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Abstract. Let A be a set of positive integers. Let us denote by p(A, n) the
number of partitions of n with parts in A. While the study of the parity of the
classical partition function p(N, n) (where N is the set of positive integers) is
a deep and di�cult problem, it is easy to construct a set A for which p(A, n)
is even for n large enough : as explained in a paper of I.Z. Ruzsa, A. Sárközy
and J.-L. Nicolas published in 1998 in the Journal of Number Theory , if B
is a subset of {1, 2, . . . , N}, there is a unique set A = A0(B, N) such that
A ∩ {1, 2, . . . , N} = B and p(A, n) is even for n > N .

In this paper we recall some properties of the sets A0(B, N), we describe
the factorization into primes of the elements of the set A0({1, 2, 3}, 3), and
prove that the number of elements of this set up to x is asymptotically
equivalent to c

x

(log x)3/4
, where c = 0.937 . . ..

Résumé. Si A est un ensemble d'entiers positifs, nous noterons p(A, n) le
nombre de partitions de n dont les parts sont dans A. L'étude de la parité
de la fonction usuelle de partition p(N, n) (où N est l'ensemble des entiers
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positifs) est un problème profond et di�cile ; mais il est facile de construire un
ensemble A tel que le nombre p(A, n) soit pair pour tout n assez grand : dans
un article paru au Journal of Number Theory en 1998, I.Z. Ruzsa, A. Sárközy
et J.-L. Nicolas montrent que si B est un sous-ensemble de {1, 2, . . . , N}, il
existe un seul ensemble A = A0(B, N) tel que A ∩ {1, 2, . . . , N} = B et
p(A, n) est pair pour n > N .

Dans cet article, nous rappelons quelques propriétés des ensembles A =
A0(B, N), nous décrivons la décomposition en facteurs premiers des éléments
de A0({1, 2, 3}, 3) et nous montrons que le nombre des éléments de cet en-
semble inférieurs à x est équivalent à c

x

(log x)3/4
, où c = 0.937 . . ..

1 Introduction.

N0 and N denote the set of the non negative integers, resp. positive inte-
gers. A will denote a set of positive integers, and its counting function will
be denoted by A(x) :

A(x) = |{a : a ≤ x , a ∈ A}|.

If A = {a1, a2, . . .} ⊂ N (where a1 < a2 < · · · ), then p(A, n) denotes the
number of partitions of n with parts in A, that is the number of solutions of
the equation

a1x1 + a2x2 + . . . = n (1.1)

in non negative integers x1, x2, . . . . As usual, we shall set

p(A, 0) = 1 and p(A, n) = 0 for n < 0. (1.2)

We shall use the generating function :

F (z) = FA(z) =
∞∑
n=0

p(A, n)zn =
∏
a∈A

1

1− za
· (1.3)

When A = N it seems highly probable that the number of integers n ≤ x
such that p(N, n) is even is close to x/2 as x → ∞ ; but the known results
are rather poor (see [11], [14], [15] and the references in them). That is the
reason for which, in [11], it was observed that there exist sets A such that
p(A, n) is even for n large enough. In this paper, we want to investigate the
properties of such sets.

For i = 0 or 1, if A ⊂ N and there is a number N such that

p(A, n) ≡ i (mod 2) for n ∈ N , n > N. (1.4)
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then A is said to possess property Pi(N).
If i = 0 or 1, B is a �nite set of positive integers, and N ∈ N satisfying

B = {b1, . . . , bk} 6= ∅, 0 < b1 < · · · < bk, N ≥ bk (1.5)

then there is (cf. [11]) a unique set A ⊂ N such that

A ∩ {1, 2, . . . , N} = B (1.6)

and possessing property Pi(N) ; we will denote it by Ai(B, N).
Let us recall the construction of Ai(B, N) as described in [11], when, for

instance, i = 0. The set A = A0(B, N) will be de�ned by recursion. We write
An = A ∩ {1, 2, . . . , n} so that

AN = A ∩ {1, 2, . . . , N} = B.

Assume that n ≥ N + 1 and An−1 has been de�ned so that p(A,m) is even
for N + 1 ≤ m ≤ n− 1. Then set

n ∈ A if and only if p(An−1, n) is odd.

It follows from the construction that for n ≥ N + 1, we have

if n ∈ A , p(A, n) = 1 + p(An−1, n)

if n /∈ A , p(A, n) = p(An−1, n)

which shows that p(A, n) is even for n ≥ N + 1. Note that in the same way,
any �nite set B = {b1, b2, . . . , bk} can be extended to a set A so that Abk = B
and the parity of p(A, n) is given for n ≥ N + 1 (where N is any integer such
that N ≥ bk).

It has been shown in [5] (cf. Proposition 4) that, except the case i = 1,
B = {1}, the set Ai(B, N) is always in�nite.

If A ⊂ N, let χ(A, n) denote the characteristic function of A, i.e.,

χ(A, n) =

{
1 if n ∈ A
0 if n /∈ A, (1.7)

and for n ≥ 1,
σ(A, n) =

∑
d |n

χ(A, d)d =
∑

d |n, d∈A

d. (1.8)

It is relevant to consider σ(A, n), since, as shown in [11], taking the logarith-
mic derivative of F (z) = FA(z) de�ned by (1.3) yields

z
F ′(z)

F (z)
=
∞∑
n=1

σ(A, n)zn. (1.9)
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It has been proved in [5] that for any positive integer k and any set
A = Ai(B, N), the sequence(

σ(A, 2kn) mod 2k+1
)
n≥1

is periodic. (1.10)

(We denote by a mod b the remainder in the Euclidean division of a by b.)
Note that (1.10) was already proved for k = 0 in [11], and for k = 1 in [3]. The
value of the smallest period in (1.10) is recalled in Theorem A below, proved
in [5]. Before stating Theorem A, we need to introduce two de�nitions.

De�nition 1 Let F2 be the �eld with two elements and Q(z) ∈ F2[z] be a
polynomial satisfying Q(0) 6= 0. The order β of Q is the least positive integer
such that Q(z) divides 1 + zβ in F2[z] (cf. [9], chap. 3).

