On Large Values of the Divisor Function

P. ERDŐS J.-L. NICOLAS jlnicola@in2p3.fr Institut Girard Desargues, UPRES-A-5028, Mathématiques, Bat. 101, Université Claude Bernard (LYON 1), F-69622 Villeurbanne cédex, France

A. SÁRKÖZY* sarkozy@cs.elte.hu Eötvös Loránd University, Dept. of Algebra and Number Theory, H-1088 Budapest, Múzeum krt. 6-8, Hungary

Jean-Louis Nicolas and Andràs Sárközy dedicate this paper to the memory of Paul Erdős

Received June 10, 1997; Accepted January 7, 1998

Abstract. Let d(n) denote the divisor function, and let D(X) denote the maximal value of d(n) for $n \le X$. For $0 < z \le 1$, both lower and upper bounds are given for the number of integers n with $n \le X$, $zD(X) \le d(n)$.

Key words: division function, highly composite numbers, maximal order

1991 Mathematics Subject Classification: Primary 11N56

1. Introduction

Throughout this paper, we shall use the following notations: N denotes the set of the positive integers, $\pi(x)$ denotes the number of the prime numbers not exceeding x, and p_i denotes the *i*th prime number. The number of the positive divisors of $n \in \mathbb{N}$ is denoted by d(n), and we write

$$D(X) = \max_{n \le X} d(n).$$

Following Ramanujan we say that a number $n \in \mathbf{N}$ is highly composite, briefly h.c., if d(m) < d(n) for all $m \in \mathbf{N}$, m < n. For information about h.c. numbers, see [13, 15] and the survey paper [11].

The sequence of h.c. numbers will be denoted by $n_1, n_2, \ldots : n_1 = 1, n_2 = 2, n_3 = 4$, $n_4 = 6, n_5 = 12, \ldots$ (for a table of h.c. numbers, see [13, Section 7, or 17]. For X > 1, let $n_k = n_{k(X)}$ denote the greatest h.c. number not exceeding X, so that

$$D(X) = d(n_{k(X)}).$$

*Research partially supported by Hungarian National Foundation for Scientific Research, Grant No. T017433 and by C.N.R.S, Institut Girard Desargues, UPRES-A-5028.

It is known (cf. [13, 8]) that n_k is of the form $n_k = p_1^{r_1} p_2^{r_2} \cdots p_\ell^{r_\ell}$, where $r_1 \ge r_2 \ge \cdots \ge r_\ell$,

$$\ell = (1 + o(1)) \frac{\log X}{\log \log X},\tag{1}$$

$$r_i = (1 + o(1)) \frac{\log p_\ell}{\log 2 \log p_i} \quad \left(\text{for } X \to \infty \text{ and } \frac{\log p_i}{\log p_\ell} \to 0 \right)$$
(2)

and, if *m* is the greatest integer such that $r_m \ge 2$,

$$p_m = p_\ell^\theta + O\left(p_\ell^{\tau_0\theta}\right) \tag{3}$$

where

$$\theta = \frac{\log(3/2)}{\log 2} = 0.585... \tag{4}$$

and τ_0 is a constant <1 which will be given later in (8).

For $0 < z \le 1, X > 1$, let S(X, z) denote the set of the integers *n* with $n \le X, d(n) \ge zD(X)$. In this paper, our goal is to study the function F(X, z) = Card(S(X, z)).

In Section 4, we will study F(X, 1), further we will prove (Corollary 1) that for some c > 0 and infinitely many X's with $X \to +\infty$, we have F(X, z) = 1 for all z and X satisfying

$$1 - \frac{1}{(\log X)^c} < z \le 1.$$

Thus, to have a non trivial lower bound for F(X, z) for all X, one needs an assumption of the type z < 1 - f(X), cf. (6).

In Section 2, we shall give lower bounds for F(X, z). Under a strong, but classical, assumption on the distribution of primes, the lower bound given in Theorem 1 is similar to the upper bound given in Section 3. The proofs of the lower bounds will be given in Section 5: in the first step we construct an integer $\hat{n} \in S(X, z)$ such that $d(\hat{n})$ is as close to zD(X) as possible. This will be done by using diophantine approximation of θ (defined by (4)), following the ideas of [2, 8]. Further, we observe that slightly changing large prime factors of \hat{n} will yield many numbers n not much greater than \hat{n} , and so belonging to S(X, z). The proof of the upper bound will be given in Section 7. It will use the superior h.c. numbers, introduced by Ramanujan (cf. [13]). Such a number N_{ε} maximizes $d(n)/n^{\varepsilon}$. The problem of finding h.c. numbers is in fact an optimization problem

$$\max_{n \le x} d(n)$$

and, in this optimization problem, the parameter ε plays the role of a Lagrange multiplier. The properties of the superior h.c. numbers that we shall need will be given in Section 6.

In [10, p. 411], it was asked whether there exists a positive constant c such that, for n_j large enough,

$$\frac{d(n_{j+1})}{d(n_j)} \le 1 + \frac{1}{(\log n_j)^c}.$$

In Section 8, we shall answer this question positively, while in Section 4 we shall prove that for infinitely many n_j , one has $d(n_{j+1})/d(n_j) \ge 1 + (\log n_j)^{-0.71}$.

We are pleased to thank J. Rivat for communicating us reference [1].

2. Lower bounds

We will show that

Theorem 1. Assume that τ is a positive number less than 1 and such that

$$\pi(x) - \pi(x - y) > A \frac{y}{\log x} \quad \text{for } x^{\tau} < y < x \tag{5}$$

for some A > 0 and x large enough. Then for all $\varepsilon > 0$, there is a number $X_0 = X_0(\varepsilon)$ such that, if $X > X_0(\varepsilon)$ and

$$\exp(-(\log X)^{\lambda}) < z < 1 - \log X)^{-\lambda_1} \tag{6}$$

where λ is any fixed positive real number <1 and λ_1 a positive real number ≤ 0.03 , then we have:

$$F(X, z) > \exp\left((1-\varepsilon)\min\{2(A\log 2\log X\log(1/z))^{1/2}, 2(\log X)^{1-\tau}\log\log X\log(1/z)\}\right).$$
(7)

Note that (5) is known to be true with

$$\tau = \tau_0 = 0.535$$
 and $A = 1/20$ (8)

(cf. [1]) so that we have

$$F(X, z) > \exp((1 - \varepsilon)2(\log X)^{0.465} \log \log X \log(1/z))$$

for all z satisfying (6), and assuming the Riemann hypothesis, (5) holds for all $\tau > 1/2$ so that

$$F(X, z) > \exp((\log X)^{1/2 - \varepsilon} \log(1/z))$$

for all $\varepsilon > 0$, X large enough and z satisfying (6). Moreover, if (5) holds with some $\tau < 1/2$ and $A > 1 - \varepsilon/2$ (as it is very probable), then for a fixed z we have

$$F(X, z) > \exp((2 - \varepsilon)((\log 2)(\log X)\log(1/z))^{1/2}).$$
(9)

