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Abstract. In 1915, the London Mathematical Society published in its Proceedings a paper of Ramanujan entitled
“Highly Composite Numbers”. But it was not the whole work on the subject, and in “The lost notebook and other
unpublished papers”, one can find a manuscript, handwritten by Ramanujan, which is the continuation of the paper
published by the London Mathematical Society.

This paper is the typed version of the above mentioned manuscript with some notes, mainly explaining the link
between the work of Ramanujan and works published after 1915 on the subject.

A numberN is said highly composite iM < N impliesd(M) < d(N), whered(N) is the number of divisors
of N. In this paper, Ramanujan extends the notion of highly composite number to other arithmetic functions,
mainly to Qx(N) for 1 < k < 4 whereQx(N) is the number of representations¥fas a sum of R squares
ando_s(N) whereo_s(N) is the sum of thé—s)th powers of the divisors dll. Moreover, the maximal orders
of these functions are given.
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1. Foreword

In 1915, the London Mathematical Society published in its Proceedings a paper of Srinivasa
Ramanujan entitled “Highly Composite Numbers”. (cf. [16]). In the “Collected Papers”
of Ramanujan, this article has number 15, and in the notes (cf. [17], p. 339), it is stated:
“The paper, long as it is, is not complete. The London Math. Soc. was in some financial
difficulty at the time and Ramanujan suppressed part of what he had written in order to save
expenses”. This suppressed part had been known to Hardy, who mentioned it in a letter to
Watson, in 1930 (cf. [18], p. 391). Most of this suppressed part can be now found in “the
lost notebook and other unpublished papers” (cf. [18], p. 280 to 312). An analysis of this
book has been done by Rankin, who has written several lines about the pages concerning
highly composite numbers (cf. [19], p. 361). Also, some information about this subject has
already been published in [12], pp. 238—239 and [13]. Robin (cf. [25]) has given detailed
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proofs of some of the results dealing with complex variables, and Riemann zeta function,
since as usual, Ramanujan sometimes gives formulas which probably were obvious to him,
but not to most mathematicians.

The article below is essentially the end of the paper written by Ramanujan which was not
published in [16], but can be read in [18]. For convenience, we have kept on the numbering
both of paragraphs (which start from 52 to 75) and formulas (from (268) to (408)), so that
references to preceding paragraphs or formulas can easily be found in [16]. There is just
a small overlap: the last paragraph of [16] is numbered 52, and contains formulas (268)
and (269). This last paragraph was probably added by Ramanujan to the first part after
he had decided to suppress the second part. However this overlap does not imply any
misunderstanding.

There are two gaps in the manuscript of Ramanujan, as presented in “the lost notebook”.
The first one is just at the beginning, where the definitioigfn) is missing. Probably
this definition was sent to the London Math. Soc. in 1915 with the manuscript of “Highly
Composite Numbers”. It has been reformulated in the same terms as the defingmpf
given in Section 55. The second gap is more difficult to explain: Section 57 is complete
and appears on pp. 289 and 290 of [18]. But the lower half of p. 290 is empty, and p. 291
starts with the end of Section 58. We have completed Section 58 by giving the definition
of o5(N), and the proof of formula (301). All these completions are written in italics in the
text below. It should be noted that in [18] pp. 295-299 are not handwritten by Ramanujan,
and, as observed by Rankin (cf. [19], p. 361) were probably copied by Watson, but that
does not create any gap in the text. Pages 282 and 283 of [18] do not belong to number
theory, and clearly the text of p. 284 follows p. 281. On the other hand, pp. 309-312 deal
with highly composite numbers. With the notation of [16], Section 9, Ramanujan proves
in pp. 309-310 that

log pr log p1
log(1+1/r)  log 2

holds, while on pp. 311-312, he attempts to extend the above formula by reptadiyg
ps- More precise results can now be found in [7]. Pages 309-312 do not belong to the
paper Highly Composite Numbers and are not included in the paper below.

In the following paper, Ramanujan studies the maximal order of some classical functions,
which resemble the number, or the sum, of the divisors of an integer.