From now on, we shall assume that i = 0, for simplicity (the case i = 1
can be found in [5]). For B and N as in (1.5) and A = A0(B, N), let us de�ne
the polynomial P (already considered in [12] and [5]) :

P (z) =
∑

0≤n≤J

εnz
n (1.11)

where J is the largest integer such that p(A, J) is odd (such a J does exist
since, from (1.2), p(A, 0) = 1), and εn is de�ned by

p(A, n) ≡ εn (mod 2), εn ∈ {0, 1}. (1.12)

Theorem A (cf. Theorem 2 of [5]). Let B and N as in (1.5), A =
A0(B, N), and P be the polynomial de�ned by (1.11) and (1.12). Let the
factorization of P into irreducible factors over F2[z] be

P = Qα1
1 Q

α2
2 . . . Qαs

s . (1.13)

We denote by βi the order of Qi(z) (cf. De�nition 1), and for all k ≥ 0, we
set

Jk = {j; 1 ≤ j ≤ s, αj ≡ 2k (mod 2k+1)}, (1.14)

Ik = J0 ∪ J1 ∪ . . . ∪ Jk = {j; 1 ≤ j ≤ s, αj 6≡ 0 (mod 2k+1)} (1.15)

and
qk = lcm j∈Ik βj (1.16)

(with qk = 1 if Ik = ∅). Then, for all k ≥ 0, qk is odd and is the smallest
period of (1.10) so that

σ(A, 2k(n+ qk)) ≡ σ(A, 2kn) (mod 2k+1). (1.17)
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Note that if 2k0 is the highest power of 2 dividing any exponent αj in (1.13),
for k > k0, we have Jk = ∅, Ik = Ik0,

qk = q
def
= lcm (β1, β2, . . . , βs)

and q is a common period for all the sequences
(
σ(A, 2kn) mod 2k+1

)
n≥1

,
k ≥ 0.

Remark 1. In [3], one can �nd examples of B and N such that q0 6= q1.

Note that (1.10) was already proved for k = 0 in [11], and for k = 1 in
[3].

By Möbius inversion formula, (1.8) gives

nχ(A, n) =
∑
d |n

µ(d)σ(A, n/d) (1.18)

where µ is the Möbius function. If n is odd, by (1.10) with k = 0, we know the
value of σ(A, n) mod 2, and this allows us from (1.18) to determine χ(A, n)
for any set A = Ai(B, N). This has been done in [12] for A = A0({1, 2, 3}, 3)
and in [13] for A = A0({1, 2, 3, 4, 5}, 5). In [3], the validity of (1.10) for k = 1
has been used to determine the elements of A = A0({1, 2, 3}, 3) which are
congruent to 2 modulo 4.

Similarly, it is possible to deduce from (1.10) the value of χ(A, n) where
n is any positive integer. For that, it is convenient for m odd to introduce
the sum

S(m, k) = χ(A,m) + 2χ(A, 2m) + . . .+ 2kχ(A, 2km). (1.19)

If n writes n = 2km with k ≥ 0 and m odd, (1.8) implies

σ(A, n) = σ(A, 2km) =
∑
d |m

dS(d, k), (1.20)

which, by Möbius inversion formula, gives

mS(m, k) =
∑
d |m

µ(d)σ(A, n/d) =
∑
d |m

µ(d)σ(A, n/d), (1.21)

where m =
∏
p |m

p denotes the radical of m. In the above sums, n/d is

always a multiple of 2k, so that, from (1.10) , the value of σ(A, n/d) and thus
the value of S(m, k) are known modulo 2k+1. Therefore, from (1.19), we can
deduce the value of χ(A, 2im) for i ≤ k.
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In Section 4, by the above described method, the multiplicative structure
of the elements of A = A0({1, 2, 3}, 3) will be given (Theorem 2), with the
surprising property that, for this set A, the 2-adic expansion :

1 + 2χ(A, 2) + 4χ(A, 4) + . . .+ 2kχ(A, 2k) + . . . (1.22)

is one of the 2-adic roots of the equation x2 − x + 2 = 0. From Theorem 2,
and from an extension of the so-called Selberg-Delange formula given in [4],
we shall give in Section 5 (Theorem 3) an asymptotic estimation for A(x) :

A(x) ∼ c
x

(log x)3/4
, x→∞ (1.23)

where c is a constant the value of which is approximately 0.937.
The work done in Sections 3 and 4 for the set A = A0({1, 2, 3}, 3) could

be done, in principle, for any set A = Ai(B, N). But, for technical reasons,
the calculation can be di�cult. We hope to return to this subject in an other
article.

We are pleased to thank M. Deléglise for computing the values of A(x)
(cf. Section 5), D. Barsky, K. Belabas and A. Sárközy for several remarks.

2 The Grae�e transformation.

Let us consider the ring of formal power series C[[z]]. For an element

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . .

of this ring, the product

f(z)f(−z) = b0 + b1z
2 + b2z

4 + . . .+ bnz
2n + . . .

is an even power series with

b0 = a2
0, b1 = 2a0a2 − a2

1, . . . , bn = 2

(
n−1∑
i=0

(−1)iaia2n−i

)
+ (−1)na2

n. (2.1)

We shall call g = G(f) the series

g(z) = G(f)(z) = b0 + b1z + b2z
2 + . . .+ bnz

n + . . . . (2.2)

Note that we have

g(z2) = G(f)(z2) = f(z)f(−z). (2.3)
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Example. If q is an odd integer and f(z) = 1−zq, we have f(z)f(−z) =
(1− zq)(1 + zq) = 1− z2q, and

G(f) = f. (2.4)

If f is a polynomial of degree n which does not vanish in 0, and if f̃(z) =
znf(1/z) is the reciprocal polynomial of f , then we have

G(f̃) = (−1)n˜G(f). (2.5)

It is obvious that, for any two series f and g, the formulas

G(fg) = G(f)G(g) (2.6)

and, if g(0) = 1,
G(f/g) = G(f)/G(g) (2.7)

hold. We shall often use the following notation for the iterates of f by the
transformation G :

f0 = f, f1 = G(f), f2 = G(f1), . . . , fk = G(fk−1) = G(k)(f), . . . (2.8)

Proposition 1. Let f be a polynomial of degree n whose roots are z1,
z2, . . . , zn and leading coe�cient is an. Then the polynomial g = G(f), where
G is de�ned by (2.2), has a leading coe�cient equal to (−1)na2

n and its roots
are z2

1, z2
2 , . . . , z

2
n.

