from (5) that for $i=o(m)$ we have

$$
\begin{equation*}
p_{m+i}-p_{m} \leq \max \left(p_{m+i}^{\tau}, \frac{i}{A} \log p_{m+i}\right) \tag{31}
\end{equation*}
$$

and consequently,

$$
\begin{align*}
\prod_{i=1}^{\beta} \frac{p_{m+i}}{p_{m}} & =\exp \left(\sum_{i=1}^{\beta} \log \frac{p_{m+i}}{p_{m}}\right) \leq \exp \left(\sum_{i=1}^{\beta} \frac{p_{m+i}-p_{m}}{p_{m}}\right) \\
& \leq \exp \left(\frac{\beta}{p_{m}} \max \left(p_{m+\beta}^{\tau}, \frac{\beta}{A} \log p_{m+\beta}\right)\right) \\
& \leq \exp \left(O\left(\max \left((\log X)^{\delta+\theta(\tau-1)},(\log X)^{2 \delta-\theta} \log \log X\right)\right)\right) \tag{32}
\end{align*}
$$

by (26), (24), (3) and (1). Similarly, we get

$$
\begin{align*}
\prod_{i=0}^{\alpha-1} \frac{p_{\ell}}{p_{\ell-i}} & \leq \exp \left(\frac{\alpha}{p_{\ell-\alpha+1}} \max \left(p_{l}^{\tau}, \frac{\alpha}{A} \log p_{\ell}\right)\right) \\
& \leq \exp \left(O\left(\max \left(\frac{(\log X)^{\delta}-\log z}{(\log X)^{1-\tau}}, \frac{\left((\log X)^{\delta}-\log z\right)^{2}}{\log X} \log \log X\right)\right)\right) \tag{33}
\end{align*}
$$

by (28). Further, it follows from (3) and (25) that

$$
\begin{align*}
\frac{p_{m}^{\beta}}{p_{\ell}^{\alpha}} & =p_{\ell}^{\beta \theta-\alpha}\left(1+O\left(p_{\ell}^{(\tau-1) \theta}\right)\right)^{\beta} \leq p_{\ell}^{\frac{\log z}{\log 2}+\frac{4}{\beta_{j}}} \exp \left(O\left(\beta p_{\ell}^{(\tau-1) \theta}\right)\right) \\
& \leq \exp \left\{\left(\frac{\log z}{\log 2} \log p_{\ell}\right)+\frac{4 \log p_{\ell}}{\beta_{j}}+\frac{\beta}{p_{\ell}^{(1-\tau) \theta}}\right\} \tag{34}
\end{align*}
$$

It follows from (23) and (24) that

$$
\begin{equation*}
\beta_{j} \gg(\log X)^{\delta / \kappa} \tag{35}
\end{equation*}
$$

Multiplying (32), (33) and (34), we get from (27) and (29):

$$
\begin{equation*}
\hat{n} / n_{k} \leq \exp \left\{(1+o(1)) \frac{\log z \log \log X}{\log 2}\right\} \tag{36}
\end{equation*}
$$

if we choose δ in such a way that the error terms in (32), (33) and (34) can be neglected. More precisely, from (6) and (36), δ should satisfy:

$$
\begin{aligned}
\delta+\theta(\tau-1) & <-\lambda_{1} \\
2 \delta-\theta & <-\lambda_{1} \\
\kappa \lambda_{1} & <\delta<1 .
\end{aligned}
$$

It is possible to find such a δ if λ_{1} satisfies

$$
\lambda_{1}<\min \left(\frac{(1-\tau) \theta}{1+\kappa}, \frac{\theta}{1+2 \kappa}\right)
$$

(4), (8) and (22) yield $\lambda_{1}<0.03157$.

For convenience, let us write

$$
\begin{equation*}
\hat{n}=p_{1}^{\hat{r}_{1}} p_{2}^{\hat{r}_{2}} \cdots p_{t}^{\hat{r}_{t}} \tag{37}
\end{equation*}
$$

with, by (27), $t=\ell-\alpha$. It follows from (1) and (28) that

$$
\begin{equation*}
t=(1+o(1)) \frac{\log X}{\log \log X} ; \quad p_{t} \sim \log X \tag{38}
\end{equation*}
$$

and from (24) and (26) that

$$
\begin{equation*}
\hat{r}_{i}=1 \quad \text { for } i \geq t-t^{9 / 10} \tag{39}
\end{equation*}
$$

Now, consider the integers v satisfying

$$
\begin{equation*}
P(t, v) \stackrel{\text { def }}{=} \frac{p_{t+1} p_{t+2} \cdots p_{t+v}}{p_{t-v+1} p_{t-v+2} \cdots p_{t}} \leq \exp \left((1-\varepsilon) \frac{\log (1 / z) \log X}{\log 2}\right) \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
v \leq t^{9 / 10} \tag{41}
\end{equation*}
$$

