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Abstract. In this paper, several longstanding problems that the author has tried to solve, are described. An
exposition of these questions was given in Luminy in January 2002, and now three years later the author is pleased
to report some progress on a couple of them.
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1. Introduction

In January 2002, Christian Mauduit, Joel Rivat and András Sárközy kindly organized in
Luminy a meeting for my sixtieth birthday and asked me to give a talk on the 17th, the day
of my birthday. I presented six problems on which I had worked unsuccessfully. In the next
six Sections, these problems are exposed.

It is a good opportunity to thank sincerely all the mathematicians with whom I
have worked, with a special mention to Paul Erdős from whom I have learned so
much.

1.1. Notation

p, q , qi denote primes while pi denotes the i-th prime. The p-adic valuation of the integer
N is denoted by vp(N ): it is the largest exponent α such that pα divides N . The following
classical notation for arithmetical function is used: ϕ for Euler’s function and, for the number
and the sum of the divisors of N ,

τ (N ) =
∑

d | N

1, σr (N ) =
∑

d | N

dr , σ (N ) = σ1(N ). (1.1)

When x → x0, f (x) � g(x) means f (x) = O (g(x)).

∗Research partially supported by CNRS, Institut Camille Jordan, UMR 5208
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2. Highly composite numbers

Let f be an arithmetic function. An integer N is called f -champion if

M < N ⇒ f (M) < f (N ). (2.1)

The notion of champion number was first introduced by S. Ramanujan in his thesis
[35] where he defined and studied highly composite numbers as τ -champion numbers.
In particular, he has shown that, if Ni denotes the i-th highly composite number, then
Ni+1/Ni = 1 + O( (log log log Ni )3/2√

log log Ni
) from which it follows that the number Qτ (X ) of highly

composite numbers up to X is not of the form

Qτ (X ) = o

(
log X

√
log log X

(log log log X )3/2

)
.

P. Erdős has shown in [9] that

Qτ (X ) � (log X )1+δ

for some δ > 0 by using the recent Theorem of Hoheisel [19]: there exists λ, 0 < λ < 1
such that

π (x + xλ) − π (x) � xλ

log x
(2.2)

where π (x) is the number of primes up to x . The value of λ given by Hoheisel was very
close to 1, but the best known value of λ for which (2.2) holds is now λ = 0.525 (cf. [2]).

I proved in [30] (see also [45]) that

Qτ (X ) = O (log X )c (2.3)

for some c. One of the tools was the recent progress on linear forms of logarithms and more
precisely the result of Feldman [13] that

θ = log 3

log 2
(2.4)

cannot be approximated too closely by rational numbers. The value c = 1.71 is given in
[31], and it is conjectured in [30] that (2.3) holds for any c >

log 30
log 16 = 1.227 . . .

A multiplicative function f satisfies property P if f (pα) does not depend on the prime
p but only on the exponent α. The number τ (N ) of divisors of N satisfies property P since
τ (pα) = α + 1.

In (2.4), 3 and 2 occur as the values of τ (p2) and τ (p). Let us consider a function f
satisfying P and such that f (pα) grows like τ (pα) = α + 1, but such that log f (p2)

log f (p) is a
Liouville number. Then the method of proof of (2.3) given in [30] (see also [45]) no longer
works, and it is not known whether the number Q f (X ) of f -champion numbers up to X
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satisfies

Q f (X ) = O(log X )c f (2.5)

for some constant c f .
Let us call W the set of positive integers with non increasing exponents in their standard

factorization into primes, more precisely

W = {N > 0; p | N , q | N and p < q ⇒ vp(N ) ≥ vq (N )}. (2.6)

The number W (X ) of elements of W up to X has been investigated by G. H. Hardy and S.
Ramanujan who show in [17] that

log W (X ) = (1 + o(1))
2π√

3

√
log X

log log X
, X → +∞.

If f is a multiplicative function satisfying property P , then, clearly, f -champion numbers
belong to the set W , and therefore, W (X ) is an upper bound for Q f (X ). Is it possible to
find a smaller upper bound for Q f (X ) which is valid for any f ?