Proof. From the relations

f(z) = an(z − z1)(z − z2) . . . (z − zn)

and
f(−z) = an(−z − z1)(−z − z2) . . . (−z − zn)

it follows that

f(z)f(−z) = (−1)na2
n(z2 − z2

1)(z2 − z2
2) . . . (z2 − z2

n)

and therefore, from (2.3)

g(z) = G(f)(z) = (−1)na2
n(z − z2

1)(z − z2
2) . . . (z − z2

n), (2.9)

which completes the proof of Proposition 1. �
In numerical analysis (cf. [8], [2] or [16]), the Grae�e method is used to

compute an approximate value of the roots of a polynomial equation f(x) =
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0. The �rst step of the method is to calculate fk de�ned by (2.8) for k large
enough. From Proposition 1, the roots of fk are z2k

1 , . . . , z
2k

n , and, if we assume
that |z1| > |z2| > . . . > |zn|, the sum of the roots of fk is close to z2k

1 which
yields an approximate value for |z1|. This old method is being revisited in
the frame of computer algebra (cf. [7]).

Proposition 2. Let f(z) ∈ C[[z]], f(0) 6= 0,and

z
f ′(z)

f(z)
=
∞∑
n=1

anz
n. (2.10)

Then, for k ≥ 1, we have

∞∑
n=1

a2knz
n = z

f ′k(z)

fk(z)
=

z

fk(z)

d

dz
fk(z), (2.11)

where fk = G(k)(f) is de�ned by (2.2) and (2.8).

Remark 2. Here and in the sequence, f ′k will denote the derivative of fk
(and not the k-iterate of f ′).

Proof. We shall prove Proposition 2 by induction on k. For k = 1 and
z = y2, we have from (2.10) and (2.3)

∞∑
n=1

a2nz
n =

∞∑
n=1

a2ny
2n =

1

2

∞∑
n=1

(any
n + an(−y)n)

=
1

2

(
y
f ′(y)

f(y)
− yf

′(−y)

f(−y)

)
=
y

2

f ′(y)f(−y)− f(y)f ′(−y)

f(y)f(−y)

=
y

2f1(y2)

d

dy
f1(y2) = z

f ′1(z)

f1(z)
. (2.12)

Further, the induction on k is easy, by substituting a2kn to a2n and fk−1 to
f in (2.12). �

De�nition 2. We shall say that two power series f, g with integral coef-
�cients are congruent modulo M (where M is any positive integer) if their
coe�cients of same degree are congruent modulo M . In other words, if

f(z) = a0 + a1z + a2z
2 + . . .+ anz

n + . . . ∈ Z[[z]]

and
g(z) = b0 + b1z + b2z

2 + . . .+ bnz
n + . . . ∈ Z[[z]]
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then,

f ≡ g (mod M) ⇐⇒ ∀n ≥ 0, an ≡ bn (mod M). (2.13)

Congruences of formal power series may be added or multiplied. If

f ≡ g (mod M) (2.14)

and
u ≡ v (mod M), u ∈ Z[[z]], v ∈ Z[[z]]

then

f + u ≡ g + v (mod M) and fu ≡ gv (mod M). (2.15)

You may derivate (2.14) and get

f ′ ≡ g′ (mod M). (2.16)

Moreover, if f(0) = g(0) = 1, 1/f and 1/g have integer coe�cients and we
have, if (2.14) holds

1

f
≡ 1

g
(mod M). (2.17)

It is also easy to see that, for f ∈ Z[[z]] and G de�ned by (2.2) we have

G(f) ≡ f (mod 2). (2.18)

Proposition 3. Let f and g be two formal power series with integral
coe�cients such that f ≡ g (mod 2). Then, for k ≥ 0, we have

fk ≡ gk (mod 2k+1), (2.19)

where fk = G(k)(f) and gk = G(k)(g) are de�ned by (2.2) and (2.8).

Proof. Let us start by proving that if u, v ∈ Z[[z]] satisfy

u ≡ v (mod 2M) (2.20)

where M is any positive integer, then u1 = G(u) and v1 = G(v) satisfy

u1 ≡ v1 (mod 4M). (2.21)

It follows from (2.20) that there exists w ∈ Z[[z]] such that

u(z) = v(z) + 2Mw(z).

9



Further, from (2.3)

u1(z2) = u(z)u(−z) = (v(z) + 2Mw(z))(v(−z) + 2Mw(−z))

= v1(z2) + 2M [v(z)w(−z) + w(z)v(−z)] + 4M2w1(z2),

where w1 = G(w). But the above bracket is obviously congruent to 0 modulo
2 so that

u1(z2) ≡ v1(z2) (mod 4M)

which, by substituting z to z2, yields (2.21).
We shall prove Proposition 3 by induction on k. For k = 0, from (2.8),

(2.19) is just our hypothesis f ≡ g (mod 2). Let us assume that (2.19) holds
for a non negative value of k ; then applying (2.21) with u = fk, v = gk and
M = 2k will give

fk+1 ≡ gk+1 (mod 2k+2)

and the proof of Proposition 3 is completed. �

3 The set A = A0({1, 2, 3}, 3).

In all this Section, A will denote the set A0({1, 2, 3}, 3) ; we shall write
p(n), σ(n), χ(n) instead of p(A, n), σ(A, n), χ(A, n) respectively. We shall re-
call in Lemma 1 some classical results on congruences modulo 2k.