By a calculation similar to that of (32) and (33), by (5) and the prime number theorem, for all v satisfying (41) and for all $1 \leq i \leq v$ we have:

$$
\begin{aligned}
\frac{p_{t+i}}{p_{t-v+i}} & =1+\frac{p_{t+i}-p_{t-v+i}}{p_{t-v+i}} \leq 1+(1+o(1)) \frac{1}{p_{t}} \max \left(p_{t+v}^{\tau}, \frac{v}{A} \log p_{t+v}\right) \\
& =1+(1+o(1)) \frac{1}{t} \max \left(t^{\tau}(\log t)^{\tau-1}, \frac{v}{A}\right)
\end{aligned}
$$

so that, by (38), the left hand side of (40) is

$$
\begin{align*}
P(t, v) & =\prod_{i=1}^{v} \frac{p_{t+i}}{p_{t-v+i}} \\
& \leq \exp \left(v(1+o(1)) \frac{1}{t} \max \left(t^{\tau}(\log t)^{\tau-1}, \frac{v}{A}\right)\right) \\
& =\exp \left((1+o(1)) v \frac{\log \log X}{\log X} \max \left(\frac{(\log X)^{\tau}}{\log \log X}, \frac{v}{A}\right)\right) \\
& =\exp \left((1+o(1)) v \max \left((\log X)^{\tau-1}, \frac{v}{A} \frac{\log \log X}{\log X}\right)\right) . \tag{42}
\end{align*}
$$

By (42), (40) follows from

$$
\begin{equation*}
\exp \left((1+o(1)) v \max \left((\log X)^{\tau-1}, \frac{v}{A} \frac{\log \log X}{\log X}\right)\right)<\exp \left(\left(1-\frac{\varepsilon}{2}\right) \frac{\log (1 / z) \log X}{\log 2}\right) \tag{43}
\end{equation*}
$$

An easy computation shows that with

$$
\left(1-\frac{5 \varepsilon}{6}\right) \min \left(\left(\frac{A \log X}{\log 2} \log (1 / z)^{1 / 2}\right),(\log X)^{1-\tau} \frac{\log \log X}{\log 2} \log (1 / z)\right)
$$

in place of v both (41) and (43) hold. Thus fixing v now as the greatest integer v satisfying (41) and (43), we have

$$
\begin{equation*}
v>\left(1-\frac{3 \varepsilon}{4}\right) \min \left(\left(\frac{A \log X}{\log 2} \log (1 / z)^{1 / 2}\right),(\log X)^{1-\tau} \frac{\log \log X}{\log 2} \log (1 / z)\right) \tag{44}
\end{equation*}
$$

Then it follows from (39) and (41) that

$$
\begin{equation*}
\hat{r}_{t-v+i}=1 \quad \text { for } i=1,2, \ldots, v . \tag{45}
\end{equation*}
$$

Let now \mathcal{A} denote the set of the integers a of the form

$$
\begin{equation*}
a=2^{\hat{r}_{1}} p_{2}^{\hat{r}_{2}} \cdots p_{t-v}^{\hat{r}_{t}-v} p_{i_{1}} \cdots p_{i_{v}} \quad \text { where } t-v+1 \leq i_{1}<i_{2}<\cdots<i_{v} \leq t+v \tag{46}
\end{equation*}
$$

Then, by (37), (46) and (30) we have

$$
\begin{equation*}
d(a)=d(\hat{n}) \geq z D(X) . \tag{47}
\end{equation*}
$$

Moreover, by (40) and (36) such an a satisfies

$$
\begin{equation*}
a=\frac{p_{i_{1}} p_{i_{2}} \cdots p_{i_{v}}}{p_{t-v+1} p_{t-v+2} \cdots p_{t}} \hat{n} \leq P(t, v) \hat{n} \leq n_{k} . \tag{48}
\end{equation*}
$$

It follows from (47) and (48) that $a \in S(X, z)$ and

$$
\begin{equation*}
F(X, z) \geq|\mathcal{A}| . \tag{49}
\end{equation*}
$$

The numbers $i_{1}, i_{2}, \ldots, i_{v}$ in (46) can be chosen in $\binom{2 v}{v}$ ways so that

$$
\begin{equation*}
|\mathcal{A}|=\binom{2 v}{v}>\exp \left(\left(1-\frac{\varepsilon}{8}\right)(\log 4) v\right) \tag{50}
\end{equation*}
$$

Now (7) follows from (44), (49) and (50), and this completes the proof of Theorem 1.
Proof of Theorem 2: By a theorem of Selberg [19, 9], if the real function $f(x)$ is increasing, $f(x)>x^{1 / 6}$ and $\frac{f(x)}{x} \searrow 0$, then there are infinitely many integers y such that

$$
\begin{equation*}
\pi(y+f(y))-\pi(y) \sim \frac{f(y)}{\log y} \quad \text { and } \quad \pi(y)-\pi(y-f(y)) \sim \frac{f(y)}{\log y} \tag{51}
\end{equation*}
$$

We use this result with $f(y)=\left(1-\frac{\varepsilon}{3}\right) \log y\left(\frac{y \log (1 / z)}{\log 4}\right)^{1 / 2}$ and for a y value satisfying (51), define t by

$$
\begin{equation*}
p_{t} \leq y<P_{t+1} . \tag{52}
\end{equation*}
$$

Further, we define β_{j} (instead of (24)) so that $\beta_{j} \geq \frac{4 \log 2}{\varepsilon \log (1 / z)}$ and α, β by (25) and (26); we set $\ell=t+\alpha$ and choose $X=n_{k}$ a h.c. number whose greatest prime factor is p_{ℓ} (such a number exists, see [13] or (59), (60) below). We define \hat{n} by (27), and (30) and (38) still hold, while (36) becomes