In particular,

$$F(X, 1/2) > \exp((1 - \varepsilon)(\log 2)(\log X)^{1/2}).$$
(10)

While we need a very strong hypothesis to prove (9) for all X, we will show without any unproved hypothesis that, for fixed z and with another constant in the exponent, it holds for infinitely many $X \in \mathbf{N}$:

Theorem 2. If z is a fixed real number with 0 < z < 1, and $\varepsilon > 0$, then for infinitely many $X \in \mathbf{N}$ we have

$$F(X, z) > \exp((1 - \varepsilon)(\log 4 \log X \log(1/z)^{1/2})$$
(11)

so that, in particular

$$F(X, 1/2) > \exp((1 - \varepsilon)\sqrt{2} \log 2(\log X)^{1/2}).$$
(12)

We remark that the constant factor $\sqrt{2} \log 2$ on the right hand side could be improved by the method used in [12] but here we will not work out the details of this. It would also be possible to extend Theorem 2 to all *z* depending on *X* and satisfying (6).

3. Upper bounds

We will show that:

Theorem 3. There exists a positive real number γ such that, for $z \ge 1 - (\log X)^{-\gamma}$, as $X \to +\infty$ we have

$$\log F(X, z) = O((\log X)^{(1-\gamma)/2}),$$
(13)

and if λ , η are two real numbers, $0 < \lambda < 1, 0 < \eta < \gamma$, we have for

$$1 - (\log X)^{-\gamma + \eta} \ge z \ge \exp(-(\log X)^{\lambda}), \tag{14}$$

and X large enough:

$$F(X, z) \le \exp\left(\frac{24}{\sqrt{1-\gamma}} (\log(1/z)\log X)^{1/2}\right).$$
 (15)

The constant γ will be defined in Lemma 5 below. One may take $\gamma = 0.03$. Then for z = 1/2, (15) yields

$$\log F(X, 1/2) \le 21(\sqrt{\log X})$$

which, together with the results of Section 2, shows that the right order of magnitude of $\log F(X, 1/2)$ is, probably, $\sqrt{\log X}$.

4. The cases z = 1 and z close to 1

Let us first define an integer *n* to be largely composite (l.c.) if $m \le n \Rightarrow d(m) \le d(n)$. S. Ramanujan has built a table of l.c. numbers (see [14, p. 280 and 15, p. 150]). The distribution of l.c. numbers has been studied in [9], where one can find the following results:

Proposition 1. Let $Q_{\ell}(X)$ be the number of l.c. numbers up to X. There exist two real numbers $0.2 < b_1 < b_2 < 0.5$ such that for X large enough the following inequality holds:

$$\exp((\log X)^{b_1}) \le Q_\ell(X) \le \exp((\log X)^{b_2}).$$

We may take any number $\langle (1 - \frac{\log 3/2}{\log 2})/2 = 0.20752$ for b_1 , and any number $\rangle (1 - \gamma)/2$ with $\gamma > 0.03$ defined in Lemma 5, for b_2 .

From Proposition 1, it is easy to deduce:

Theorem 4. There exists a constant $b_2 < 0.485$ such that for all X large enough we have

$$F(X, 1) \le \exp((\log X)^{b_2}).$$
 (16)

There exists a constant $b_1 > 0.2$ such that, for a sequence of X tending to infinity, we have

$$F(X, 1) \ge \exp((\log X)^{b_1}).$$
 (17)

Proof: F(X, 1) is exactly the number of l.c. numbers *n* such that $n_k \le n \le X$. Thus $F(X, 1) \le Q_{\ell}(X)$ and (16) follows from Proposition 1.

The proof of Proposition 1 in [9, Section 3] shows that for any $b_1 < 0.207$, there exists an infinite number of h.c. numbers n_j such that the number of l.c. numbers between n_{j-1} and n_j (which is exactly $F(n_j - 1, 1)$) satisfies $F(n_j - 1, 1) \ge \exp((\log n_j)^{b_1})$ for n_j large enough, which proves (17).

We shall now prove:

Theorem 5. Let (n_j) be the sequence of h.c. numbers. There exists a positive real number *a*, such that for infinitely many n_i 's, the following inequality holds:

$$\frac{d(n_j)}{d(n_{j-1})} \ge 1 + \frac{1}{(\log n_j)^a}.$$
(18)

One may take any a > 0.71 in (18).

Proof: Let X tend to infinity, and define k = k(X) by $n_k \le X < n_{k+1}$. By [8], the number k(X) of h.c. numbers up to X satisfies

$$k(X) \le (\log X)^{\mu} \tag{19}$$

for X large enough, and one may choose for μ the value $\mu = 1.71$, cf. [10, p. 411 or 11, p. 224]. From (19), the proof of Theorem 5 follows by an averaging process: one has

$$\prod_{\sqrt{X} < n_j \le X} \frac{d(n_j)}{d(n_{j-1})} = \frac{D(X)}{D(\sqrt{X})}.$$

The number of factors in the above product is $k(X) - k(\sqrt{X}) \le k(X)$ so that there exists $j, k(\sqrt{X}) + 1 \le j \le k(X)$, with

$$\frac{d(n_j)}{d(n_{j-1})} \ge \left(\frac{D(X)}{D(\sqrt{X})}\right)^{1/k(X)}.$$
(20)

But it is well known that $\log D(X) \sim \frac{(\log 2)(\log X)}{\log \log X}$, and thus

$$\log(D(X)/D(\sqrt{X})) \sim \frac{\log 2}{2} \frac{\log X}{\log \log X}$$

Observing that $X < n_i^2$, it follows from (19) and (20) for X large enough:

$$\frac{d(n_j)}{d(n_{j-1})} \ge \exp\left(\frac{1}{3}\frac{1}{(\log X)^{\mu-1}\log\log X}\right)$$
$$\ge \exp\left(\frac{1}{3}\frac{1}{(2\log n_j)^{\mu-1}\log(2\log n_j)}\right)$$
$$\ge \exp\left(\frac{1}{(\log n_j)^a}\right) \ge 1 + \frac{1}{(\log n_j)^a}$$

for any $a > \mu - 1$, which completes the proof of Theorem 5.

A completely different proof can be obtained by choosing a superior h.c. number for n_j and following the proof of Theorem 8 in [7, p. 174], which yields $a = \frac{\log(3/2)}{\log 2} = 0.585...$ See also [10, Proposition 4].

Corollary 1. For c > 0.71, there exists a sequence of values of X tending to infinity such that F(X, z) = 1 for all z, $1 - 1/(\log X)^c < z \le 1$.