Lemma 1. Let a, b and c be integers.
(i) If a is odd and k ≥ 3, the congruence

x2 ≡ a (mod 2k) (3.1)

has no solution if a 6≡ 1 (mod 8), and has four solutions if a ≡ 1 (mod 8).
Two of them satisfy

x2 ≡ a (mod 2k+1). (3.2)

If ρk is a solution of (3.1) which satis�es (3.2) then the four solutions of (3.1)
are ±ρk and ±ρk + 2k−1. By the method of Hensel, ρk can be calculated by
induction : if ρ2

k ≡ a+ ε2k+1 (mod 2k+2), ε ∈ {0, 1}, then ρk+1 = ρk + ε2k+1.
(ii) the congruence

x2 − x+ a ≡ 0 (mod 2k) (3.3)

has no solution if a is odd ; if a is even, it has two solutions, one is even
and the other one is odd. They can be calculated by Hensel's method : if τk
satis�es (3.3), then τk+1 = τk + ε2k is determined from

ε ≡ τ 2
k − τk + a

2k
(mod 2). (3.4)
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(iii) Any congruence x2 + bx + c ≡ 0 (mod 2k) can be put on the form
(3.1) or (3.3) after a change of variable y = x+ bb/2c.

(iv) In the 2-adic �eld Q2, the equation x2 − a = 0 has two roots if and
only if a ≡ 1 (mod 8). If x1 and x2 are the two solutions, we have xi ≡ ±ρk
(mod 2k).

(v) In the 2-adic �eld Q2, the equation x2 − x + a = 0 has two roots x1

and x2 if and only if a is even. Moreover, xi mod 2k are solutions of (3.3).

Proof of (i). It is a classical result that each odd residue class modulo
2k for k ≥ 3 can be written ±5λ with 0 ≤ λ < 2k−2. From this result, it is
not di�cult to prove (i). We may observe that, if ρ is a solution of (3.2),

(±ρ+ 2k−1)2 ≡ a+ 2k (mod 2k+1)

so that ±ρ+ 2k−1 are solutions of (3.1) but not of (3.2).
The Hensel method can be found in [1] or [10]. It can be accelerated to

calculate ρk+1, . . . , ρ2k−1 in terms of ρk.

Proof of (ii). If τk is a solution of (3.3), τk mod 2 is a solution of x2 −
x+a ≡ 0 (mod 2). But if a is odd this last congruence has no solution while,
if a is even, it has two solutions 0 and 1. Both can be extended to solutions
of (3.3), by using (3.4) with k = 1, 2, . . ..

An other possibility to solve (3.3) is to set y = 2x − 1. We have y2 =
4x2−4x+1 ≡ 1−4a (mod 2k+2). But the four solutions of this last congruence
give only two solutions to (3.3).

Since the sum of the two roots is 1 they must have a di�erent parity. To
show (3.4), we calculate

(τk + ε2k)2 − (τk + ε2k) + a ≡ τ 2
k − τk + a− ε2k (mod 2k+1).

Proof of (iii). It is obvious.

Proof of (iv). If

x1 = ε0 + ε12 + ε222 + . . .+ εk2
k + . . .

is a 2-adic solution of x2 − a = 0, then, by writing x1 = Uk + 2kRk, we have
Uk = x1 mod 2k and x2

1 = a ≡ U2
k (mod 2k+1), so that Uk satis�es (3.1) and

(3.2) and thus, from (i), Uk = ±ρk. In the other way, by the Hensel method,
each root of (3.1) satisfying (3.2) can be extended in a 2-adic solution.

Proof of (v). The proof of (v) looks like the one of (iv), but it is easier
since (3.3) has only two solutions while (3.1) has four solutions, and the proof
of Lemma 1 is completed. �
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Theorem 1. Let A = A0({1, 2, 3}, 3). Then :
(i) For all k ≥ 0, the sequence σ(2kn) mod 2k+1 is periodic in n with

period qk = 7.
(ii) If uk = σ(2k) mod 2k+1 and vk = σ(3.2k) mod 2k+1 then

σ(2kn) ≡ uk, vk,−3 (mod 2k+1), respectively as
(n

7

)
= 1,−1, 0. (3.5)

where
(n

7

)
is the Legendre symbol.

(iii) uk and vk are the two solutions of the congruence

x2 − x+ 2 ≡ 0 (mod 2k+1) (3.6)

and satisfy

uk + vk ≡ 1 (mod 2k+1) and uk · vk ≡ 2 (mod 2k+1). (3.7)

Moreover, if k ≥ r,
uk ≡ ur (mod 2r+1). (3.8)

(iv) The equation
x2 − x+ 2 = 0 (3.9)

has two solutions in the 2-adic �eld Q2 ; the odd one is

x1 = 1 + 2 + 23 + 24 + 26 + 213 + 214 + 218 + 219 + 222 + 225 + . . . . (3.10)

We have
uk ≡ x1 (mod 2k+1) . (3.11)

Moreover, the elements of A which are powers of 2 are 1, 2, 23, 24, 26, 213, . . . ;
they are determined by

x1 =
∞∑
k=0

χ(2k)2k. (3.12)

Proof of (i). The polynomial P de�ned by (1.11) and (1.12) is

P (z) = 1 + z + z3 (3.13)

since p(0) = 1, p(1) = 1, p(2) = 2 and p(3) = 3. It is irreducible over F2[z]
so that, in (1.13), s = 1 and Q1 = P . So, it follows from Theorem A that
β1 = 7 and qk = 7 for all k ≥ 0, which proves (i).

Proof of (ii). We shall denote by H the other irreducible polynomial of
degree 3 over F2[z],

H(z) = 1 + z2 + z3. (3.14)
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From (2.8) and Proposition 1, the leading coe�cient of Pk = G(k)(P ) is −1,
and from (2.2), (1.2), (1.11) and (1.12)

Pk(0) = 1 (3.15)

so that we can write

Pk(z) = G(k)(P )(z) = 1 + akz + bkz
2 − z3. (3.16)

Now, we observe that, from (3.13) and (3.14) the polynomials P and H are
reciprocal. So, from (3.16) and (2.5) we have

Hk(z) = G(k)(H)(z) = 1− bkz − akz2 − z3. (3.17)

But we have

1− z7

1− z
= 1 + z + z2 + z3 + z4 + z5 + z6 ≡ P (z)H(z) (mod 2), (3.18)

and this implies, from (2.7), (2.4), (2.6) and Proposition 3 that

1− z7

1− z
= 1 + z + z2 + z3 + z4 + z5 + z6 ≡ Pk(z)Hk(z) (mod 2k+1). (3.19)