In Section 52-54Q),(N), the number of representationsifas a sum of two squares is
studied, and its maximal order is given under the Riemann hypothesis, or without assuming
the Riemann hypothesis. In Section 55-56, a similar work is don@30N) the number
of representation o by the formm? + mn+ n?. In Section 57, the number of ways of
writing N as a product ofl + r) factors is briefly investigated. Between Section 58 and
Section 71, there is a deep study of the maximal order of

o s(N)=) d®

d|N

4+ O(r)

under the Riemann hypothesis, by introducing generalised superior highly composite num-
bers. In Section 72-744(N), Qs(N) andQg(N) the numbers of representationshbfas
a sum of 4, 6or 8 squares are studied, and also their maximal orders. In the last paragraph
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75, the number of representationad\bby some other quadratic forms is considered, but no
longer its maximal order. One feels that Ramanujan is ready to leave the subject of highly
composite numbers, and to come back to another favourite topic, identities.

The table on p. 150 occurs on p. 280 in [18]. It should be compared with the table of
largely composite numbers (p. 151), namely the numbetgh tham < n=-d(m) <d(n).

Several results obtained by Ramanujan in 1915, but kept unpublished, have been redis-
covered and published by other mathematicians. The references for these works are given
in the notes at the end of this paper. However, there remain in the paper of Ramanujan,
some never published results, for instance, the maximal ord@s@f) (cf. Section 54) or
of o_s(N) (cf. Section 71) whenevex # 1. (The cases = 1 has been studied by Robin,
cf. [22]).

A few misprints or mistakes were found in the manuscript of Ramanujan. Finally, it puts
one somewhat at ease that even Ramanujan could make mistakes. These mistakes hav
been corrected in the text, but are also pointed out in the notes.

Hardy did not much like highly composite numbers. In the preface to the “Collected
Works” (cf. [17], p. XXXIV) he writes that “The long memoir [16] represents work,
perhaps, in a backwater of mathematics,” but a few lines later, he does recognize that “it
shews very clearly Ramanujan’s extraordinary mastery over the algebra of inequalities”.
One of us can remember Freeman Dyson in Urbana (in 1987) saying that when he was
a research student of Hardy, he wanted to do research on highly composite numbers but
Hardy dissuaded him as he thought the subject was not sufficiently interesting or important.
However, after Ramanujan, several authors have written about them, as can be seen in the
survey paper [12]. We think that the manuscript of Ramanujan should be published, since he
wrote it with this aim, and we hope that our notes will help readers to a better understanding.

We are indebted to Berndt, and Rankin for much valuable information, to Massias for
calculating largely composite numbers and finding the meaning of the table occurring in [18],
p. 280 and to Lydia Szyszko for typing this manuscript. We thank also Narosa Publishing
House, New Delhi, for granting permissionto printin typed form the handwritten manuscript
on Highly Composite Numbers which can be found in pages 280-312 of [18].

2. The text of Ramanujan

52. Let Q(N) denote the number of ways in which N can be expressed asm. Let
us agree to consider f+- n? as two ways if m and n are unequal and as one way if they
are equal or one ofhem is zero. Then it can be shown that

(1+29+29* +20° +29"° + - )?

_ q q° q° q’
- 1Jr4<1—0| TI-¢ 1 1—q7+”'>
= 1+ 4{Qx(1g + Q2D + Q2(3q° + - - -} (268)

From this it easily follows that

Q2D n Q2(2) n Q2(3) 4.

1 o e , (269)

£(8)61(s) =
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where
() =1°-33545°5_T754...
Since
g « + K +-o= dDg+d@2g* +d@)g + - -,
1-g 1-¢g2 1-¢3
it follows from (268) that
Q2(N) < d(N) (270)

for all values ofN. Let
N =2%3%5%... p,

wherea, > 0. Then we see that, if any one &f, a7, a1, . . ., be odd, where 37, 11, .. .,
are the primes of the formm— 1, then

Qx(N) =0. (271)
But, if a3, a7, a1, ... be even or zero, then
Q:(N) =(1+a)(Il+az)(l+a17) - (272)

where 5, 13, 17,. . are the primes of the formmé4+ 1. Itis clear that (270) is a consequence
of (271) and (272).