$$
\begin{align*}
\frac{\hat{n}}{n_{k}} & \leq \exp \left((1+o(1)) \log \log X\left(\frac{\log z}{\log 2}+\frac{4}{\beta_{j}}\right)\right) \\
& \leq \exp \left((1+o(1)) \frac{\log \log X}{\log 2} \log z(1-\varepsilon)\right) \\
& \leq \exp \left(\frac{\log \log X}{\log 2} \log z\left(1-\frac{\varepsilon}{2}\right)\right) \tag{53}
\end{align*}
$$

for X large enough. Let v denote the greatest integer with

$$
\begin{equation*}
p_{t+v} \leq y+f(y) \quad \text { and } \quad p_{t-v} \geq y-f(y), \tag{54}
\end{equation*}
$$

so that by the definition of y we have

$$
\begin{equation*}
v \sim \frac{f(y)}{\log y} \tag{55}
\end{equation*}
$$

By (38) and (52), we have

$$
\begin{equation*}
y \sim \log x \tag{56}
\end{equation*}
$$

Moreover, by (38), (54) and (55), we have

$$
\begin{align*}
P(t, v) & \stackrel{\text { def }}{=} \prod_{i=1}^{v} \frac{p_{t+i}}{p_{t-v+i}} \leq\left(\frac{y+f(y)}{y-f(y)}\right)^{v} \\
& \leq \exp \left((1+o(1)) \frac{f(y)}{\log \log X} \log \left(1+2 \frac{f(y)}{y}\right)\right) \\
& =\exp \left((2+o(1)) \frac{f^{2}(y)}{y \log \log X}\right)=\left(\frac{1}{\log 2}+o(1)\right)\left(1-\frac{\varepsilon}{3}\right)^{2} \log \log X \log (1 / z) . \tag{57}
\end{align*}
$$

It follows from (53) and (57) that $P(t, v)<n_{k} / \hat{n}$ for X large enough and ε small enough.
Again, as in the proof of Theorem 1, we consider the set \mathcal{A} of the integers a of the form (48). Then as in the proof of Theorem 1, by using (38) and (55) finally we obtain

$$
\begin{aligned}
F(X, z) & \geq|\mathcal{A}|=\binom{2 v}{v}>\exp \left(\left(1-\frac{\varepsilon}{3}\right)(\log 4) v\right) \\
& >\exp \left((1-\varepsilon)(\log 4)^{1 / 2}(\log X)^{1 / 2}(\log (1 / z))^{1 / 2}\right)
\end{aligned}
$$

which completes the proof of Theorem 2.

6. Superior highly composite numbers and benefits

Following Ramanujan (cf. [13]) we shall say that an integer N is superior highly composite (s.h.c.) if there exists $\varepsilon>0$ such that for all positive integer M the following inequality holds:

$$
\begin{equation*}
d(M) / M^{\varepsilon} \leq d(N) / N^{\varepsilon} . \tag{58}
\end{equation*}
$$

Let us recall the properties of s.h.c. numbers (cf. [13], [7, p. 174], [8-11]). To any $\varepsilon, 0<\varepsilon<1$, one can associate the s.h.c. number:

$$
\begin{equation*}
N_{\varepsilon}=\prod_{p \leq x} p^{\alpha_{p}} \tag{59}
\end{equation*}
$$

where

$$
\begin{equation*}
x=2^{1 / \varepsilon}, \quad \varepsilon=(\log 2) / \log x \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{p}=\left\lfloor\frac{1}{p^{\varepsilon}-1}\right\rfloor . \tag{61}
\end{equation*}
$$

For $i \geq 1$, we write

$$
\begin{equation*}
x_{i}=x^{\log (1+1 / i) / \log 2} \tag{62}
\end{equation*}
$$

and then (61) yields:

$$
\begin{equation*}
\alpha_{p}=i \Longleftrightarrow x_{i+1}<p \leq x_{i} . \tag{63}
\end{equation*}
$$

A s.h.c. number is h.c. thus from (1) we deduce:

$$
\begin{equation*}
x \sim \log N_{\varepsilon} \tag{64}
\end{equation*}
$$

Let $P>x$ be the smallest prime greater than x. There is a s.h.c. number N^{\prime} such that $N^{\prime} \leq N P$ and $d\left(N^{\prime}\right) \leq 2 d(N)$.

Definition. Let $\varepsilon, 0<\varepsilon<1$, and N_{ε} satisfy (58). For a positive integer M, let us define the benefit of M by

$$
\begin{equation*}
\text { ben } M=\varepsilon \log \frac{M}{N_{\varepsilon}}-\log \frac{d(M)}{d\left(N_{\varepsilon}\right)} \tag{65}
\end{equation*}
$$

From (58), we have ben $M \geq 0$. Note that ben N depends on ε, but not on N_{ε} : If $N^{(1)}$ and $N^{(2)}$ satisfy (58), (65) will give the same value for ben M if we set $N_{\varepsilon}=N^{(1)}$ or $N_{\varepsilon}=N^{(2)}$.