Let Nk the set of integers of the form 2α1 3α2 . . . pαk
k with αi ≥ 0. Let us call an integer

N ∈ Nk k-highly composite if

M < N and M ∈ Nk ⇒ τ (M) < τ (N )

and let Qk(X ) be the number of k-highly composite numbers up to X . In [3], by using the
continued fraction expansion of θ = log 3

log 2 , it was shown that

4

3
≤ lim

logQ2(X )

log X
≤ lim

logQ2(X )

log X
≤ 3

2
(2.7)

but no estimation for Qk(X ) is given for k ≥ 3.
For k ≥ 2, let us define the multiplicative function fk by

fk(pα) =
{
τ (pα) = α + 1 for α ≤ k

0 for α > k.

Perhaps, the method of [3] can be used to investigate Q f2 (X ), but it seems difficult to

find a good estimate for limX→∞
log Q fk (X )

log X when k > 2.

A superabundant number is a champion for the function σ−1(n) = σ (n)
n . In my first joint

paper with P. Erdős [10], we proved that there exists a positive constant δ such that the
number of superabundant numbers up to X satisfies Qσ−1 (X ) ≥ (log X )1+δ for X large
enough, but we were unable to show that Qσ−1 (X ) � (log X )	 for some 	.
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3. Hyper champions

Let f be a non negative multiplicative function, and assume that there are only finitely many
pairs (q, k) such that f (qk) > 1:

q1; k1,1, k1,2, . . . , k1,
1

q2; k2,1, k2,2, . . . , k2,
2

...

qr ; kr,1, kr,2, . . . , kr,
r .

For each i , 1 ≤ i ≤ r , let us denote by αi one of the indices j , 1 ≤ j ≤ 
i such that f (q
ki, j

i )
is maximal on j . Then, clearly, f will be maximal on N ,

N =
r∏

i=1

qαi
i

(see [18], chap. 18).
For ε > 0, let us set f (n) = σ (n)

n1+ε where σ (n) = ∑
d | n d; f is multiplicative,

f (qk) = 1 + q + . . . + qk

qk(1+ε)
=

1 + 1
q + . . . + 1

qk

qkε
<

2

(qk)ε

and, in order that f (qk) > 1, one should have qk < 21/ε, which is satisfied by only finitely
many pairs (q, k) and, therefore, f (n) is bounded.

In [1] (see also [36, 10]), an integer N for which there exists ε > 0 such that for all
M ≥ 1

σ (M)

M1+ε
≤ σ (N )

N 1+ε

holds, is called colossally abundant. For instance, 60 is colossally abundant for any ε

satisfying

0.09954 . . . = log 15/14

log 2
≤ ε ≤ log 6/5

log 5
= 0.11328 . . .

It is a classical result that (see [18], chap. 18)

lim
σ (n)

n log log n
= eγ (3.1)

where γ = 0.577 . . . is Euler’s constant. From (3.1), it follows that for all u > 0,

lim
σ (n)

n(log n)u
= 0
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and thus, σ (n)
n(log n)u is bounded. Let us call hyper abundant an integer N for which there exists

u such that for all M ≥ 1

σ (M)

M(log M)u
≤ σ (N )

N (log N )u
· (3.2)

It is easy to see that a hyper abundant number is colossally abundant: we have

log
σ (n)

n
− ε log log n =

[
log

σ (n)

n
− u log log n

]
+ {u log log n − ε log n}. (3.3)

If N is a hyper abundant number with parameter u, the bracket is maximal on N , and,
if we choose ε = u

log N , the function t �→ u log log t − ε log t , and thus also the above
curly bracket, is maximal on N ; therefore, (3.3) implies that N is colossally abundant with
parameter ε.