53. From (272) it is easy to see that, in order tkgt(N) should be of maximum ordel
must be of the form

5%.13% 1747 ... i,
wherep is a prime of the formd + 1, and
& =3z 87 = = ap.
Let 7r1(x) denote the number of primes of the form 4 1 which do not exceed, and let
¥1(X) =log5+1og13+1log 17+ --- + log p,

wherep is the largest prime of the formmd+ 1, not greater tha®m. Then by arguments
similar to those of Section 33 we can show that

1

oaty < i 22 D

(273)

elt@) () eda(@r)

for all values ofN andx. From this we can show by arguments similar to those of Section 38
that, in order thafQ,(N) should be of maximum ordeN must be of the form

1 (@9+01((9)+01((5))+-
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andQ,(N) of the form

- 3 (%) 4\ ()
TT1 _ —
(2) (3)

Then, without assuming the prime number theorem, we can show that the maximum order
of Qa(N) is
1 o }

299 N{i55105% + Togiogniz (274)

Assuming the prime number theorem we can show that the maximum or@ex( i) is

23 Li(21ogN)+O{log NeV 09N} (275)

wherea is a positive constant.
54. We shall now assume the Riemann Hypothesis and its analogue for the fun¢tipn
Let p; be a complex root of;(s). Then it can be shown that

1 —3lo 3
Z— _y— ol +IogZ+4IogF<—>,
p1 2 4

so that

1 1 3
4+ — =14y —2logr +4lo F(—). 276
Zp Zpl y g or( 3 (276)

It can also be shown that

291(X) =x—ZI—ZxP/p—ZX"l/,ol—l—O(x%) 277)
271(x) = Li(x) — Li(yX) — ¥ Li(x?) — ¥ Li(x*) 4+ O(x3)
so that
_ 2
{2ﬁ1(x> = X+ O(vx(log)?) (278)
2m1(X) = Li(x) + O(/xlogXx).
Now

2n1(x)=Li(x)—$<2ﬁ+Z%p+ZXp—T)

1 xP XP1 O(/X)
~ (logx)2 (4ﬁ t 2 2t 2 p_f> T logx®’

But by Taylor's Theorem we have

Li{201(0)} = Li(x) — @ (2& +y X% + %) + Of(logx)?}.
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Hence
L X
2m1(X) = Li{201(X)} — 2Ry (X) + O{ Tog x)3} (279)
where
XP 1 X1
R0 = 5 X)2<f+ >% +§Zp_§>'

It can easily be shown that

B

and so from (276) we see that
{3—1— y —2logm + 4Iogr‘<g> }ﬁ > Ry(x)(logx)?

> {1— y +2logrm — 4IogF<§)}ﬁ- (280)

It can easily be verified that

3+ y —2logm + 4logl'(3) = 2.101, (281)
1—y +2logr —4logT'(3) = 1.899,
approximately.
Proceeding as in Section 43 we can show that the maximun ordgs(@®¥) is
2%Li(2logN)+<I>(N) (282)
where
log (3 . log N) 7 J/(ogN)
®(N) = 9(2) | ; 3 logny ezl _ 3U0ON) =2 o o logNy + 0] V109N [
2log 2 4log(2logN) (loglogN)3

55. Let Q,(N) denote the number of ways in whidhcan be expressed B +mn+n?.
Let us agree to consider® + mn+ n? as two ways ifm andn are unequal, and as one way
if they are equal or one of them is zero. Then it can be shown that

1
§(1+2q%+2q%+2q%+---)(1+2q%+2q173 +29% +--.)