Now, let us write a generic integer:

$$
M=\prod_{p} p^{\beta_{p}},
$$

for $p>x$, let us set $\alpha_{p}=0$, and define:

$$
\begin{equation*}
\operatorname{ben}_{p}(M)=\varepsilon\left(\beta_{p}-\alpha_{p}\right) \log p-\log \left(\frac{\beta_{p+1}}{\alpha_{p+1}}\right) \tag{66}
\end{equation*}
$$

From the definition (61) of α_{p}, we have $\operatorname{ben}_{p}(M) \geq 0$, and (65) can be written as

$$
\begin{equation*}
\text { ben } M=\sum_{p} \operatorname{ben}_{p}(M) \tag{67}
\end{equation*}
$$

If $\beta_{p}=\alpha_{p}$, we have ben $_{p}(M)=0$. If $\beta_{p}>\alpha_{p}$, let us set

$$
\begin{aligned}
& \varphi_{1}=\varphi_{1}\left(\varepsilon, p, \alpha_{p}, \beta_{p}\right)=\left(\beta_{p}-\alpha_{p}\right)\left(\varepsilon \log p-\log \frac{\alpha_{p}+2}{\alpha_{p}+1}\right)=\left(\beta_{p}-\alpha_{p}\right) \varepsilon \log \left(\frac{p}{x_{\alpha_{p}+1}}\right) \\
& \psi_{1}=\psi_{1}\left(\alpha_{p}, \beta_{p}\right)=\left(\beta_{p}-\alpha_{p}\right) \log \left(1+\frac{1}{\alpha_{p}+1}\right)-\log \left(1+\frac{\beta_{p}-\alpha_{p}}{\alpha_{p}+1}\right)
\end{aligned}
$$

We have

$$
\operatorname{ben}_{p}(M)=\varphi_{1}+\psi_{1}
$$

$\varphi_{1} \geq 0, \psi_{1} \geq 0$ and $\psi_{1}\left(\alpha_{p}, \alpha_{p}+1\right)=0$. Similarly, for $\beta_{p}<\alpha_{p}$, let us introduce:

$$
\begin{aligned}
& \varphi_{2}=\varphi_{2}\left(\varepsilon, p, \alpha_{p}, \beta_{p}\right)=\left(\alpha_{p}-\beta_{p}\right)\left(\log \frac{\alpha_{p}+1}{\alpha_{p}}-\varepsilon \log p\right)=\left(\alpha_{p}-\beta_{p}\right) \varepsilon \log \left(\frac{x_{\alpha_{p}}}{p}\right) \\
& \psi_{2}=\psi_{2}\left(\alpha_{p}, \beta_{p}\right)=\left(\alpha_{p}-\beta_{p}\right) \log \left(1-\frac{1}{\alpha_{p}+1}\right)-\log \left(1-\frac{\alpha_{p}-\beta_{p}}{\alpha_{p}+1}\right)
\end{aligned}
$$

We have $\varphi_{2} \geq 0, \psi_{2} \geq 0, \psi_{2}\left(\alpha_{2}, \alpha_{p}-1\right)=0$. Moreover, observe that ψ_{1} is an increasing function of $\beta_{p}-\alpha_{p}$, and ψ_{2} is an increasing function of $\alpha_{p}-\beta_{p}$, for α_{p} fixed.

We will prove:
Theorem 6. Let $x \rightarrow+\infty, \varepsilon$ be defined by (60) and N_{ε} by (59). Let $\lambda<1$ be a positive real number, μ a positive real number not too large $(\mu<0.16)$ and $B=B(x)$ such that
$x^{-\mu} \leq B(x) \leq x^{\lambda}$. Then the number of integers M such that the benefit of M (defined by (65)) is smaller than B, satisfies

$$
\begin{equation*}
v \leq \exp \left(\frac{23}{\sqrt{1-\mu}} \sqrt{B x}\right) \tag{68}
\end{equation*}
$$

for x large enough.
In [9], an upper bound for v was given, with $B=x^{-\gamma}$. In order to prove Theorem 6, we shall need the following lemmas:

Lemma 1. Let $p_{1}=2, p_{2}=3, \ldots, p_{k}$ be the kth prime. For $k \geq 2$ we have $k \log k \geq$ $0.46 p_{k}$.

Proof: By [18] for $k \geq 6$ we have

$$
p_{k} \leq k(\log k+\log \log k) \leq 2 k \log k
$$

and the lemma follows after checking the cases $k=2,3,4,5$.
Lemma 2. Let $p_{1}=2, p_{2}=3, \ldots, p_{k}$ be the kth prime. The number of solutions of the inequality

$$
\begin{equation*}
p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{k} x_{k}+\cdots \leq x \tag{69}
\end{equation*}
$$

in integers x_{1}, x_{2}, \ldots, is $\exp \left((1+o(1)) \frac{2 \pi}{\sqrt{3}} \sqrt{\frac{x}{\log x}}\right)$.
Proof: The number $T(n)$ of partitions of n into primes satisfies (cf. [5]) $\log T(n) \sim$ $\frac{2 \pi}{\sqrt{3}} \sqrt{\frac{n}{\log n}}$, and the number of solutions of (69) is $\sum_{n \leq x} T(n)$.

Lemma 3. The number of solutions of the inequality

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{r} \leq A \tag{70}
\end{equation*}
$$

in integers x_{1}, \ldots, x_{r} is $\leq(2 r)^{A}$.
Proof: Let $a=\lfloor A\rfloor$. It is well known that the number of solutions of (70) is

$$
\binom{r+a}{a}=\frac{r+a}{a} \frac{r+a-1}{a-1} \cdots \frac{r+2}{2} \frac{r+1}{1} \leq(r+1)^{a} \leq(2 r)^{a} .
$$

Proof of Theorem 6: Any integer M can be written as

$$
M=\frac{A}{D} N_{\varepsilon},(A, D)=1 \text { and } D \text { divides } N_{\varepsilon}
$$