S. Ramanujan first introduced the above notion (see [35, 36]): he defined N to be superior
highly composite if there exists ε > 0 such that for all M ≥ 1

τ (M)

Mε
≤ τ (N )

N ε

holds. Hyper composite numbers were defined by G. Robin in [39] as the numbers maxi-
mizing

log τ (n) − α
log n

log log n
(3.4)

for some α > 0. G. Robin shows that there are infinitely many superior highly composite
numbers which are not hyper composite, and that the number of hyper composite numbers
up to X is larger than (log X )5/12 for X large enough (as shown by S. Ramanujan in [35], the
number of superior highly composite numbers up to X is asymptotically equal to log X ).
P. Erdős was very interested by these hyper composite numbers which have not yet been
investigated too much. Probably, the method used by G. Robin in [39] can be adapted to
study hyper abundant numbers defined by (3.2), but, as far as I know, nobody did it.

The formula

lim
log τ (n)

log n/ log log n
= log 2

is often enounced by saying that the maximal order of log τ (n) is log 2 log n
log log n (see [18], Th. 317

and [31], §VIII). But this notion is not very precise: it is not easy to select a set of numbers
for which τ (n) is very large: the set of highly composite numbers contains the set of superior
highly composite numbers which contains the set of hyper composite numbers maximizing
(3.4). And, in (3.4), we may change the function log n

log log n to obtain smaller and smaller sets
on which τ (n) is larger and larger.
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4. Does H(n) < τ (n) hold for n > 5040?

Let us denote by 1 = d1 < d2 < · · · < dτ (n) = n the increasing sequence of divisors of n,
and by

H(n)
de f==

∑

1≤i< j≤τ (n)

1

d j − di
, n ≥ 2. (4.1)

It is conjectured in [11] (cf. also [25], problem 23, p. 200) that

H(n) < τ (n) for n /∈ S (4.2)

with S = {12, 24, 60, 120, 180, 240, 360, 420, 720, 840, 1260, 1680, 2520, 5040}. Con-
jecture (4.2) has been checked up to n = 106 (for 200000 ≤ n ≤ 106, H(n) ≤ 4

5τ (n)
holds). The following very nice upper bound for H(n) is given by G. Tenenbaum and R. de
la Bretèche (cf. [44], Lemme 1, and [4], Théorème 2):

H(n) ≤ (2 log τ (n) + 1 − log 2)
σ (n)

n
τ (n)c (4.3)

where

c = log 3

log 2
− 2

3
= 0.9182958 . . . (4.4)

In fact, Tenenbaum and de la Bretèche prove

H(n) ≤
∑

m | n

1

m

(
τ

(
n

m

))c
(

∑

1≤s≤(τ (n/m))2/2

1

s

)
(4.5)

which, through the inequality
∑

1≤s≤t
1
s ≤ 1 + log t , yields (4.3).

G. Tenenbaum observes in [44] that

σ (n)

n
� log log(3τ (n)) (4.6)

which, with (4.3), shows that, for τ (n) large enough, H(n) ≤ τ (n) holds. Effective forms
of (4.6) can be found in [33].

Let ε be a fixed positive real number. For which n is the multiplicative function f (n) =
n

ϕ(n)τ (n)ε maximal? Since f (pα) = p
(p−1)(α+1)ε is decreasing in α, such an n should be

squarefree; and, as f (p) = p
(p−1)2ε is smaller than 1 if p > 1

1−2−ε , the maximum is attained
in

Nε =
∏

p≤ 1
1−2−ε

p (4.7)
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and one has, for all n ≥ 1,

n

ϕ(n)τ (n)ε
≤ Nε

ϕ(Nε)τ (Nε)ε
=

∏

p≤ 1
1−2−ε

p

(p − 1)2ε
· (4.8)

Let us choose ε = 0.00186. From the classical inequality σ (n)
n ≤ n

ϕ(n) and from (4.8), we
have, for n ≥ 1,

σ (n)

n
≤ n

ϕ(n)
≤

(
∏

p≤773

p

(p − 1)2ε

)
τ (n)ε ≤ 9.996 τ (n)ε ≤ 10 τ (n)ε. (4.9)