By expanding the product PkHk from (3.16) and (3.17), we get from (3.19)

ak − bk ≡ 1 (mod 2k+1) and ak · bk ≡ −2 (mod 2k+1). (3.20)

By applying Proposition 2 to (1.9) (where F (z) = FA(z) is de�ned by (1.3),
we get :

∞∑
n=1

σ(2kn)zn = z
F ′k(z)

Fk(z)
(3.21)

where Fk is the k-iterate of F by the transformation G (cf. (2.8)), and F ′k =
d

dz
(Fk(z)). It follows from (1.3), (1.4), (1.11) and (1.12) that

F ≡ P (mod 2) (3.22)

and Proposition 3 implies that

Fk ≡ Pk (mod 2k+1) (3.23)

for all k ≥ 0. We deduce from (3.15) and (3.23) that

Fk(0) = Pk(0) = 1 (3.24)
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and thus, from (2.15), (2.16) and (2.17), (3.23) implies

z
F ′k(z)

Fk(z)
≡ z

P ′k(z)

Pk(z)
(mod 2k+1). (3.25)

Therefore, from (3.21) and (3.25), it follows :

∞∑
n=1

σ(2kn)zn ≡ z
P ′k(z)

Pk(z)
(mod 2k+1). (3.26)

From (3.26) and (3.19), we have

∞∑
n=1

σ(2kn)zn ≡ z
P ′k(z)

Pk(z)
≡ z

(1− z)P ′k(z)Hk(z)

1− z7
(mod 2k+1). (3.27)

The expansion of the numerator of the right hand side of (3.27) from (3.16),
(3.17) and (3.20) yields

z(1− z)P ′k(z)Hk(z) ≡ (3.28)
akz + akz

2 − bkz3 + akz
4 − bkz5 − bkz6 − 3z7 (mod 2k+1).

By expanding the denominator of the right hand side of (3.27) :
1

1− z7
=

1 + z7 + z14 + . . ., it follows from (3.27) and (3.28) that

σ(2kn) ≡ ak ak −bk ak −bk −bk −3 (mod 2k+1)
resp. as n ≡ 1 2 3 4 5 6 0 (mod 7).

}
(3.29)

The congruences (3.29) give for n = 1 and n = 3

uk = σ(2k) ≡ ak (mod 2k+1) and vk ≡ σ(3 · 2k) ≡ −bk (mod 2k+1). (3.30)

Since the quadratic residue classes modulo 7 are 1, 2 and 4, (3.29) and (3.30)
prove (ii).

Proof of (iii). Formula (3.7) follows from (3.20) and (3.30), and yields
uk(1 − uk) ≡ 2 (mod 2k+1) ; so, uk is a solution of the congruence (3.6). By
the same way vk can be proved to be also a solution of (3.6).

Finally, if k ≥ r,

uk = σ(2k) = ur +
k∑

j=r+1

χ(2j)2j ≡ ur (mod 2r+1),

which shows (3.8) and completes the proof of (iii).
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Proof of (iv). Note that uk = σ(2k) is odd (since 1 ∈ A) while vk is
even (since 1, 3 ∈ A). Since its discriminant −7 is congruent to 1 modulo
8 (cf. Lemma 1), the equation (3.9) has two roots in Q2, x1 ≡ 1 (mod 2)
and x2 ≡ 0 (mod 2). Moreover, x1 mod 2k+1 is solution of (3.6), and as it is
smaller than 2k+1 (like uk) it is equal to uk (because uk ≡ 1 (mod 2)) and
so, (3.11) is proved. Similarly, vk = x2 mod 2k+1.

The expansion (3.10) has been calculated with the function polrootspadic
of PARI. The expansion of x2 is

x2 = 2 + 22 + 25 + 27 + 28 + 29 + 210 + 211 + 212 + 215 + 216 + . . . . (3.31)

At the exception of 21, the powers of 2 appear either in x1 or in x2 ; the
reason is that

x1 + x2 = 1 = 2 +
1

1− 2
= 2 +

∞∑
n=0

2n.

Since uk has been de�ned as equal to σ(2k) =
k∑
i=0

χ(2i)2i, (3.12) follows from

(3.11) and this completes the proof of Theorem 1. �

Numerical table

k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13
uk = 1 3 3 11 27 27 91 91 91 91 91 91 91 8283
vk = 0 2 6 6 6 38 38 166 422 934 1958 4006 8102 8102

4 The elements of A = A0({1, 2, 3}, 3).

Let us de�ne two classical arithmetic functions. If n is a positive integer,
ω(n) will denote the number of distinct primes dividing n while Ω(n) will be
the number of primes dividing n according to multiplicity. We are now ready
to state Theorem 2 which gives the multiplicative structure of the elements
of A.

Theorem 2. Let A = A0({1, 2, 3}, 3). Then :
(i) The elements of A of the form 2k are determined by Theorem 1 (iv).

Similarly, the elements of A of the form 7 · 2k are determined by the even
solution x7 of the 2-adic equation 7x2 + 7x+ 2 = 0

x7 =
∞∑
k=0

χ(7 · 2k)2k (4.1)

= 2 + 22 + 23 + 26 + 27 + 29 + 210 + 212 + 216 + 218 + 220 + 221 + . . .
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(ii) Let p be an odd prime congruent to 1, 2 or 4 modulo 7 (i.e.,
(
p
7

)
= 1).