1 1 4 9 3 13 27
+§(1—2q71+2q1—2qﬁ+~-~)(1—2qﬁ+2q7 —29% +---)
B q 9° q* q°

_1+6<1—q 1-@  1-¢° 1—q5+”')

1+ 6{Q2(1)g + Q2(29% + Q2(3)g° + - - -} (283)
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where 1, 2, 4, 5,. . are the natural numbers without the multiples of 3. From this it follows
that

£(8)22(8) = 17°Qa(1) + 2°Q2(2) + 3°Q2(3) + - -- (284)
where

{AS)=1"°—-2°44°5-5°+4...
It also follows that
Q2(N) < d(N) (285)
for all values ofN. Let
N = 2% 3% 5% ... p%,

wherea;, > 0. Then, if any one oby, as, a;1, ... be odd, where 2, 5, 11, . are the primes
of the form 31 — 1, then

Q2(N) = 0. (286)
But, if a,, as, a;1 be even or zero, then
Q2(N) = (1 + a7 (1 + awa) (L + are)(L+agy) - - (287)

where 7, 13, 19,. . are the primes of the fornm6+ 1. Let 2(x) be the number of primes
of the form 6 + 1 which do not excees, and let

%2(X) = log 7+ log 13+ log 19+ - - - + log p,

wherep is the largest prime of the forrm6+ 1 not greater that. Then we can show that,
in order thatQ,(N) should be of maximum ordeN must be of the form

7229 +02((5))+02((5)) +--

andQ,(N) of the form

@) 3 m2((3%) 7 4\ 7))
T2 _ —
(2) (3)

Without assuming the prime number theorem we can show that the maximum order of
Q2(N) is

2IogN{m+ﬁ}' (288)
Assuming the prime number theorem we can show that the maximum or@e( bl is

2%Li(2 logN)+Oflog Ne’W“"gN)}' (289)
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56. We shall now assume the Riemann hypothesis and its analogue for the fupc¢sion
Then we can show that

2m2(X) = Li{202(X)} — 2Ra(x) + O{+/X/(logx)%} (290)
where
1 1 x? 1 XP2
00 = fogrp| W+ 3 X+ 3 g

wherep; is a complex root of,(s). It can also be shown that

1’12
Z%+Zpi=1+y+ log 3+ 3log () (291)
2

r(s)

and so
r(3)
r(3)

3+y+= Iog37L 3log }ﬁ > Ry(x)(log x)?

{1 y——logS 3Iogrgi;}\/§. (292)

It can easily be verified that

ri)
3) _
3+y+ 2 IogS+3IogF = 2.080,

1
ngg (293)
1-— y——log3 3log—3£ = 1.920
r(3)
approximately. Then we can show that the maximum ord&giN) is
23Li(2logN)+®(N) (294)
where
log(3/2)
Iog(3/2) og32 3(log N) Tosz" v (logN)
®(N) = logN ———~ — —Ry(2logN — .
(N) = 2log2 { (logN) = } 4log(2logN) 2(2logN)+0 (loglogN)3

57. Letd, (N) denote the coefficient dfl S in the expansion of¢ (s)}**" as a Dirichlet
series. Then since

LEt=1-291-3%91-5%---1-p...,
it is easy to see that, if

a1 ~a

N=p1p2p3- -pﬁana
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whereps, p2, ps. .. are any primes, then

v=nA=a,
N =[] [] <1+ %) (295)

provided that > —1. Itis evident that
d_1(N) =0, do(N) =1, di(N)=d(N);
and that, i—1 <r <0, then
d(N) <1l+r (296)
for all values ofN. Itis also evident that, iN is a prime then
d(N)=1+r

for all values ofr. It is easy to see from (295) that,rif> 0, thend, (N) is not bounded
when N becomes infinite. Now, if is positive, it can easily be shown that, in order that
dr (N) should be of maximum ordelN must be of the form

eﬁ (X1) 4+ (X2)+7 (X3)++++,

and consequentlg; (N) of the form

- r7T(X2) r”(X3)
14r)y™f14 = 1+ =
+1) <+2) <+3)

and proceeding as in Section 46 we can show thatust be of the form

@ (A 40 (145" +0 (14 5) "+~ (297)

andd; (N) of the form
. r\ 7 (@) 7 (@+5%)
(14 ry=(@n )<1 + 5) (1 + é) . (298)

From (297) and (298) we can easily find the maximum ordef 0 ) as in Section 43. It
may be interesting to note that numbers of the form (297) which may also be written in the
form

eﬁ{x%log(1+r)}+l?{xrl 091+ 50y 49 x 7 1090+ 5y

approach the form

e )+ (VX)+2 (X3 +---

asr — 0. Thatisto say, they approach the form of the least common multiple of the natural
numbers as — O.
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58. Let s be a non negative real number, anddet(N) denote the sum of the inverses of
the sth powers of the divisors of N. If N denotes

) A2

N = pip'ps’. .. PR
where , p2, p3, . .. are any primesthen

o s(N) = (1+ pl—s + pIZS + pI3S+ et pl—als)

1+ P+ P2+ P+ -+ p, ™)

(L4 pp + P+ P>+ + ™).