Since the function t �→ 2 log t+1−log 2
t1−c−ε is decreasing for t > 2.4 · 105 and is smaller than 1/10

for t > 1.11 · 1041, it follows from (4.3) and (4.9) that

τ (n) > 1.11 · 1041 ⇒ H(n) < τ (n). (4.10)

The value 1.11·1041 can be slightly shortened by applying classical techniques on champion
numbers, and by using (4.5) instead of (4.3), but not below 1.77 · 1025. Indeed, the upper
bound in 4.5 is certainly not less than τ (n)c

∑
s≤τ (n)2/2

1
s ≥ τ (n)c(2 log τ (n) − log 2) which

is bigger than τ (n) for τ (n) < 1.77 · 1025. As there are infinitely many n’s such that τ (n) ≤
1.77 · 1025, the question “are there finitely many exceptions to the inequality H(n) < τ (n)”
remains open.

Choosing ε = 0.01749, (4.9) becomes

σ (n)

n
≤ n

ϕ(n)
≤

(
∏

p≤79

p

(p − 1)2ε

)
τ (n)ε ≤ 6.1541711 τ (n)ε (4.11)

and so,

H(n)

τ (n)
≤ 6.1541711

2 log(τ (n) + 1 − log 2

τ (n)1−c−ε
≤ 71.212,

by considering the maximum of the function t �→ 2 log t+1−log 2
t1−c−ε . Another open question is

to show that max H(n)
τ (n) = H(60)

τ (60) = 1.126 . . .

5. Landau’s function

Let Sn denote the symmetric group with n letters. The order of a permutation of Sn is the
least common multiple of the lengths of its cycles. Let us call g(n) the maximal order of an
element of Sn . If the standard factorization of M into primes writes M = qα1

1 qα2
2 . . . qαk

k ,
we define 
(M) to be


(M) = qα1
1 + qα2

2 + · · · + qαk
k .
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E. Landau proved in [20] that

g(n) = max

(M)≤n

M (5.1)

and P. Erdős and P. Turán proved in [12] that

M is the order of some element of Sn ⇔ 
(M) ≤ n. (5.2)

E. Landau also proved in [20] that

log g(n) ∼
√

n log n, n → ∞. (5.3)

This asymptotical result was made precise in [41, 42, 22] while effective estimations of
g(n) can be found in [21, 23, 16]. The survey paper [24] of W. Miller is a nice introduction
to g(n); it contains elegant and simple proofs of (5.1), (5.2) and (5.3).

A table of Landau’s function up to 300 is given at the end of [28]. It has been computed with
the algorithm described and used in [29] to compute g(n) up to 8000. By using similar algo-
rithms, a table up to 32000 is given in [26], and a table up to 500000 is mentionned in [16].

In Luminy, on January 17 2002, I asked as a challenge to compute g(106) and g(109). Three
days after, Paul Zimmermann, who was in the audience, sent me an e-mail with the value of
g(106). In fact, I did not realize the huge progresses on the size of the storage of computers,
and Paul, who was well aware of theses progresses, got the result by rediscovering an
algorithm similar to that described in [29]. When giving this challenge, I had in mind the
method used by G. Robin in [38] to compute the highly composite numbers of Ramanujan.
I immediately offered to Paul to write the joint paper [7], where, with M. Deléglise, we
propose an algorithm able to calculate g(n) up to n = 1015.

The first tool of the algorithm is to introduce the so called 
-superchampion num-
bers, which are the equivalent of the superior highly composite numbers introduced by
S. Ramanujan.

An integer N is said 
-superchampion if there exists ρ > 0 such that, for all M ≥ 1


(M) − ρ log(M) ≥ 
(N ) − ρ log(N ).