Then (p, a) = 1 for all a ∈ A.
(iii) If n ∈ N and 49 divides n, then n /∈ A.
(iv) Let n = 2km, and

m = pλ1
1 p

λ2
2 . . . pλhh (4.2)

where pi are primes, distinct and congruent to 3, 5 or 6 modulo 7 and λi are
positive integers. We assume that h = ω(m) ≥ 1 (i.e. m 6= 1) and recall that
Ω(m) = λ1 + . . .+ λh.
• (a) If k ≤ h− 2, then n /∈ A and 7n /∈ A.
• (b) If k = h− 1, then, without any restriction, n ∈ A and 7n ∈ A.
• (c) If k = h− 1 + r, with r ≥ 1, then n ∈ A if and only if

m ≡ (−1)Ω(m)(1− 2ur)`
−1 (mod 2r+1), ` = 1, 3, 5, . . . , 2r − 1. (4.3)

Moreover, the expansion

xm = 1 + χ(2hm)2 + χ(2h+1m)22 + . . .+ χ(2h+jm)2j+1 + . . . (4.4)

is one of the two 2-adic solutions of the equation

m2x2 + 7 = 0. (4.5)

• (d) If k = h− 1 + r, with r ≥ 1, then 7n ∈ A if and only if

m ≡ (−1)Ω(m)(2ur − 1)7−1`−1 (mod 2r+1), ` = 1, 3, 5, . . . , 2r − 1. (4.6)

Moreover, the expansion

x7,m = 1 + χ(7 · 2hm)2 + . . .+ χ(7 · 2h+jm)2j+1 + . . . (4.7)

is one of the two 2-adic solutions of the equation

7m2x2 + 1 = 0. (4.8)

We may observe that for k = 0, 1, 2, we have for m odd, m 6= 1

n = 2km ∈ A ⇐⇒ 7n = 7 · 2km ∈ A. (4.9)

Remark 3. Theorem 2 has been proved for k = 0 in [12] and for k = 1
in [3].
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Proof of (i). From (1.19), we have

S(7, k) = χ(7) + χ(7 · 2)2 + . . .+ χ(7 · 2k)2k (4.10)

and by (1.21) and (3.5)

7S(7, k) =
∑
d | 7

µ(d)σ

(
7 · 2k

d

)
= σ(7 · 2k)− σ(2k) ≡ −3− uk (mod 2k+1), (4.11)

so that S(7, k) ≡ (−3− uk)7−1 (mod 2k+1). Since, from Theorem 1 (iii), uk
is solution of (3.6), a simple calculation shows that S(7, k) is a solution of
7x2 + 7x + 2 ≡ 0 (mod 2k+1). From (3.5), σ(7) = 1 + 7χ(7) ≡ −3 (mod 2)
so that χ(7) = 0 and, from (4.10), S(7, k) is even, which proves (i).

Proof of (ii). Let us suppose that n = 2km ∈ A, m odd and multiple of
a prime p ≡ 1, 2, 4 (mod 7). Here we have from (1.19)

S(m, k) = χ(m) + χ(2m)2 + . . .+ χ(2km)2k < 2k+1. (4.12)

We get from (1.21)

mS(m, k) =
∑
d |m

µ(d)σ
(n
d

)
=
∑

d | (m/p)

µ(d)

[
σ
(n
d

)
− σ

(
n

pd

)]
. (4.13)

But, from (3.5), the above bracket is congruent to 0 modulo 2k+1, since(
n/d

7

)
=

(
n/pd

7

)
×
(p

7

)
=

(
n/pd

7

)
. This implies that S(m, k) is congruent

to 0 modulo 2k+1, and as 0 ≤ S(m, k) < 2k+1, S(m, k) vanishes and, from
(4.12), χ(n) = χ(2km) also vanishes which proves (ii).

Proof of (iii). Let us now suppose that n = 2km ∈ A, m odd and
multiple of 49. If we de�ne S(m, k) by (4.12), (4.13) still holds if we replace
p by 7. Now, in the bracket, both n

d
and n

7d
are multiple of 7, so that, from

(3.5), again the bracket is congruent to 0 modulo 2k+1. The proof of (iii) ends
in the same terms than the one of (ii) above.

Proof of (iv). We shall need the following lemma :

Lemma 2.With m,n, h, k as in Theorem 2 (iv), uk as de�ned in Theorem
1, S(m, k) as de�ned by (4.12) (or 1.19), we have

mS(m, k) ≡ 2h−1(2uk − 1)(−1)Ω(m) (mod 2k+1), (4.14)
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and
7mS(7m, k) ≡ −2h−1(2uk − 1)(−1)Ω(m) (mod 2k+1). (4.15)

Proof of Lemma 2. With n = 2km, we have from (1.21),

mS(m, k) =
∑
d |m

µ(d)σ
(n
d

)
=
∑
d |m
µ(d)=1

σ
(n
d

)
−

∑
d |m

µ(d)=−1

σ
(n
d

)
(4.16)

with m = p1 . . . ph. Since
(

2
7

)
= 1 and

(
pi
7

)
= −1, we have(n

7

)
= (−1)Ω(m) and

(
n/d

7

)
= (−1)Ω(m)µ(d).

Let us assume that Ω(m) is even ; then we get from (4.16) and (3.5)

mS(m, k) ≡ uk

 ∑
d |m
µ(d)=1

1

− vk
 ∑

d |m
µ(d)=−1

1

 (mod 2k+1). (4.17)

The �rst (resp. second) sum is the number of subsets of {1, 2, . . . , h} with
an even (resp. odd) cardinal ; they are both equal to 2h−1 (since h ≥ 1), and
from (3.7), (4.17) yields

mS(m, k) ≡ 2h−1(2uk − 1) (mod 2k+1). (4.18)

If Ω(m) is odd, the same calculation leads to a formula looking like (4.18)
where (2uk − 1) is replaced by (1 − 2uk) so that, in both cases, (4.14) is
proved.

With n still being equal to 2km, we have from (1.21)

7mS(7m, k) =
∑
d | (7m)

µ(d)σ

(
7n

d

)
=
∑
d |m

µ(d)σ

(
7n

d

)
−
∑
d |m

µ(d)σ
(n
d

)
. (4.19)

But, 7n/d ≡ 0 (mod 7) so that, by (3.5), σ
(

7n

d

)
≡ −3 (mod 2k+1) and

since m 6= 1,
∑
d |m

µ(d) = 0. Therefore, it follows from (4.19) and (4.16) that

7mS(7m, k) ≡ −
∑
d |m

µ(d)σ
(n
d

)
≡ −mS(m, k) (mod 2k+1), (4.20)
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which, together with (4.14) proves (4.15). �

Let us prove now Theorem 2 (iv) :

Proof of (iv) (a). If k ≤ h− 2, it follows from Lemma 2 (4.14) that

S(m, k) ≡ 0 (mod 2k+1).