For s =0, og(N) = d(N) is the number of divisors of N. Fors 0, we have

1_ p-@tDbs 1 _ po@eths 1 — p-@+Ds
U_S(N)=< 1§1pl_s 1EZDZ_S 1Enpn_s . (299)

Now, from the concavity of the functiteg(1 — e™"), we see that

%{Iog(l —e %) +log(l—e?) +---+log(l—e ™)}

t1+t2+-~-+tn)} (300)

< Iog{l—exp(— -

Choosingt = (as+1)s logps, to = (@2+ s logpy, ..., th = (@ +1)s log pr in (300),
formula (299 gives

{1— (prp2ps--- paN)~/"}"

o_s(N) < — — —
(1-p)(2-p%) (1= p®)

(301)

By arguments similar to those of Section 2 we can show that it is possible to choose the
indicesay, a, a3, ..., a, SO that

{1— (p1p2p3--- PaN)~/M"
Q-p)(2-p%) (1)

There are of course results corresponding to (14) and (15) also.

59. A numberN may be said to be a generalised highly composite numhersifN) >
o_s(N’) for all values ofN’ less tharN. We can easily show that, in order thdtshould
be a generalised highly composite numbémust be the form

o_s(N) = {1- O{N~*"(logN)"#™"b}}.  (302)

2%3%5% . .. o (303)
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where

the exceptional numbers being 36, for the valueswhich satisfy the inequality2- 4° +
8% > 3+ 9%, and 4 in all cases.

A numberN may be said to be a generalised superior highly composite number if there
is a positive number such that

o_s(N) = o_s(N’)
Né - (N/)g

(304)

for all values ofN’ less tharN, and

o_s(N) o_s(N)
>
Ne (N")e

(305)

for all values of N’ greater tharN. It is easily seen that all generalised superior highly
composite numbers are generalised highly composite numbers. We shall use the expression

2&2 3&3 5a5 .. pipl

and the expression

2 3.5 . 7 .. Py
x 2 -3 -5 ... .. m
x 2 -3 -5 ... ps
X

as the standard forms of a generalised superior highly composite number.

60. Let
N
N =—
A

whereA < p;. Then from (304) it follows that
1— A—s(l—&-ak) > (1 _ )\—sa\))he’

or

_ 3 —S(+ay)
2 < 11)‘? (306)

Again letN’ = NA. Then from (305) we see that

1 — p—S@+a) o {1 — )\ s@ta) })»_8
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or

1 — p—S@+a)

K> i (307)

Now let us suppose that= p;, in (306) and. = Py in (307). Then we see that
log (1+ p;° log(1+ P;®
M >e> M (308)
log p1 log P,

From this it follows that, if

—-s
- log(1+ 27%)

0
=f= log 2

’

then there is a unique value pf corresponding to each value af It follows from (306)
that

_ log(571)

309
slogi (309)
and from (307) that
log (527)
1 -~ 310
e slogx (310)
From (309) and (310) it is clear that
log (427
=| — 7. 311
&. [ sloga (311)
HenceN is of the form
02873*3 03573*5
R T o (312)

wherep; is the prime defined by the inequalities (308).
61. Let us consider the nature @f. Puttingl = p; in (306), and remembering that
ap >r, we obtain

1— pr_s(l+apr) 1— pFS(Hl)

¢ < < 313
pr — 1_ pr—sapr — 1— pr—sr ( )
Again, puttingh. = P, in (307), and remembering thag, <r — 1, we obtain
1— P*S(z‘i’aPr) 1— P—S(r+l)
P’ > ] r (314)