These 
-superchampion numbers were already used in [27, 28, 21, 22, 23, 34] to prove
theoretical properties of g(n). They are easy to calculate and have the property (for N ≥ 6)
that the p-adic valuation vp(N ) is a non increasing function of p. Further, if N is a 
-
superchampion, we have:

N = g(
(N )) (5.4)

so that, if n = 
(N ), the value of g(n) is given by (5.4). Unfortunately, the 
-superchampion
numbers are rather sparse, and the number of n’s up to X such that this lucky way works

is O(
√

X
log X ). To compute g(n), the first step of the algorithm is to find two consecutive


-superchampion numbers N and N ′ such that


(N ) ≤ n < 
(N ′).
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Further, by using the benefit method, it is possible to show that if we write A
B = g(n)

N (where
the fraction A

B is irreducible) A and B are rather small. The algorithm gives, as a result, the
factorizations into primes of N and A

B (see [7]). For instance, for n = 106,

N = 29365473
∏

11≤p≤41

p2
∏

43≤p≤3923

p, 
(N ) = 998093

and g(106) = g(106 − 1) = 43·3947
3847 N , while for n = 109,

N = 214395675114134
∏

17≤p≤31

p3
∏

37≤p≤263

p2
∏

269≤p≤150989

p, 
(N ) = 999969437

and g(109) = g(109 − 1) = 37 · 150991

2 · 3 · 148399
N .

6. A family of fractions

Let N be a positive integer and F = F(N ) the set of mappings from {1, 2, . . . , N } to
{−1, 0, 1}. For ε ∈ F , let us write

N∏

n=1

(
n + 1

n

)ε(n)

= a

b
= a(ε, N )

b(ε, N )
(6.1)

where a
b is irreducible, and set

S = S(N ) =
{

a(ε, N )

b(ε, N )
; ε ∈ F

}
(6.2)

and

A = A(N ) = max
ε∈F

a(ε, N ). (6.3)

Note that, by changing ε to −ε, a
b ∈ S ⇒ b

a ∈ S and thus, maxε∈F b(ε, N ) = A(N ).
In [32], the problem of estimating A(N ) was asked. Clearly, A(N ) ≤ (N + 1)! so that, if

we set

K (N ) = log A(N )

N log N
, (6.4)

limK (N ) ≤ 1 holds. Let us write

(
n + 1

n

)ε(n)(2n + 1

2n

)ε(2n)(2n + 2

2n + 1

)ε(2n+1)

= u

v
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with u/v irreducible. By studying all possible cases, it was shown in [32], Lemma 4, that
max(u, v) ≤ (2n + 2)2 from which it was deduced that

limK (N ) ≤ 2

3
· (6.5)

On the other hand, Michel Langevin has observed that, for N even,

N∏

n=1

(
n + 1

n

)(−1)n

= 1

2

3

2

3

4

5

4
. . .

N − 1

N

N + 1

N
= N + 1

4N

(
N

N/2

)2

which yields limK (N ) log N ≥ log 4.
The estimate (6.5) was used in [32] to show that the quotient of two consecutive highly

composite numbers (see Section 2) can be large: Proposition 4 claims that if M is a large
enough superior highly composite number and M ′ the highly composite number following
M , then

M ′

M
≥ 1 + 1

(log M)0.9618
. (6.6)

In 6.6 the exponent is greater than 2
3 log 2 = 0.961796 . . . Showing that limK (N ) ≤ κ will

allow to replace 0.9618 in 6.6 by any real number greater than κ
log 2 ·

I spoke about this problem in my talk in Luminy, on January 2002, and soon after, R. de
la Bretèche, C. Pomerance and G. Tenenbaum wrote the paper [5], in which it is shown that
limK (N ) > 0.

Below is a table of A(N ) and K (N ). For all values of N up to 40, the maximum in (6.3)
is attained on only one value of ε, and B(N ) denotes the corresponding value of b(ε, N ).
The exponents of A/B are the exponents of the first primes in the standard factorization of
A/B: for N = 6, 576

175 = 26325−27−1.
For small N ’s, the set S(N ) has been computed by induction by the formula

S(N ) = N + 1

N
S(N − 1) ∪ S(N − 1) ∪ N

N − 1
S(N − 1).