Proof: Let us choose $X = n_j$, with n_j satisfying (18), and c > a. For all n < X, we have

$$d(n) \le d(n_{j-1}) \le \frac{d(n_j)}{1 + (\log n_j)^{-a}} = \frac{D(X)}{1 + (\log X)^{-a}} < zD(X).$$

Thus $S(X, z) = \{n_i\}$, and F(X, z) = 1.

-		

5. Proofs of the lower estimates

Proof of Theorem 1: Let us denote by α_i/β_i the convergents of θ , defined by (4). It is known that θ cannot be too well approximated by rational numbers and, more precisely, there exists a constant κ such that

$$|q\theta - p| \gg q^{-\kappa} \tag{21}$$

for all integers $p, q \neq 0$ (cf. [4]). The best value of κ

$$\kappa = 7.616\tag{22}$$

is due to G. Rhin (cf. [16]). It follows from (21) that

$$\beta_{i+1} = O(\beta_i^{\kappa}). \tag{23}$$

Let us introduce a positive real number δ which will be fixed later, and define $j = j(X, \delta)$ so that

$$\beta_j \le (\log X)^{\delta} < \beta_{j+1}. \tag{24}$$

By Kronecker's theorem (cf. [6], Theorem 440), there exist two integers α and β such that

$$\left|\beta\theta - \alpha - \frac{\log z}{\log 2} - \frac{2}{\beta_j}\right| < \frac{2}{\beta_j}$$
(25)

and

$$\frac{\beta_j}{2} \le \beta \le \frac{3\beta_j}{2}.$$
(26)

Indeed, as α_j and β_j are coprime, one can write *B*, the nearest integer to $(\beta_j \frac{\log z}{\log 2} + 2)$, as $B = u_1 \alpha_j - u_2 \beta_j$ with $|u_1| \le \beta_j/2$, and then $\alpha = \alpha_j + u_2$ and $\beta = \beta_j + u_1$ satisfy (25).

With the notation of Section 1, we write

$$\hat{n} = n_k \frac{p_{m+1} p_{m+2} \cdots p_{m+\beta}}{p_\ell p_{\ell-1} \cdots p_{\ell-\alpha+1}}$$
(27)

for X large enough. By (26), (24), and (6), (25) yields

$$\alpha \le \beta\theta + \frac{\log(1/z)}{\log 2} \ll \max((\log X)^{\delta}, (\log X)^{\lambda})$$
(28)

and

$$\alpha \geq \beta \theta - \frac{\log z}{\log 2} - \frac{4}{\beta_j} > \beta \theta - \frac{6}{\beta} + \frac{\log(1/z)}{\log 2} > 0$$

for *X* large enough. Thus, if we choose $\delta < 1$, from (3) and (1) we have $r_{\ell} = r_{\ell-1} = \cdots = r_{\ell-\alpha+1} = 1$. By (1) and the prime number theorem, we also have

$$p_\ell \sim \log X \tag{29}$$

and by (3), we have $r_{m+1} = r_{m+2} = \cdots = r_{m+\beta} = 1$ so that, by (25),

$$d(\hat{n}) = d(n_k) \frac{(3/2)^{\beta}}{2^{\alpha}} = d(n_k) \exp(\log 2(\beta \theta - \alpha)) \ge z d(n_k) = z D(X).$$
(30)

Now we need an upper bound for \hat{n}/n_k . First, it follows from (5) that for i = o(m) we have

$$p_{m+i} - p_m \le \max\left(p_{m+i}^{\tau}, \frac{i}{A}\log p_{m+i}\right)$$
(31)

and consequently,

$$\prod_{i=1}^{\beta} \frac{p_{m+i}}{p_m} = \exp\left(\sum_{i=1}^{\beta} \log \frac{p_{m+i}}{p_m}\right) \le \exp\left(\sum_{i=1}^{\beta} \frac{p_{m+i} - p_m}{p_m}\right)$$
$$\le \exp\left(\frac{\beta}{p_m} \max\left(p_{m+\beta}^{\tau}, \frac{\beta}{A} \log p_{m+\beta}\right)\right)$$
$$\le \exp\left(O\left(\max\left((\log X)^{\delta + \theta(\tau-1)}, (\log X)^{2\delta - \theta} \log \log X\right)\right)\right)$$
(32)

by (26), (24), (3) and (1). Similarly, we get

$$\prod_{i=0}^{\alpha-1} \frac{p_{\ell}}{p_{\ell-i}} \le \exp\left(\frac{\alpha}{p_{\ell-\alpha+1}} \max\left(p_{l}^{\tau}, \frac{\alpha}{A} \log p_{\ell}\right)\right) \le \exp\left(O\left(\max\left(\frac{(\log X)^{\delta} - \log z}{(\log X)^{1-\tau}}, \frac{((\log X)^{\delta} - \log z)^{2}}{\log X} \log \log X\right)\right)\right) \quad (33)$$

by (28). Further, it follows from (3) and (25) that

$$\frac{p_m^{\beta}}{p_{\ell}^{\alpha}} = p_{\ell}^{\beta\theta-\alpha} \left(1 + O\left(p_{\ell}^{(\tau-1)\theta}\right)\right)^{\beta} \le p_{\ell}^{\frac{\log z}{\log 2} + \frac{4}{\beta_j}} \exp\left(O\left(\beta p_{\ell}^{(\tau-1)\theta}\right)\right)$$
$$\le \exp\left\{\left(\frac{\log z}{\log 2}\log p_{\ell}\right) + \frac{4\log p_{\ell}}{\beta_j} + \frac{\beta}{p_{\ell}^{(1-\tau)\theta}}\right\}.$$
(34)

It follows from (23) and (24) that

$$\beta_j \gg (\log X)^{\delta/\kappa}.$$
(35)

Multiplying (32), (33) and (34), we get from (27) and (29):

$$\hat{n}/n_k \le \exp\left\{(1+o(1))\frac{\log z \log \log X}{\log 2}\right\}$$
(36)

if we choose δ in such a way that the error terms in (32), (33) and (34) can be neglected. More precisely, from (6) and (36), δ should satisfy:

$$\begin{split} \delta + \theta(\tau - 1) &< -\lambda_1 \\ 2\delta - \theta &< -\lambda_1 \\ \kappa \lambda_1 &< \delta < 1. \end{split}$$

It is possible to find such a δ if λ_1 satisfies

$$\lambda_1 < \min\left(\frac{(1-\tau)\theta}{1+\kappa}, \frac{\theta}{1+2\kappa}\right).$$

(4), (8) and (22) yield $\lambda_1 < 0.03157$.