First, we observe that, if p^{y} divides A and ben $M \leq B$, we have for x large enough:

$$
\begin{equation*}
y \leq x \tag{71}
\end{equation*}
$$

Indeed, by (61), we have

$$
\alpha_{p} \leq \frac{1}{p^{\varepsilon}-1} \leq \frac{1}{\varepsilon \log p}=\frac{\log x}{\log 2 \log p} \leq \frac{\log x}{(\log 2)^{2}} \leq 3 \log x
$$

It follows that

$$
\begin{aligned}
B \geq \operatorname{ben} M \geq \operatorname{ben}_{p}\left(A N_{\varepsilon}\right) & \geq \psi_{1}\left(\alpha_{p}, \alpha_{p}+y\right) \\
& =y \log \left(1+\frac{1}{\alpha_{p}+1}\right)-\log \left(1+\frac{y}{\alpha_{p}+1}\right) \\
& \geq \frac{y}{\alpha_{p}}-\log (1+y) \geq \frac{y}{3 \log x}-\log (1+y),
\end{aligned}
$$

and since $B \leq x^{\lambda}$, this inequality does not hold for $y>x$ and x large enough.
Further we write $A=A_{1} A_{2} \cdots A_{6}$ with $\left(A_{i}, A_{j}\right)=1$ and

$$
\begin{aligned}
& p \mid A_{1} \Longrightarrow p>2 x \\
& p \mid A_{2} \Longrightarrow x<p \leq 2 x \\
& p \mid A_{3} \Longrightarrow 2 x_{2}<p \leq x \\
& p \mid A_{4} \Longrightarrow x_{2}<p \leq 2 x_{2} \\
& p \mid A_{5} \Longrightarrow 2 x_{3}<p \leq x_{2} \\
& p \mid A_{6} \Longrightarrow p \leq 2 x_{3},
\end{aligned}
$$

where x_{2} and x_{3} are defined by (62). Similarly, we write $D=D_{1} D_{2} \ldots D_{5}$, with $\left(D_{i}, D_{j}\right)=1$ and

$$
\begin{aligned}
& p \mid D_{1} \Longrightarrow x / 2<p \leq x \\
& p \mid D_{2} \Longrightarrow x_{2}<p \leq x / 2 \\
& p \mid D_{3} \Longrightarrow x_{2} / 2<p \leq x_{2} \\
& p \mid D_{4} \Longrightarrow 2 x_{3}<p \leq x_{2} / 2 \\
& p \mid D_{5} \Longrightarrow p \leq 2 x_{3} .
\end{aligned}
$$

We have

$$
\operatorname{ben} M=\sum_{i=1}^{6} \operatorname{ben}\left(A_{i} N_{\varepsilon}\right)+\sum_{i=1}^{5} \operatorname{ben}\left(N_{\varepsilon} / D_{i}\right)
$$

and denoting by v_{i} (resp. v_{i}^{\prime}) the number of solutions of

$$
\operatorname{ben}\left(A_{i} N_{\varepsilon}\right) \leq B \quad\left(\text { resp. } \operatorname{ben}\left(N_{\varepsilon} / D_{i}\right) \leq B\right),
$$

we have

$$
\begin{equation*}
v \leq \prod_{i=1}^{6} v_{i} \prod_{i=1}^{5} v_{i}^{\prime} \tag{72}
\end{equation*}
$$

In (72), we shall see that the main factors are ν_{2} and ν_{1}^{\prime} and the other ones are negligible.

Estimation of ν_{2}. Let us denote the primes between x and $2 x$ by $x<P_{1}<P_{2}<\cdots<$ $P_{r} \leq 2 x$, and let

$$
A_{2}=P_{1}^{y_{1}} P_{2}^{y_{2}} \cdots P_{r}^{y_{r}}, \quad y_{i} \geq 0
$$

From the Brun-Titchmarsh inequality, it follows for $i \geq 2$ that

$$
i=\pi\left(P_{i}\right)-\pi(x) \leq 2 \frac{P_{i}-x}{\log \left(P_{i}-x\right)} \leq 2 \frac{P_{i}-x}{\log 2(i-1)}
$$

and it follows from Lemma 1:

$$
P_{i}-x \geq \frac{i}{2} \log 2(i-1) \geq \frac{i \log i}{2} \geq 0.23 p_{i}
$$

By (60) and (61) we have $\alpha_{P_{i}}=0$ and

$$
\begin{aligned}
\operatorname{ben}\left(A_{2} N_{\varepsilon}\right) & \geq \sum_{i=2}^{r} \varphi_{1}\left(\varepsilon, P_{i}, 0, y_{i}\right)=\sum_{i=2}^{r} \varepsilon y_{i} \log \left(P_{i} / x\right) \\
& \geq \sum_{i=2}^{r} \varepsilon y_{i} \frac{P_{i}-x}{P_{i}} \geq \sum_{i=2}^{r} \frac{\varepsilon y_{i}}{2 x}\left(P_{i}-x\right) \geq \sum_{i=2}^{r} 0.115 \frac{\varepsilon y_{i}}{x} p_{i} .
\end{aligned}
$$

By (71), the number of possible choices for y_{1} is less than $(x+1)$, so that ν_{2} is certainly less than $(x+1)$ times the number of solutions of:

$$
\sum_{i=2}^{\infty} p_{i} y_{i} \leq \frac{B x}{\varepsilon(0.115)} \leq 12.6 B x \log x
$$

and, by Lemma 2,

$$
\nu_{2} \leq(x+1) \exp \left\{(1+o(1)) \frac{2 \pi}{\sqrt{3}} \sqrt{\frac{12 \cdot 6 B x \log x}{\log (B x)}}\right\} \leq \exp \left(\frac{13 \sqrt{B x}}{\sqrt{1-\mu}}\right)
$$