For larger N , a sequence N0 = 0 < N1 < · · · < Nk−1 < Nk = N is chosen. The sets

S(Ni , Ni+1) =
{

Ni+1∏

n=Ni +1

(
n + 1

n

)ε(n)

; ε ∈ F(N )

}

are built and sorted in decreasing order of the numerator of their elements. A(N ) is equal
to the maximum of the numerator of

∏k−1
i=1 αi when αi runs through S(Ni , Ni+1). Actually,

most of the numerators of the αi ’s are small, and since the numerator of a product of fractions
is not larger than the product of the numerators of the factors, most of the comparisons can
be avoided. The value k = 3 seems a good choice.
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N A(N ) Exponents of A/B K (N ) |S(N )|

1 2 1 3

2 4 2,−1 1.0000 9

3 16 4,−2 0.8407 19

4 64 6,−2,−1 0.7500 57

5 128 7,−1,−2 0.6031 115

6 576 6,2,−2,−1 0.5909 345

7 4608 9,2,−2,−2 0.6195 691

8 16384 14,−2,−2,−2 0.5833 1221

9 64000 9,−6,3,−2 0.5596 2023

10 640000 10,−6,4,−2,−1 0.5806 6069

11 2560000 12,−5,4,−2,−2 0.5592 11639

12 10240000 14,−4,4,−2,−2,−1 0.5414 34917

13 54080000 9,−6,4,−3,−2,2 0.5341 69047

14 135200000 8,−5,5,−4,−2,2 0.5067 116429

15 1554251776 18,−8,−4,2,2,−2 0.5208 170383

16 24868028416 22,−8,−4,2,2,−2,−1 0.5397 511149

17 49736056832 23,−6,−4,2,2,−2,−2 0.5114 955223

18 557256278016 20,12,−2,−2,−2,−2,−2,−1 0.5199 2865669

N Exponents of A/B K (N )

19 20,−8,−5,2,2,−2,−2,2 0.5086

20 22,−3,6,−5,−2,2,−2,−2 0.5013

21 19,10,−4,4,−3,−2,−2,−2 0.4995

22 20,−10,−4,−4,4,2,−2,2,−1 0.5070

23 23,−9,−4,−4,4,2,−2,2,−2 0.5070

24 26,12,−6,4,−2,−2,−2,−2,−2 0.5111

25 27,−8,−8,−4,4,3,−2,2,−2 0.5206

26 28,−11,−8,−4,4,4,−2,2,−2 0.5329

27 30,−14,−8,−3,4,4,−2,2,−2 0.5227

28 28,−14,−8,−4,4,4,−2,2,−2,1 0.5199

29 27,−15,−9,−4,4,4,−2,2,−2,2 0.5241

30 26,−16,−10,−4,4,4,−2,2,−2,2,1 0.5286

31 33,−14,−8,−4,4,4,−2,2,−2,2,−2 0.5200

32 38,−15,−8,−4,3,4,−2,2,−2,2,−2 0.5088

33 37,−14,−8,−4,4,4,−3,2,−2,2,−2 0.5036

34 28,−20,−7,−5,−4,4,4,2,2,2,−2 0.4996

35 30,−18,−8,−6,−4,4,4,2,2,2,−2 0.4925

36 28,−20,−8,−6,−4,4,4,2,2,2,−2,1 0.4923

37 33,−16,−8,−6,−4,4,4,3,2,2,−2,−2 0.4963

38 36,−17,12,6,−6,−3,−2,2,2,−2,−2,−2 0.4926

39 39,−18,13,6,−6,−4,−2,2,2,−2,−2,−2 0.5023

40 42,−18,14,6,−6,−4,−2,2,2,−2,−2,−2,−1 0.5115
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7. c(n)