For convenience, let us write

$$\hat{n} = p_1^{\hat{r}_1} p_2^{\hat{r}_2} \cdots p_t^{\hat{r}_t}$$
(37)

with, by (27), $t = \ell - \alpha$. It follows from (1) and (28) that

$$t = (1 + o(1))\frac{\log X}{\log\log X}; \quad p_t \sim \log X \tag{38}$$

and from (24) and (26) that

$$\hat{r}_i = 1 \quad \text{for } i \ge t - t^{9/10}.$$
 (39)

Now, consider the integers v satisfying

$$P(t,v) \stackrel{\text{def}}{=} \frac{p_{t+1}p_{t+2}\cdots p_{t+v}}{p_{t-v+1}p_{t-v+2}\cdots p_t} \le \exp\left((1-\varepsilon)\frac{\log(1/z)\log X}{\log 2}\right)$$
(40)

and

$$v \le t^{9/10}$$
. (41)

By a calculation similar to that of (32) and (33), by (5) and the prime number theorem, for all v satisfying (41) and for all $1 \le i \le v$ we have:

$$\frac{p_{t+i}}{p_{t-\nu+i}} = 1 + \frac{p_{t+i} - p_{t-\nu+i}}{p_{t-\nu+i}} \le 1 + (1 + o(1))\frac{1}{p_t} \max\left(p_{t+\nu}^{\tau}, \frac{\nu}{A}\log p_{t+\nu}\right)$$
$$= 1 + (1 + o(1))\frac{1}{t} \max\left(t^{\tau}(\log t)^{\tau-1}, \frac{\nu}{A}\right)$$

so that, by (38), the left hand side of (40) is

$$P(t, v) = \prod_{i=1}^{v} \frac{p_{t+i}}{p_{t-v+i}}$$

$$\leq \exp\left(v(1+o(1))\frac{1}{t}\max\left(t^{\tau}(\log t)^{\tau-1}, \frac{v}{A}\right)\right)$$

$$= \exp\left((1+o(1))v\frac{\log\log X}{\log X}\max\left(\frac{(\log X)^{\tau}}{\log\log X}, \frac{v}{A}\right)\right)$$

$$= \exp\left((1+o(1))v\max\left((\log X)^{\tau-1}, \frac{v}{A}\frac{\log\log X}{\log X}\right)\right).$$
 (42)

By (42), (40) follows from

$$\exp\left((1+o(1))v\max\left((\log X)^{\tau-1}, \frac{v}{A}\frac{\log\log X}{\log X}\right)\right) < \exp\left(\left(1-\frac{\varepsilon}{2}\right)\frac{\log(1/z)\log X}{\log 2}\right).$$
(43)

An easy computation shows that with

$$\left(1 - \frac{5\varepsilon}{6}\right) \min\left(\left(\frac{A\log X}{\log 2}\log(1/z)^{1/2}\right), (\log X)^{1-\tau} \frac{\log\log X}{\log 2}\log(1/z)\right)$$

in place of v both (41) and (43) hold. Thus fixing v now as the greatest integer v satisfying (41) and (43), we have

$$v > \left(1 - \frac{3\varepsilon}{4}\right) \min\left(\left(\frac{A\log X}{\log 2}\log(1/z)^{1/2}\right), (\log X)^{1-\tau} \frac{\log\log X}{\log 2}\log(1/z)\right).$$
(44)

Then it follows from (39) and (41) that

$$\hat{r}_{t-\nu+i} = 1$$
 for $i = 1, 2, \dots, \nu$. (45)

Let now \mathcal{A} denote the set of the integers a of the form

$$a = 2^{\hat{r}_1} p_2^{\hat{r}_2} \cdots p_{i_{-v}}^{\hat{r}_r - v} p_{i_1} \cdots p_{i_v} \quad \text{where } t - v + 1 \le i_1 < i_2 < \cdots < i_v \le t + v.$$
(46)

Then, by (37), (46) and (30) we have

$$d(a) = d(\hat{n}) \ge zD(X). \tag{47}$$

Moreover, by (40) and (36) such an *a* satisfies

$$a = \frac{p_{i_1} p_{i_2} \cdots p_{i_v}}{p_{t-v+1} p_{t-v+2} \cdots p_t} \hat{n} \le P(t, v) \hat{n} \le n_k.$$
(48)

It follows from (47) and (48) that $a \in S(X, z)$ and

$$F(X, z) \ge |\mathcal{A}|. \tag{49}$$

The numbers i_1, i_2, \ldots, i_v in (46) can be chosen in $\binom{2v}{v}$ ways so that

$$|\mathcal{A}| = \binom{2v}{v} > \exp\left(\left(1 - \frac{\varepsilon}{8}\right)(\log 4)v\right).$$
(50)

DIVISOR FUNCTION

Now (7) follows from (44), (49) and (50), and this completes the proof of Theorem 1. \Box

Proof of Theorem 2: By a theorem of Selberg [19, 9], if the real function f(x) is increasing, $f(x) > x^{1/6}$ and $\frac{f(x)}{x} \searrow 0$, then there are infinitely many integers y such that

$$\pi(y + f(y)) - \pi(y) \sim \frac{f(y)}{\log y}$$
 and $\pi(y) - \pi(y - f(y)) \sim \frac{f(y)}{\log y}$. (51)

We use this result with $f(y) = (1 - \frac{\varepsilon}{3}) \log y(\frac{y \log(1/z)}{\log 4})^{1/2}$ and for a y value satisfying (51), define t by

$$p_t \le y < P_{t+1}. \tag{52}$$

Further, we define β_j (instead of (24)) so that $\beta_j \ge \frac{4\log 2}{\varepsilon \log(1/z)}$ and α , β by (25) and (26); we set $\ell = t + \alpha$ and choose $X = n_k$ a h.c. number whose greatest prime factor is p_ℓ (such a number exists, see [13] or (59), (60) below). We define \hat{n} by (27), and (30) and (38) still hold, while (36) becomes

$$\frac{\hat{n}}{n_k} \le \exp\left((1+o(1))\log\log X\left(\frac{\log z}{\log 2} + \frac{4}{\beta_j}\right)\right)$$
$$\le \exp\left((1+o(1))\frac{\log\log X}{\log 2}\log z(1-\varepsilon)\right)$$
$$\le \exp\left(\frac{\log\log X}{\log 2}\log z\left(1-\frac{\varepsilon}{2}\right)\right)$$
(53)

for X large enough. Let v denote the greatest integer with

$$p_{t+v} \le y + f(y)$$
 and $p_{t-v} \ge y - f(y)$, (54)

so that by the definition of *y* we have

$$v \sim \frac{f(y)}{\log y}.$$
(55)