Estimation of ν_{1}. First we observe that, if a large prime P divides M and ben $M \leq B$ then we have:

$$
B \geq \text { ben } M \geq \operatorname{ben}_{p}(M) \geq \varphi_{1}\left(\varepsilon, P, 0, \beta_{p}\right) \geq \varepsilon \log (P / x)
$$

so that

$$
P \leq x \exp (B / \varepsilon)=x \exp \left(\frac{B \log x}{\log 2}\right)
$$

If λ is large, we divide the interval $[0, \lambda]$ into equal subintervals: $\left[\lambda_{i}, \lambda_{i+1}\right], 0 \leq i \leq s-1$, such that $\lambda_{i+1}-\lambda_{i}<\frac{1-\lambda}{2}$. We set $T_{0}=2 x, T_{i}=x \exp \left(x^{\lambda_{i}}\right)$ for $1 \leq i \leq s-1$, and $T_{s}=x \exp \left(\frac{B \log x}{\log 2}\right)$. If $\lambda<\frac{1}{3}$, there is just one interval in the subdivision. Further, we write $A_{1}=a_{1} a_{2} \ldots a_{s}$ with $p \mid a_{i} \Longrightarrow T_{i-1}<p \leq T_{i}$, and if we denote the number of solutions of ben $\left(a_{i} N_{\varepsilon}\right) \leq B$ by $v_{1}^{(i)}$ clearly we have

$$
\nu_{1} \leq \prod_{i=1}^{s} v_{1}^{(i)}
$$

To estimate $\nu_{1}^{(i)}$ let us denote the primes between T_{i-1} and T_{i} by $T_{i-1}<P_{1}<\cdots<P_{r} \leq T_{i}$, and let $a_{i}=P_{1}^{y_{1}} \cdots P_{r}^{y_{r}}$. We have

$$
\begin{aligned}
B \geq \operatorname{ben}\left(a_{i} N_{\varepsilon}\right) & \geq \sum_{i=1}^{r} \varphi_{1}\left(\varepsilon, P_{i}, 0, y_{i}\right)=\sum_{i=1}^{r} \varepsilon y_{i} \log \frac{P_{i}}{x} \\
& \geq \sum_{i=1}^{r} \varepsilon y_{i} \log \frac{T_{i-1}}{x}
\end{aligned}
$$

If $i=1, T_{0}=2 x$, this implies $\sum_{i=1}^{r} y_{i} \leq \frac{B(\log x)}{(\log 2)^{2}} \leq 3 B \log x$, and by Lemma 3,

$$
v_{1}^{(1)} \leq \exp (3 B \log x \log (2 r)) \leq \exp \left(3 B \log x \log T_{1}\right) \leq \exp \left((1+o(1)) B x^{\lambda_{1}}\right) .
$$

If $i>1$, we have $\sum_{i=1}^{r} y_{i} \leq \frac{B}{\varepsilon x^{x_{i-1}}}$, and by Lemma 3,

$$
v_{1}^{(i)} \leq \exp \left(\frac{B}{\varepsilon x^{\lambda_{i-1}}} \log T_{i}\right) \leq \exp \left\{(1+o(1)) B x^{\lambda_{i}-\lambda_{i-1}}\right\}
$$

and from the choice of the λ_{i} 's, one can easily see that, for $B \leq x^{\lambda}$, $\nu_{1}=\prod_{i=1}^{s} \nu_{1}^{(i)}$ is negligible compared with ν_{2}.

The other factors of (72) are easier to estimate:
Estimation of ν_{3}. Let us denote the primes between $2 x_{2}$ and x by $2 x_{2}<P_{r}<P_{r-1}<$ $\cdots<P_{1} \leq x$. By (62) and (4), $x_{2}=x^{\theta}$, and by (63), $\alpha_{P_{i}}=1$. Let us write $A_{3}=P_{1}^{y_{1}} \cdots P_{r}^{y_{r}}$. We have

$$
B \geq \operatorname{ben}\left(A_{3} M\right) \geq \sum_{i=1}^{r} \varphi_{1}\left(\varepsilon, P_{i}, 1,1+y_{i}\right)=\sum_{i=1}^{r} \varepsilon y_{i} \log \frac{P_{i}}{x_{2}} \geq \sum_{i=1}^{r} \frac{(\log 2)^{2}}{\log x} y_{i}
$$

So, $\sum_{i=1}^{r} y_{i} \leq B \log x /(\log 2)^{2} \leq 3 B \log x$, and by Lemma 3,

$$
\nu_{3} \leq \exp (3 B \log x \log (2 r)) \leq \exp \left(3 B(\log x)^{2}\right)
$$

Estimation of ν_{4}. Replacing x by x_{2} the upper bound obtained for ν_{2} becomes:

$$
\nu_{2}=\exp \left(O\left(\sqrt{B x_{2}}\right)\right)=\exp \left(O\left(\sqrt{B x^{\theta}}\right)\right) .
$$

Estimation of ν_{5}. Replacing x by x_{2}, the upper bound obtained for ν_{3} becomes:

$$
v_{5} \leq \exp \left(3 B \log x \log x_{2}\right)=\exp \left(3 \theta B(\log x)^{2}\right) .
$$