From (4.12), this implies S(m, k) = 0 (since 0 ≤ S(m, k) < 2k+1), and,
therefore, χ(n) = χ(2kn) = 0, i.e. n /∈ A.

By using (4.15) instead of (4.14), it can be proved in the same way that
χ(7n) = 0, i.e. 7n /∈ A.

Proof of (iv) (b). If k = h− 1, (4.14) writes

mS(m, k) ≡ 2k(2uk − 1)(−1)Ω(m) (mod 2k+1) (4.21)

so that S(m, k) is a multiple of 2k, and, by dividing (4.21) by 2k, S(m, k)/2k is
odd. But then, from (4.12), S(m, k) = 2kχ(2km) = 2kχ(n) and thus χ(n) = 1
and n ∈ A. A similar proof shows that 7n ∈ A.

Proof of (iv) (c). It follows from (4.14) that S(m, k) is a multiple of
2h−1 and by dividing (4.14) by 2h−1 and using (3.8), we get

m
S(m, k)

2h−1
≡ (2uk − 1)(−1)Ω(m) ≡ (2ur − 1)(−1)Ω(m) (mod 2r+1). (4.22)

But, from (4.12), we have

S(m, k)

2h−1
= 1 + χ(2hm)2 + . . .+ χ(2km)2r, (4.23)

since, by (b), χ(2h−1m) = 1. Let x be the solution of the congruence

mx ≡ −(2ur − 1)(−1)Ω(m) (mod 2r+1), (4.24)

satisfying 0 ≤ x < 2r+1 ; then, from (4.22), 2r+1 − x is equal to
S(m, r)

2h−1
. So,

if x < 2r, it follows from (4.23) that χ(n) = χ(2km) = 1 while, if x > 2r,
χ(n) = 0.

Since uk satis�es (3.6),(
(2ur − 1)(−1)Ω(m)

)2
= 4u2

r − 4ur + 1 ≡ −7 (mod 2r+3) (4.25)

and, so, from (4.22),
S(m, r)

2h−1
is a solution of m2x2 + 7 ≡ 0 (mod 2r+3), and

thus, from (4.23) and Lemma 1, xm is a solution of the 2-adic equation (4.5).
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By using (4.3) with r = 1 we know that 2hm ∈ A if and only if
m(−1)Ω(m) ≡ 3 (mod 4). Thus

χ(2hm) ≡ (−1)Ω(m)m− 1

2
(mod 2) (4.26)

which allows us to distinguish for xm between the two roots of (4.5).

Proof of (iv) (d). It is the same proof than the proof of (c). We just
have to show (4.9), which follows immediately from (4.3) and (4.6) by noting
that 7−1 ≡ −1 (mod 8). In particular, for r = 1, (4.3) and (4.6) coïncide so
that χ(7 ·2hm) = χ(2hm), and thus, formula (4.26) still holds when replacing
χ(2hm) by χ(7 · 2hm). �

If m = pλ1
1 . . . pλhh , for r ≤ 5, (4.3) and (4.6) can be written as

χ(2hm) = χ(7 · 2hm) = 1⇐⇒ (−1)Ω(m)m ≡ 3 (mod 4)

χ(2h+1m) = χ(7 · 2h+1m) = 1⇐⇒ (−1)Ω(m)m ≡ 1, 3 (mod 8)

χ(2h+2m) = 1⇐⇒ (−1)Ω(m)m ≡ 9, 11, 13, 15 (mod 16)

χ(7 · 2h+2m) = 1⇐⇒ (−1)Ω(m)m ≡ 1, 3, 5, 7 (mod 16)

χ(2h+3m) = 1⇐⇒ (−1)Ω(m)m ≡ 1, 5, 11, 15, 19, 23, 25, 29 (mod 32)

χ(7 · 2h+3m) = 1⇐⇒ (−1)Ω(m)m ≡ 1, 3, 5, 7, 9, 11, 13, 15 (mod 32)

χ(2h+4m) = 1⇐⇒
(−1)Ω(m)m ≡ 1, 3, 5, 7, 11, 15, 17, 21, 25, 27, 29, 31, 41, 45, 51, 55 (mod 64)

χ(7 · 2h+4m) = 1⇐⇒
(−1)Ω(m)m ≡5, 7, 9, 11, 21, 23, 25, 27, 33, 35, 45, 47, 49, 51, 61, 63 (mod 64).

5 Estimation of A(x)

In this Section, we want to estimate A(x) where A will denote the set
A0({1, 2, 3}, 3) ; in view of using the description of the elements of A given
in Theorem 2, we need some de�nitions.

Let us denote by F the set of the integers

n = 2hpλ1
1 p

λ2
2 . . . pλhh , h ≥ 1, pi ≡ 3, 5, 6 (mod 7). (5.1)

The elements of F are

F = {6, 10, 18, 26, 34, 38, 50, 54, 60, 62, 82, 94, . . .}. (5.2)
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In [4], it has been proved that the asymptotic equivalence

F (x) = |{n ∈ F ;n ≤ x}| ∼ γ
x

(log x)3/4
(5.3)

holds for x→∞, with

γ =
1

4Γ(5/4)

(
6

π
√

7

)1/4

γ1 (5.4)

and

γ1 =
∏

p≡3,5,6 (mod 7)

((
1 +

1

2p− 2

)(
1− 1

p

)1/2(
1− 1

p2

)−1/4
)
. (5.5)

Calculating the product (5.5) with the primes up to 100000 yields for γ1 the
approximate value 1.07517. Note that, with the method described in [6], it is
possible to calculate γ1 with a very high precision. From Γ(5/4) = 0.906402
and (5.4) the approximate value of γ is

γ = 0.2733. (5.6)

If δ(n) is the characteristic function of F , the Dirichlet's series
∞∑
n=1

δ(n)

ns
has

an Eulerian product for <s > 1

∞∑
n=1

δ(n)

ns
=

∏
p≡3,5,6 (mod 7)

(
1 +

1

(2p)s
+

1

2sp2s
+ . . .+

1

2spks
+ . . .