By (38) and (52), we have

$$y \sim \log x. \tag{56}$$

Moreover, by (38), (54) and (55), we have

$$P(t, v) \stackrel{\text{def}}{=} \prod_{i=1}^{v} \frac{p_{t+i}}{p_{t-v+i}} \le \left(\frac{y+f(y)}{y-f(y)}\right)^{v}$$
$$\le \exp\left((1+o(1))\frac{f(y)}{\log\log X}\log\left(1+2\frac{f(y)}{y}\right)\right)$$
$$= \exp\left((2+o(1))\frac{f^{2}(y)}{y\log\log X}\right) = \left(\frac{1}{\log 2}+o(1)\right)\left(1-\frac{\varepsilon}{3}\right)^{2}\log\log X\log(1/z).$$
(57)

It follows from (53) and (57) that $P(t, v) < n_k/\hat{n}$ for X large enough and ε small enough. Again, as in the proof of Theorem 1, we consider the set A of the integers a of the form

(48). Then as in the proof of Theorem 1, by using (38) and (55) finally we obtain

$$F(X, z) \ge |\mathcal{A}| = {2v \choose v} > \exp\left(\left(1 - \frac{\varepsilon}{3}\right)(\log 4)v\right)$$
$$> \exp((1 - \varepsilon)(\log 4)^{1/2}(\log X)^{1/2}(\log(1/z))^{1/2})$$

which completes the proof of Theorem 2.

6. Superior highly composite numbers and benefits

Following Ramanujan (cf. [13]) we shall say that an integer N is superior highly composite (s.h.c.) if there exists $\varepsilon > 0$ such that for all positive integer M the following inequality holds:

$$d(M)/M^{\varepsilon} \le d(N)/N^{\varepsilon}.$$
(58)

Let us recall the properties of s.h.c. numbers (cf. [13], [7, p. 174], [8–11]). To any ε , $0 < \varepsilon < 1$, one can associate the s.h.c. number:

$$N_{\varepsilon} = \prod_{p \le x} p^{\alpha_p} \tag{59}$$

where

$$x = 2^{1/\varepsilon}, \quad \varepsilon = (\log 2)/\log x$$
 (60)

and

$$\alpha_p = \left\lfloor \frac{1}{p^\varepsilon - 1} \right\rfloor. \tag{61}$$

For $i \ge 1$, we write

$$x_i = x^{\log(1+1/i)/\log 2} \tag{62}$$

and then (61) yields:

$$\alpha_p = i \Longleftrightarrow x_{i+1}$$

A s.h.c. number is h.c. thus from (1) we deduce:

$$x \sim \log N_{\varepsilon}.$$
 (64)

Let P > x be the smallest prime greater than x. There is a s.h.c. number N' such that $N' \leq NP$ and $d(N') \leq 2d(N)$.

Definition. Let ε , $0 < \varepsilon < 1$, and N_{ε} satisfy (58). For a positive integer M, let us define the benefit of M by

ben
$$M = \varepsilon \log \frac{M}{N_{\varepsilon}} - \log \frac{d(M)}{d(N_{\varepsilon})}.$$
 (65)

From (58), we have ben $M \ge 0$. Note that ben N depends on ε , but not on N_{ε} : If $N^{(1)}$ and $N^{(2)}$ satisfy (58), (65) will give the same value for ben M if we set $N_{\varepsilon} = N^{(1)}$ or $N_{\varepsilon} = N^{(2)}$.

Now, let us write a generic integer:

$$M=\prod_p p^{\beta_p},$$

for p > x, let us set $\alpha_p = 0$, and define:

$$\operatorname{ben}_{p}(M) = \varepsilon(\beta_{p} - \alpha_{p}) \log p - \log\left(\frac{\beta_{p+1}}{\alpha_{p+1}}\right). \tag{66}$$

From the definition (61) of α_p , we have $ben_p(M) \ge 0$, and (65) can be written as

ben
$$M = \sum_{p} \operatorname{ben}_{p}(M).$$
 (67)

If $\beta_p = \alpha_p$, we have $ben_p(M) = 0$. If $\beta_p > \alpha_p$, let us set

$$\begin{split} \varphi_1 &= \varphi_1(\varepsilon, p, \alpha_p, \beta_p) = (\beta_p - \alpha_p) \left(\varepsilon \log p - \log \frac{\alpha_p + 2}{\alpha_p + 1} \right) = (\beta_p - \alpha_p) \varepsilon \log \left(\frac{p}{x_{\alpha_p + 1}} \right) \\ \psi_1 &= \psi_1(\alpha_p, \beta_p) = (\beta_p - \alpha_p) \log \left(1 + \frac{1}{\alpha_p + 1} \right) - \log \left(1 + \frac{\beta_p - \alpha_p}{\alpha_p + 1} \right). \end{split}$$

We have

$$\operatorname{ben}_p(M) = \varphi_1 + \psi_1,$$

 $\varphi_1 \ge 0, \psi_1 \ge 0$ and $\psi_1(\alpha_p, \alpha_p + 1) = 0$. Similarly, for $\beta_p < \alpha_p$, let us introduce:

$$\varphi_{2} = \varphi_{2}(\varepsilon, p, \alpha_{p}, \beta_{p}) = (\alpha_{p} - \beta_{p}) \left(\log \frac{\alpha_{p} + 1}{\alpha_{p}} - \varepsilon \log p \right) = (\alpha_{p} - \beta_{p}) \varepsilon \log \left(\frac{x_{\alpha_{p}}}{p} \right)$$

$$\psi_{2} = \psi_{2}(\alpha_{p}, \beta_{p}) = (\alpha_{p} - \beta_{p}) \log \left(1 - \frac{1}{\alpha_{p} + 1} \right) - \log \left(1 - \frac{\alpha_{p} - \beta_{p}}{\alpha_{p} + 1} \right).$$

We have $\varphi_2 \ge 0$, $\psi_2 \ge 0$, $\psi_2(\alpha_2, \alpha_p - 1) = 0$. Moreover, observe that ψ_1 is an increasing function of $\beta_p - \alpha_p$, and ψ_2 is an increasing function of $\alpha_p - \beta_p$, for α_p fixed. We will prove:

Theorem 6. Let $x \to +\infty$, ε be defined by (60) and N_{ε} by (59). Let $\lambda < 1$ be a positive real number, μ a positive real number not too large ($\mu < 0.16$) and B = B(x) such that

 $x^{-\mu} \leq B(x) \leq x^{\lambda}$. Then the number of integers M such that the benefit of M (defined by (65)) is smaller than B, satisfies

$$\nu \le \exp\left(\frac{23}{\sqrt{1-\mu}}\sqrt{Bx}\right) \tag{68}$$

for x large enough.

In [9], an upper bound for ν was given, with $B = x^{-\gamma}$. In order to prove Theorem 6, we shall need the following lemmas:

Lemma 1. Let $p_1 = 2, p_2 = 3, ..., p_k$ be the kth prime. For $k \ge 2$ we have $k \log k \ge 0.46 p_k$.