Estimation of v_{6}. Let $p_{1}, p_{2}, \ldots, p_{r} \leq 2 x_{3}$ be the first primes and write $A_{6}=p_{1}^{y_{1}} p_{2}^{y_{2}} \ldots$ $p_{r}^{y_{r}}$. By (71), $y_{i} \leq x$, and thus by (62),

$$
\nu_{6} \leq(x+1)^{r} \leq(x+1)^{x_{3}}=\exp \left(x^{1-\theta} \log (x+1)\right)
$$

and for $B \geq x^{-\mu}$ and $\mu<0.16$, this is negligible compared with ν_{2}.
Estimation of ν_{1}^{\prime}. Let us denote the primes between $\frac{x}{2}$ and x by $\frac{x}{2}<P_{r}<P_{r-1}<\cdots<$ $P_{1} \leq x$, and let $D_{1}=P_{1}^{y_{1}} \cdots P_{r}^{y_{r}}$. We have $\alpha_{P_{i}}=1$ and since D_{1} divides $N_{\varepsilon}, y_{i}=0$ or 1 . By a computation similar to that of ν_{2}, we obtain

$$
B \geq \operatorname{ben} \frac{N_{\varepsilon}}{D_{1}} \geq \sum_{i=2}^{r} \varphi_{2}\left(\varepsilon, P_{i}, 1, y_{i}\right)=\sum_{i=2}^{r} \varepsilon y_{i} \log \frac{x}{P_{i}} \geq \sum_{i=2}^{r} \varepsilon y_{i} \frac{x-P_{i}}{x}
$$

and by using the Brun-Titchmarsch inequality and Lemma 1, it follows that

$$
\sum_{i=2}^{r} p_{i} y_{i} \leq \frac{B x}{0.23 \varepsilon} \leq 6.3 B x \log x
$$

Thus, as y_{1} can only take 2 values, by Lemma 2 we have

$$
v_{1}^{\prime} \leq 2 \exp \left((1+o(1)) \frac{2 \pi}{\sqrt{3}} \sqrt{\frac{6.3 B x \log x}{\log (B x)}} \leq \exp (9.2 \sqrt{B x})\right.
$$

Estimation of ν_{2}^{\prime}. By an estimation similar to that of ν_{3}, replacing φ_{1} by φ_{2} and using Lemma 3, we get

$$
v_{2}^{\prime} \leq \exp \left(3 B \log ^{2} x\right)
$$

Estimation of ν_{3}^{\prime}. Replacing x by x_{2}, it is similar to that of v_{1}^{\prime} and we get

$$
v_{3}^{\prime}=\exp \left(O\left(\sqrt{B x_{2}}\right)\right)
$$

Estimation of ν_{4}^{\prime}. Replacing x by x_{2}, we get, as for v_{2}^{\prime},

$$
v_{4}^{\prime} \leq \exp \left(3 B \log x \log x_{2}\right)=\exp \left(3 \theta B \log ^{2} x\right)
$$

Estimation of ν_{5}^{\prime}. As we have seen for ν_{6}, we have

$$
D_{5}=p_{1}^{y_{1}} \cdots p_{r}^{y_{r}}
$$

with $y_{i} \leq \alpha_{p_{i}} \leq 3 \log x$ and $r \leq \pi\left(2 x_{3}\right) \leq x_{3}$. Thus

$$
v_{5}^{\prime} \leq(1+3 \log x)^{r} \leq \exp \left(x^{1-\theta} \log (1+3 \log x)\right)
$$

By formula (68) and the estimates of v_{i} and v_{i}^{\prime}, the proof of Theorem 6 is completed.

By a more careful estimate, it would have been possible to improve the constant in (68). However, using the Brun-Titchmarsch inequality we loose a factor $\sqrt{2}$, and we do not see how to avoid this loss. A similar method was used in [3]. Also, the condition $\mu<0.16$ can be replaced easily by $\mu<1$.

7. Proof of Theorem 3

We shall need the following lemmas:
Lemma 4. Let n_{j} the sequence of h.c. numbers. There exists a positive real number c such that for j large enough, the following inequality holds:

$$
\frac{n_{j+1}}{n_{j}} \leq 1+\frac{1}{\left(\log n_{j}\right)^{c}}
$$

Proof: This result was first proved by Erdős in [2]. The best constant c is given in [8]:

$$
c=\frac{\log (15 / 8)}{\log 8}\left(1-\tau_{0}\right)=0.1405 \ldots
$$

with the value of τ_{0} given by (8).
Lemma 5. Let n_{j} be a h.c. number, and N_{ε} the superior h.c. number preceding n_{j}. Then the benefit of n_{j} (defined by (65)) satisfies:

$$
\text { ben } n_{j}=O\left(\left(\log n_{j}\right)^{-\gamma}\right) .
$$

Proof: This is Theorem 1 of [8]. The value of γ is given by

$$
\gamma=\theta\left(1-\tau_{0}\right) /(1+\kappa)=0.03157 \ldots
$$

where θ, τ_{0} and κ are defined by (4), (8) and (22).
To prove Theorem 3, first recall that n_{k} is defined so that

$$
\begin{equation*}
n_{k} \leq X<n_{k+1} . \tag{73}
\end{equation*}
$$

We define N_{ε} as the largest s.h.c. number $\leq n_{k}$. Now let $n \in S(X, z)$. We get from (65):

$$
\begin{aligned}
\text { ben } n & =\varepsilon \log \frac{n}{N_{\varepsilon}}-\log \frac{d(n)}{d\left(N_{\varepsilon}\right)}, \\
\text { ben } n_{k} & =\varepsilon \log \frac{n_{k}}{N_{\varepsilon}}-\log \frac{d\left(n_{k}\right)}{d\left(N_{\varepsilon}\right)}
\end{aligned}
$$

and, subtracting,

$$
\text { ben } n=\text { ben } n_{k}+\varepsilon \log \frac{n}{n_{k}}-\log \frac{d(n)}{d\left(n_{k}\right)} .
$$