In the paper [8], written jointly with J. Dixmier, we have considered the function (cf. p. 98
and 111)

c(n) = 2v2(1) + 2v2(2) + · · · + 2v2(n) (7.1)

where v2 denotes the 2-adic valuation. This function appears as the exponent of 1+ X in the
decomposition of the polynomial (1 + X )(1 + X2) . . . (1 + Xn) into irreducible factors over
F2[X ]. By separating odd and even integers in (7.1), it is easy to see that c(2n) = 2c(n) + n
which yields

c(2r ) = 2r−1(r + 2), c(2r − 1) = r2r−1. (7.2)

It follows from (7.1) that

c(2n + s) = c(2n) + c(s), s < 2n (7.3)

and this implies that, if the binary expansion of n is n = 2n1 + 2n2 + · · · + 2nk with
n1 > n2 > · · · > nk then

c(n) = c(2n1 ) + c(2n2 ) + · · · + c(2nk )

= 2n1−1(n1 + 2) + 2n2−1(n2 + 2) + · · · + 2nk−1(nk + 2). (7.4)

If we denote by d(n) the sum of the binary digits of n, the summatory function S(n) =∑n
k=1 d(k) satisfies

S(2r − 1) = c(2r − 1) = r2r−1 (7.5)

but, as it can be seen on the following table, the two functions c and S are not equal.

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

c(n) 1 3 4 8 9 11 12 20 21 23 24 28 29 31 32 48

S(n) 1 2 4 5 7 9 12 13 15 17 20 22 25 28 32 33

There are several nice papers about the asymptotic behaviour of S(n), for instance [6],
[14] and [15], which probably can be adapted to c(n). But here, the question is: How often
2m belongs to the image of c?

It follows from (7.2) that, when r or r + 2 is a power of 2, then c(2r ) or c(2r − 1) is
also a power of 2 while, if r + 1 = 2a , the equation c(x) = 22a+a−2 has no
solution.

From (7.4), we have

c(2k + 2k−1 − 1) = (3k + 3)2k−2 et c(2k + 2k−1) = (3k + 5)2k−2.
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Clearly, 3k + 3 is never a power of 2, but 3k + 4 or 3k + 5 can be equal to 2a , so that, for a
odd, a + 2a−11

3 belongs to the image of c, while, for a even, a + 2a−10
3 does not belong to it.

Let us define A = {a, 2a ∈ Image(c)} and A(x) = Card({a ∈ A, a ≤ x}). It has just
been shown that both A(x) and x − A(x) tend to infinity with x . Is it possible to make
precise the behaviour of A(x) when x → ∞? Below is a table of values of A(x).

x = 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A(x) 635 1374 1787 2405 2748 3078 3646 4380 5227 5963

A(x)/x 0.63 0.69 0.60 0.60 0.55 0.51 0.52 0.55 0.58 0.60
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12. P. Erdős and P. Turán, “On some problems of a statistical group theory, IV,” Acta Math. Acad. Sci. Hungar.
19 (1968), 413–435.

13. N. Feldmann, “Improved estimate for a linear form of the logarithms of algebraic numbers,” Math. Sb. 77(119),
(1968), 423–436. Math. USSR-Sb. 6 (1968), 393–406.

14. P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, and R.F. Tichy, “Mellin transforms and asymptotics
digital sums,” Theoretical Computer Science 123 (1994), 291–314.

15. P. Grabner, P. Kirschenhofer, and H. Prodinger, “The sum-of-digits function for complex bases,” J. London
Math. Soc. 57(2) (1998), 20–40.

16. J. Grantham, “The largest prime dividing the maximal order of an element of Sn ,” Math. Comp. 64 (1995),
407–410.

17. G.H. Hardy and S. Ramanujan, “Asymptotic formulæ for the distribution of integers of various types,” Proc.
London Math. Soc. 16(2), (1917), 112–132 and Collected Papers of S. Ramanujan, Cambridge University
Press, 245–261.

18. G.H. Hardy and E.M. Wright, “An introduction to the theory of numbers,” 4th edition, Oxford at the Clarendon
Press, 1964.

19. G. Hoheisel, “Primzahlproblem in der Analysis,” Berlin Math. Ges. Sitzungsber. (1930), 550–558.



264 NICOLAS
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