Proof: By [18] for $k \ge 6$ we have

$$p_k \le k(\log k + \log \log k) \le 2k \log k$$

and the lemma follows after checking the cases k = 2, 3, 4, 5.

Lemma 2. Let $p_1 = 2, p_2 = 3, ..., p_k$ be the kth prime. The number of solutions of the inequality

$$p_1 x_1 + p_2 x_2 + \dots + p_k x_k + \dots \le x$$
 (69)

in integers $x_1, x_2, \ldots, is \exp((1 + o(1))\frac{2\pi}{\sqrt{3}}\sqrt{\frac{x}{\log x}})$.

Proof: The number T(n) of partitions of n into primes satisfies (cf. [5]) $\log T(n) \sim \frac{2\pi}{\sqrt{3}} \sqrt{\frac{n}{\log n}}$, and the number of solutions of (69) is $\sum_{n \le x} T(n)$.

Lemma 3. The number of solutions of the inequality

$$x_1 + x_2 + \dots + x_r \le A \tag{70}$$

in integers x_1, \ldots, x_r is $\leq (2r)^A$.

Proof: Let $a = \lfloor A \rfloor$. It is well known that the number of solutions of (70) is

$$\binom{r+a}{a} = \frac{r+a}{a} \frac{r+a-1}{a-1} \cdots \frac{r+2}{2} \frac{r+1}{1} \le (r+1)^a \le (2r)^a.$$

Proof of Theorem 6: Any integer *M* can be written as

$$M = \frac{A}{D}N_{\varepsilon}, (A, D) = 1 \text{ and } D \text{ divides } N_{\varepsilon}.$$

First, we observe that, if p^{y} divides A and ben $M \leq B$, we have for x large enough:

$$y \le x. \tag{71}$$

Indeed, by (61), we have

$$\alpha_p \le \frac{1}{p^{\varepsilon} - 1} \le \frac{1}{\varepsilon \log p} = \frac{\log x}{\log 2 \log p} \le \frac{\log x}{(\log 2)^2} \le 3 \log x.$$

It follows that

$$B \ge \operatorname{ben} M \ge \operatorname{ben}_p(AN_{\varepsilon}) \ge \psi_1(\alpha_p, \alpha_p + y)$$

= $y \log\left(1 + \frac{1}{\alpha_p + 1}\right) - \log\left(1 + \frac{y}{\alpha_p + 1}\right)$
 $\ge \frac{y}{\alpha_p} - \log(1 + y) \ge \frac{y}{3\log x} - \log(1 + y),$

and since $B \le x^{\lambda}$, this inequality does not hold for y > x and x large enough. Further we write $A = A_1 A_2 \cdots A_6$ with $(A_i, A_j) = 1$ and

$$p \mid A_1 \Longrightarrow p > 2x$$

$$p \mid A_2 \Longrightarrow x
$$p \mid A_3 \Longrightarrow 2x_2
$$p \mid A_4 \Longrightarrow x_2
$$p \mid A_5 \Longrightarrow 2x_3
$$p \mid A_6 \Longrightarrow p \le 2x_3,$$$$$$$$$$

where x_2 and x_3 are defined by (62). Similarly, we write $D = D_1 D_2 \dots D_5$, with $(D_i, D_j) = 1$ and

$$p \mid D_1 \Longrightarrow x/2
$$p \mid D_2 \Longrightarrow x_2
$$p \mid D_3 \Longrightarrow x_2/2
$$p \mid D_4 \Longrightarrow 2x_3
$$p \mid D_5 \Longrightarrow p \le 2x_3.$$$$$$$$$$

We have

ben
$$M = \sum_{i=1}^{6} \operatorname{ben}(A_i N_{\varepsilon}) + \sum_{i=1}^{5} \operatorname{ben}(N_{\varepsilon}/D_i),$$

and denoting by v_i (resp. v'_i) the number of solutions of

 $\operatorname{ben}(A_i N_{\varepsilon}) \leq B \quad (\operatorname{resp. ben}(N_{\varepsilon}/D_i) \leq B),$

we have

$$\nu \le \prod_{i=1}^{6} \nu_i \prod_{i=1}^{5} \nu'_i.$$
(72)

In (72), we shall see that the main factors are v_2 and v'_1 and the other ones are negligible.

Estimation of v_2 . Let us denote the primes between x and 2x by $x < P_1 < P_2 < \cdots < P_r \le 2x$, and let

$$A_2 = P_1^{y_1} P_2^{y_2} \cdots P_r^{y_r}, \quad y_i \ge 0.$$

From the Brun-Titchmarsh inequality, it follows for $i \ge 2$ that

$$i = \pi(P_i) - \pi(x) \le 2\frac{P_i - x}{\log(P_i - x)} \le 2\frac{P_i - x}{\log 2(i - 1)}$$

and it follows from Lemma 1:

$$P_i - x \ge \frac{i}{2} \log 2(i-1) \ge \frac{i \log i}{2} \ge 0.23 p_i.$$

By (60) and (61) we have $\alpha_{P_i} = 0$ and

$$ben(A_2N_{\varepsilon}) \ge \sum_{i=2}^{r} \varphi_1(\varepsilon, P_i, 0, y_i) = \sum_{i=2}^{r} \varepsilon y_i \log(P_i/x)$$
$$\ge \sum_{i=2}^{r} \varepsilon y_i \frac{P_i - x}{P_i} \ge \sum_{i=2}^{r} \frac{\varepsilon y_i}{2x} (P_i - x) \ge \sum_{i=2}^{r} 0.115 \frac{\varepsilon y_i}{x} p_i.$$

By (71), the number of possible choices for y_1 is less than (x + 1), so that v_2 is certainly less than (x + 1) times the number of solutions of:

$$\sum_{i=2}^{\infty} p_i y_i \le \frac{Bx}{\varepsilon(0.115)} \le 12.6Bx \log x,$$

and, by Lemma 2,

$$\nu_2 \le (x+1) \exp\left\{ (1+o(1)) \frac{2\pi}{\sqrt{3}} \sqrt{\frac{12.6Bx \log x}{\log(Bx)}} \right\} \le \exp\left(\frac{13\sqrt{Bx}}{\sqrt{1-\mu}}\right).$$

Estimation of v_1 . First we observe that, if a large prime *P* divides *M* and ben $M \le B$ then we have:

$$B \ge \operatorname{ben} M \ge \operatorname{ben}_p(M) \ge \varphi_1(\varepsilon, P, 0, \beta_p) \ge \varepsilon \log(P/x),$$