But $n \in S(X, z)$ so that $n \leq X$ and $d(n) \geq z d\left(n_{k}\right)$. Thus

$$
\text { ben } n \leq \operatorname{ben} n_{k}+\varepsilon \log \frac{X}{n_{k}}+\log (1 / z)
$$

By (73) and Lemma 4, we have $n_{k} \sim X$, and by (60), (64), (73) and Lemma 4, we have

$$
\varepsilon \log \frac{X}{n_{k}} \leq \varepsilon \log \frac{n_{k+1}}{n_{k}} \leq \frac{1}{(\log X)^{c+o(1)}} .
$$

By Lemma 5,

$$
\text { ben } n \leq B=\log \frac{1}{z}+O(\log X)^{-\gamma}
$$

Applying Theorem 6 completes the proof of Theorem 3.
8. An upper bound for $d\left(n_{j+1}\right) / d\left(n_{j}\right)$

We will prove:
Theorem 7. There exists a constant $c>0$ such that for n_{j} large enough, the inequality

$$
\frac{d\left(n_{j+1}\right)}{d\left(n_{j}\right)} \leq 1+\frac{1}{\left(\log n_{j}\right)^{c}}
$$

holds. Here c can be chosen as any number less than γ defined in Lemma 5.
Proof: Let N_{ε} the s.h.c. number preceding n_{j}. We have by Lemma 5 ben $\left(n_{j}\right)=$ $O\left(\left(\log n_{j}\right)^{-\gamma}\right)$ and ben $\left(n_{j+1}\right)=O\left(\left(\log n_{j}\right)^{-\gamma}\right)$. Further, it follows from (65) that

$$
\log \frac{d\left(n_{j+1}\right)}{d\left(n_{j}\right)}=\varepsilon \log \frac{n_{j+1}}{n_{j}}+\operatorname{ben}\left(n_{j+1}\right)-\operatorname{ben}\left(n_{j}\right) \leq \log \frac{n_{j+1}}{n_{j}}+\operatorname{ben}\left(n_{j+1}\right)
$$

which, by using Lemma 4 and Lemma 5, completes the proof of Theorem 7.

References

1. R.C. Baker and G. Harman, "The difference between consecutive primes," Proc. London Math. Soc. 72 (1996), 261-280.
2. P. Erdős, "On highly composite numbers," J. London Math. Soc. 19 (1944), 130-133.
3. P. Erdős and J.L. Nicolas, "Sur la fonction: nombre de diviseurs premiers de n," l'Enseignement Mathématique 27 (1981), 3-27.
4. N. Feldmann, "Improved estimate for a linear form of the logarithms of algebraic numbers," Mat. $\operatorname{Sb} .77(119)$, (1968), 423-436 (in Russian); Math. USSR-Sb. 6 (1968), 393-406.
5. G.H. Hardy and S. Ramanujan, "Asymptotic formulae for the distribution of integers of various types," Proc. London Math. Soc. 16 (1917), 112-132. Collected Papers of S. Ramanujan, 245-261.
6. G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford at the Clarendon Press, 1979.
7. J.L. Nicolas, "Ordre maximal d'un élément du groupe des permuatations et highly composite numbers," Bull. Soc. Math. France 97 (1969), 129-191.
8. J.L. Nicolas, "Répartition des nombres hautement composés de Ramanujan," Can. J. Math. 23 (1971), 116-130.
9. J.L. Nicolas, "Répartition des nombres largement composés," Acta Arithmetica 34 (1980), 379-390.
10. J.L. Nicolas, "Nombres hautement composés," Acta Arithmetica 49 (1988), 395-412.
11. J.L. Nicolas, "On highly composite numbers," Ramanujan Revisited (Urbana-Champaign, Illinois, 1987), Academic Press, Boston, 1988, pp. 215-244.
12. J.L. Nicolas and A. Sárközy, "On two partition problems," Acta Math. Hung. 77 (1997), 95-121.
13. S. Ramanujan, "Highly composite numbers," Proc. London Math. Soc. 14 (1915), 347-409; Collected Papers, 78-128.
14. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
15. S. Ramanujan, "Highly composite numbers," annotated by J.L. Nicolas and G. Robin, The Ramanujan Journal 1 (1997), 119-153.
16. G. Rhin, "Approximants de Padé et mesures effectives d'irrationalité," Séminaire Th. des Nombres D.P.P., 1985-86, Progress in Math. no. 71, Birkhäuser, 155-164.
17. G. Robin, "Méthodes d'optimisation pour un problème de théorie des nombres," R.A.I.R.O. Informatique théorique 17 (1983), 239-247.
18. J.B. Rosser and L. Schoenfeld, "Approximate formulas for some functions of prime numbers," Illinois J. Math. 6 (1962), 64-94.
19. A. Selberg, "On the normal density of primes in small intervals and the difference between consecutive primes," Arch. Math. Naturvid. 47 (1943), 87-105.