)

=
∏

p≡3,5,6 (mod 7)

(
1 +

1

2s(ps − 1)

)
. (5.7)

In [4], the proof of (5.3) starts from formula (5.7).
For i = 0 or 1, ` odd, and r ≥ 0 we de�ne

Fi; r, ` = {2hm ∈ F , Ω(m) ≡ i (mod 2), m ≡ ` (mod 2r+1)}. (5.8)

It has been proved in [4] that for r �xed, and x going to in�nity, we have for
any i and `

Fi; r, `(x) = |{n ∈ Fi; r, ` , n ≤ x}| ∼ γ

2r+1

x

(log x)3/4
· (5.9)

From (5.3), (5.9) and Theorem 2, we shall prove
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Theorem 3. Let A = A0({1, 2, 3}, 3). The number A(x) of elements of
A up to x satis�es, when x tends to in�nity :

A(x) ∼ 24γ

7

x

(log x)3/4
(5.10)

where γ is de�ned by (5.4) ; an approximate value of 24γ/7 is 0.937.

Proof. Let A′ be the subset of A whose elements are of the form 2k or
7 · 2k. The number of such elements up to x is clearly

A′(x) = O(log(x)), x→∞. (5.11)

Now, it follows from Theorem 2 (i) and (iv) that

A = A′ ∪
∞⋃
r=0

(
A(r) ∪ A(r,7)

)
(5.12)

where the elements of A(r) are the n's, n ∈ A, n = 2h−1+rpλ1
1 . . . pλhh and

similarly, the elements of A(r,7) are the n's, n ∈ A, n = 7 · 2h−1+rpλ1
1 . . . pλhh .

From Theorem 2 (iv) (b) it follows that for r = 0,

A(0) =
1

2
F and A(0)(x) = F (2x), (5.13)

and
A(0,7) =

7

2
F and A(0,7)(x) = F

(
2x

7

)
. (5.14)

In the same way, if a−1 denotes an inverse of a modulo 2r+1, Theorem 2 (iv)
(c) and (d) implies for r ≥ 1

A(r)(x) =
∑

`∈{1,3,...,2r−1}

(
F0; r, (1−2ur)`−1

( x

2r−1

)
+F1; r, (2ur−1)`−1

( x

2r−1

))
(5.15)

and

A(r,7)(x) =
∑

`∈{1,3,...,2r−1}

F0; r, (2ur−1)(7`)−1

( x

7 · 2r−1

)
+

∑
`∈{1,3,...,2r−1}

F1; r, (1−2ur)(7`)−1

( x

7 · 2r−1

)
. (5.16)

It also follows from Theorem 2 that, for any r ≥ 0, A(r) ⊂ 2r−1F and
A(r,7) ⊂ 7 · 2r−1F so that

A(r)(x) ≤ F
( x

2r−1

)
and A(r,7)(x) ≤ F

( x

7 · 2r−1

)
≤ F

( x

2r−1

)
. (5.17)
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Moreover, from (5.3) and (5.2), there exists an absolute constant K such that

F (x) ≤ K
x

(log x)3/4
for x > 1 and F (x) = 0 for x < 6. (5.18)

It follows from (5.17) and (5.18) that A(r)(x) = A(r,7)(x) = 0 for r >
log(x/3)

log 2
so that (5.12) implies

A(x) = A′(x) +
R′′∑
r=0

(
A(r)(x) + A(r,7)(x)

)
, R′′ =

⌊
log(x/3)

log 2

⌋
. (5.19)

Now, we cut the sum (5.19) in three parts :

A(x) = A′(x) +
R∑
r=0

+
R′∑

r=R+1

+
R′′∑

r=R′+1

def
= A′(x) + S + S ′ + S ′′, (5.20)

where R is a large but �xed integer, and R′ is de�ned by 2R
′−1 ≤

√
x < 2R

′ .
We have from (5.17)

S ′′ =
R′′∑

r=R′+1

(
A(r)(x) + A(r,7)(x)

)
≤ 2

R′′∑
r=R′+1

F
( x

2r−1

)
;

and, by observing that, for r ≤ R′′,
x

2r−1
≥ 6, we get from (5.18)

S ′′ ≤ 2K
R′′∑

r=R′+1

x

(2r−1)(log 6)3/4
≤ 2Kx

2R′−1
≤ 4K

√
x. (5.21)

Similarly, we get

S ′ =
R′∑

r=R+1

(
A(r)(x) + A(r,7)(x)

)
≤ 2

R′∑
r=R+1

F
( x

2r−1

)
≤ 2K

R′∑
r=R+1

x

(2r−1)(log(x/2R′−1))3/4
≤ 2K

R′∑
r=R+1

x

2r−1(log
√
x)3/4

≤ 21+3/4K
x

(log x)3/4

∞∑
r=R+1

1

2r−1
≤ 8K

2R
x

(log x)3/4
· (5.22)

We deduce from (5.15), (5.16) and (5.9) that, for r ≥ 1 and r �xed,

A(r)(x) ∼ γ

2r
x

(log x)3/4
and A(r,7)(x) ∼ γ

7 · 2r
x

(log x)3/4
(x→∞). (5.23)

23



Since R is �xed, we get from (5.13), (5.14), (5.3) and (5.23) for x tending to
in�nity

S = A(0)(x) + A(0,7)(x) +
R∑
r=1

(
A(r)(x) + A(r,7)(x)

)
∼ 8γ

7

x

(log x)3/4

(
2 +

R∑
r=1

1

2r

)
=

8γ

7

(
3− 1

2R

)
x

(log x)3/4
. (5.24)

By making R going to in�nity, (5.10) follows from (5.20), (5.11), (5.21), (5.22)
and (5.24) and the proof of Theorem 3 is completed. �

The following table has been calculated by M. Deléglise by using the
multiplicative structure of the elements of A = A0({1, 2, 3}), 3) given by
Theorem 2. The last line is the asymptotic result of Theorem 3.

Numerical table

x A(x) A(x) (log x)3/4 /x
102 47 1.48
103 293 1.25
104 2 204 1.16
105 17 604 1.100
106 148 834 1.066
107 1 297 167 1.043
108 11 562 386 1.028
. . . . . . . . . . . . .
∞ 0.937
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