DIVISOR FUNCTION

so that

$$P \le x \exp(B/\varepsilon) = x \exp\left(\frac{B\log x}{\log 2}\right)$$

If λ is large, we divide the interval $[0, \lambda]$ into equal subintervals: $[\lambda_i, \lambda_{i+1}], 0 \le i \le s-1$, such that $\lambda_{i+1} - \lambda_i < \frac{1-\lambda}{2}$. We set $T_0 = 2x$, $T_i = x \exp(x^{\lambda_i})$ for $1 \le i \le s-1$, and $T_s = x \exp(\frac{B \log x}{\log 2})$. If $\lambda < \frac{1}{3}$, there is just one interval in the subdivision. Further, we write $A_1 = a_1 a_2 \dots a_s$ with $p \mid a_i \Longrightarrow T_{i-1} , and if we denote the number of solutions$ $of ben <math>(a_i N_{\varepsilon}) \le B$ by $v_1^{(i)}$ clearly we have

$$\nu_1 \leq \prod_{i=1}^s \nu_1^{(i)}.$$

To estimate $\nu_1^{(i)}$ let us denote the primes between T_{i-1} and T_i by $T_{i-1} < P_1 < \cdots < P_r \leq T_i$, and let $a_i = P_1^{y_1} \cdots P_r^{y_r}$. We have

$$B \ge \operatorname{ben}(a_i N_{\varepsilon}) \ge \sum_{i=1}^{r} \varphi_1(\varepsilon, P_i, 0, y_i) = \sum_{i=1}^{r} \varepsilon y_i \log \frac{P_i}{x}$$
$$\ge \sum_{i=1}^{r} \varepsilon y_i \log \frac{T_{i-1}}{x}.$$

If i = 1, $T_0 = 2x$, this implies $\sum_{i=1}^r y_i \le \frac{B(\log x)}{(\log 2)^2} \le 3B \log x$, and by Lemma 3,

$$\psi_1^{(1)} \le \exp(3B\log x \log(2r)) \le \exp(3B\log x \log T_1) \le \exp((1+o(1))Bx^{\lambda_1}).$$

If i > 1, we have $\sum_{i=1}^{r} y_i \le \frac{B}{\varepsilon x^{\lambda_{i-1}}}$, and by Lemma 3,

$$\nu_1^{(i)} \le \exp\left(\frac{B}{\varepsilon x^{\lambda_{i-1}}} \log T_i\right) \le \exp\left\{(1+o(1))Bx^{\lambda_i-\lambda_{i-1}}\right\},\,$$

and from the choice of the λ_i 's, one can easily see that, for $B \leq x^{\lambda}$, $\nu_1 = \prod_{i=1}^{s} \nu_1^{(i)}$ is negligible compared with ν_2 .

The other factors of (72) are easier to estimate:

Estimation of v_3 . Let us denote the primes between $2x_2$ and x by $2x_2 < P_r < P_{r-1} < \cdots < P_1 \le x$. By (62) and (4), $x_2 = x^{\theta}$, and by (63), $\alpha_{P_i} = 1$. Let us write $A_3 = P_1^{y_1} \cdots P_r^{y_r}$. We have

$$B \ge \operatorname{ben}(A_3 M) \ge \sum_{i=1}^r \varphi_1(\varepsilon, P_i, 1, 1+y_i) = \sum_{i=1}^r \varepsilon y_i \log \frac{P_i}{x_2} \ge \sum_{i=1}^r \frac{(\log 2)^2}{\log x} y_i.$$

So, $\sum_{i=1}^{r} y_i \le B \log x / (\log 2)^2 \le 3B \log x$, and by Lemma 3,

$$\nu_3 \le \exp(3B\log x \log(2r)) \le \exp(3B(\log x)^2).$$

Estimation of v_4 . Replacing x by x_2 the upper bound obtained for v_2 becomes:

$$\nu_2 = \exp(O(\sqrt{Bx_2})) = \exp(O(\sqrt{Bx^{\theta}}))$$

Estimation of v_5 . Replacing x by x_2 , the upper bound obtained for v_3 becomes:

 $\nu_5 \le \exp(3B\log x \log x_2) = \exp(3\theta B(\log x)^2).$

Estimation of v_6 . Let $p_1, p_2, \ldots, p_r \le 2x_3$ be the first primes and write $A_6 = p_1^{y_1} p_2^{y_2} \cdots p_r^{y_r}$. By (71), $y_i \le x$, and thus by (62),

$$v_6 \le (x+1)^r \le (x+1)^{x_3} = \exp(x^{1-\theta}\log(x+1))$$

and for $B \ge x^{-\mu}$ and $\mu < 0.16$, this is negligible compared with ν_2 .

Estimation of v'_1 . Let us denote the primes between $\frac{x}{2}$ and x by $\frac{x}{2} < P_r < P_{r-1} < \cdots < P_1 \le x$, and let $D_1 = P_1^{y_1} \cdots P_r^{y_r}$. We have $\alpha_{P_i} = 1$ and since D_1 divides N_{ε} , $y_i = 0$ or 1. By a computation similar to that of v_2 , we obtain

$$B \ge \operatorname{ben} \frac{N_{\varepsilon}}{D_1} \ge \sum_{i=2}^r \varphi_2(\varepsilon, P_i, 1, y_i) = \sum_{i=2}^r \varepsilon y_i \log \frac{x}{P_i} \ge \sum_{i=2}^r \varepsilon y_i \frac{x - P_i}{x},$$

and by using the Brun-Titchmarsch inequality and Lemma 1, it follows that

$$\sum_{i=2}^{r} p_i y_i \le \frac{Bx}{0.23\varepsilon} \le 6.3 Bx \log x.$$

Thus, as y_1 can only take 2 values, by Lemma 2 we have

$$v_1' \le 2 \exp((1+o(1))\frac{2\pi}{\sqrt{3}}\sqrt{\frac{6.3Bx\log x}{\log(Bx)}} \le \exp(9.2\sqrt{Bx}).$$

Estimation of v'_2 . By an estimation similar to that of v_3 , replacing φ_1 by φ_2 and using Lemma 3, we get

$$\nu_2' \le \exp(3B\log^2 x).$$

Estimation of v'_3 . Replacing x by x_2 , it is similar to that of v'_1 and we get

$$\nu_3' = \exp(O(\sqrt{Bx_2})).$$

Estimation of v'_4 . Replacing *x* by x_2 , we get, as for v'_2 ,

$$\nu_4' \le \exp(3B\log x \log x_2) = \exp(3\theta B \log^2 x).$$

Estimation of v'_5 . As we have seen for v_6 , we have

$$D_5 = p_1^{y_1} \cdots p_r^{y_r}$$

with $y_i \leq \alpha_{p_i} \leq 3 \log x$ and $r \leq \pi (2x_3) \leq x_3$. Thus

$$\nu_5' \le (1 + 3\log x)^r \le \exp(x^{1-\theta}\log(1 + 3\log x)).$$

By formula (68) and the estimates of v_i and v'_i , the proof of Theorem 6 is completed. \Box

By a more careful estimate, it would have been possible to improve the constant in (68). However, using the Brun-Titchmarsch inequality we loose a factor $\sqrt{2}$, and we do not see how to avoid this loss. A similar method was used in [3]. Also, the condition $\mu < 0.16$ can be replaced easily by $\mu < 1$.

7. Proof of Theorem 3

We shall need the following lemmas:

Lemma 4. Let n_j the sequence of h.c. numbers. There exists a positive real number c such that for j large enough, the following inequality holds:

$$\frac{n_{j+1}}{n_j} \le 1 + \frac{1}{(\log n_j)^c}.$$

Proof: This result was first proved by Erdős in [2]. The best constant *c* is given in [8]:

$$c = \frac{\log(15/8)}{\log 8} (1 - \tau_0) = 0.1405\dots$$

with the value of τ_0 given by (8).

Lemma 5. Let n_j be a h.c. number, and N_{ε} the superior h.c. number preceding n_j . Then the benefit of n_j (defined by (65)) satisfies:

ben
$$n_j = O((\log n_j)^{-\gamma}).$$

Proof: This is Theorem 1 of [8]. The value of γ is given by

$$\gamma = \theta (1 - \tau_0) / (1 + \kappa) = 0.03157 \dots$$

where θ , τ_0 and κ are defined by (4), (8) and (22).

To prove Theorem 3, first recall that n_k is defined so that

$$n_k \le X < n_{k+1}. \tag{73}$$

П

We define N_{ε} as the largest s.h.c. number $\leq n_k$. Now let $n \in S(X, z)$. We get from (65):

ben
$$n = \varepsilon \log \frac{n}{N_{\varepsilon}} - \log \frac{d(n)}{d(N_{\varepsilon})},$$

ben $n_k = \varepsilon \log \frac{n_k}{N_{\varepsilon}} - \log \frac{d(n_k)}{d(N_{\varepsilon})}$

and, subtracting,

ben
$$n = ben n_k + \varepsilon \log \frac{n}{n_k} - \log \frac{d(n)}{d(n_k)}$$
.

But $n \in S(X, z)$ so that $n \leq X$ and $d(n) \geq zd(n_k)$. Thus

ben
$$n \leq \operatorname{ben} n_k + \varepsilon \log \frac{X}{n_k} + \log(1/z).$$

By (73) and Lemma 4, we have $n_k \sim X$, and by (60), (64), (73) and Lemma 4, we have

$$\varepsilon \log \frac{X}{n_k} \le \varepsilon \log \frac{n_{k+1}}{n_k} \le \frac{1}{(\log X)^{c+o(1)}}.$$

By Lemma 5,

ben
$$n \le B = \log \frac{1}{z} + O(\log X)^{-\gamma}$$
.

Applying Theorem 6 completes the proof of Theorem 3.

8. An upper bound for $d(n_{j+1})/d(n_j)$

We will prove:

Theorem 7. There exists a constant c > 0 such that for n_j large enough, the inequality

$$\frac{d(n_{j+1})}{d(n_j)} \le 1 + \frac{1}{(\log n_j)^c}$$

holds. Here c can be chosen as any number less than γ defined in Lemma 5.

Proof: Let N_{ε} the s.h.c. number preceding n_j . We have by Lemma 5 ben $(n_j) = O((\log n_j)^{-\gamma})$ and ben $(n_{j+1}) = O((\log n_j)^{-\gamma})$. Further, it follows from (65) that

$$\log \frac{d(n_{j+1})}{d(n_j)} = \varepsilon \log \frac{n_{j+1}}{n_j} + \operatorname{ben}(n_{j+1}) - \operatorname{ben}(n_j) \le \log \frac{n_{j+1}}{n_j} + \operatorname{ben}(n_{j+1})$$

which, by using Lemma 4 and Lemma 5, completes the proof of Theorem 7.

DIVISOR FUNCTION

References

- R.C. Baker and G. Harman, "The difference between consecutive primes," Proc. London Math. Soc. 72 (1996), 261–280.
- 2. P. Erdős, "On highly composite numbers," J. London Math. Soc. 19 (1944), 130-133.
- 3. P. Erdős and J.L. Nicolas, "Sur la fonction: nombre de diviseurs premiers de *n*," *l'Enseignement Mathématique* **27** (1981), 3–27.
- N. Feldmann, "Improved estimate for a linear form of the logarithms of algebraic numbers," *Mat. Sb.* 77(119), (1968), 423–436 (in Russian); *Math. USSR-Sb.* 6 (1968), 393–406.
- G.H. Hardy and S. Ramanujan, "Asymptotic formulae for the distribution of integers of various types," *Proc. London Math. Soc.* 16 (1917), 112–132. Collected Papers of S. Ramanujan, 245–261.
- 6. G.H. Hardy and E.M. Wright, *An Introduction to the Theory of Numbers*, 5th edition, Oxford at the Clarendon Press, 1979.
- J.L. Nicolas, "Ordre maximal d'un élément du groupe des permuatations et highly composite numbers," Bull. Soc. Math. France 97 (1969), 129–191.
- J.L. Nicolas, "Répartition des nombres hautement composés de Ramanujan," Can. J. Math. 23 (1971), 116–130.
- 9. J.L. Nicolas, "Répartition des nombres largement composés," Acta Arithmetica 34 (1980), 379-390.
- 10. J.L. Nicolas, "Nombres hautement composés," Acta Arithmetica 49 (1988), 395-412.
- 11. J.L. Nicolas, "On highly composite numbers," *Ramanujan Revisited* (Urbana-Champaign, Illinois, 1987), Academic Press, Boston, 1988, pp. 215–244.
- 12. J.L. Nicolas and A. Sárközy, "On two partition problems," Acta Math. Hung. 77 (1997), 95-121.
- S. Ramanujan, "Highly composite numbers," *Proc. London Math. Soc.* 14 (1915), 347–409; Collected Papers, 78–128.
- 14. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.
- S. Ramanujan, "Highly composite numbers," annotated by J.L. Nicolas and G. Robin, *The Ramanujan Journal* 1 (1997), 119–153.
- G. Rhin, "Approximants de Padé et mesures effectives d'irrationalité," Séminaire Th. des Nombres D.P.P., 1985–86, Progress in Math. no. 71, Birkhäuser, 155–164.
- 17. G. Robin, "Méthodes d'optimisation pour un problème de théorie des nombres," *R.A.I.R.O. Informatique théorique* **17** (1983), 239–247.
- J.B. Rosser and L. Schoenfeld, "Approximate formulas for some functions of prime numbers," *Illinois J. Math.* 6 (1962), 64–94.
- A. Selberg, "On the normal density of primes in small intervals and the difference between consecutive primes," Arch. Math. Naturvid. 47 (1943), 87–105.