>
1_ Pr*S(lJrapr) — 1— Pr*SI‘
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It follows from (313) and (314) that, i, be the value ok satisfying the equation

1— st(r+1)

= (315)
thenp, is the largest prime not greater than HenceN is of the form
ez?(xl)+z?(x2)+z?(X3)+~~ (316)
wherex; is defined in (315); and_s(N) is of the form
I3 (X1) TT2(X2) [3(X3) - - - Mg, (Xa,) (317)
where
1—2-s+l) q _ 3-sr+1) 1— p,s(,ﬂ)
M=% 1T-3s ~ 1_ p=s
and p is the largest prime not greater thanlt follows from (304) and (305) that
o_o(N) < N IT1(X1) TTa(Xp) T3(x3) (318)

et et () etk
for all values ofN, wherexy, Xz, X3, ... are functions ot defined by the equation

1— X—s(r+l)
XE = 1—r7x;5r (319)

ando_s(N) is equal to the right hand side of (318) when

N = g *0)+9(x2)+ (Xg)+--

62. In (16) let us suppose that

1— xS+
d(x) = log =

X*Sf

Then we see that

1— st(r+1) 1— st(r+1)
log I, (%) = 7 () log ————— — /n(x»d(log —_>
1 - Xr 1 r

= 7 (x)log (X’) —/n(x,)d(logxf)

e (Xr)

= e (%) log X, —/n(x,)logxrds—/ dx

Xr
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in virtue of (319). Hence

e (%)

10G T, (%) — £8 (%) = e (%) 10g% — 9 (%)) —/n(xnlogxrds —/ dx

ZS/n(x,)er —'/yr(xr)logxrda—/m)gxr)dxr

Xr r
= /de/ nixr)dxr —/n(xr)logxrde
r

_/{/nf(xr)dx, —n(xr)logxr}ds

__ / 90x) de. (320)

T

It follows from (318) and (320) that
o_s(N) < NEe~ [P (x0)+2 ()4 (Xg)+ }de (321)

for all values ofN. By arguments similar to those of Section 38 we can show that the right
hand side of (321) is a minimum wherns a function ofN defined by the equation

N = el9(X1)+19(Xz)+19(X3)+~~. (322)
Now let) " (N) be a function ofN defined by the equation

Z_S(N) = IT1(X) [T2(X2) [T3(X3)- (323)

wheree is a function ofN defined by the Eq. (322). Then it follows from (318) that the
order of

os(N) =) (N)

for all values ofN ando_s(N) = > _(N) for all generalised superior highly composite
values ofN. In other wordso_s(N) is of maximum order whem is of the form of a
generalised superior highly composite number.

63. We shall now consider some important series which are not only useful in finding the
maximum order ob_¢(N) but also interesting in themselves. Proceeding as in (16) we can
easily show that, ifd’(x) be continuous, then

d(2)log2+ ®(3)log3+ ¢(5)log5+--- + P(p)logp
=d(X) (X)) — / @' (1)a (1) dt (324)
2

wherep is the largest prime not exceedirg Since [ ®(x) dx = X®(x) — [xP'(x) dX,
we have

®(X)(X) —/CD/(x)ﬂ(x)dx: /d)(x)dx—{x—l‘}(x)}cb(x)

+ /dﬂ(x){x — (X)) dx. (325)
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Remembering that — 9 (x) = O{,/x(logx)?}, we have by Taylor's Theorem

0(x)
/ ®(t) dt = / ®(x) dX — {X — F(X)}D(X) + %{x — 9 ()12 {x + O(vVX(Iogx)?)}.

(326)
It follows from (324)—(326) that
®(2)log2+ ®(3)log3+ ®(5)log5+---+ ®(p)logp
= C+ /G(X) () dt + f O (X){X — *(X)} dx
- %{x — 9(x)}*®'{x + Ov/x(logx)?} (327)

whereC is a constant ang is the largest prime not exceedirg

64. Now let us assume thdt(x) = Xsl_l wheres > 0. Then from (327) we see that, if

is the largest prime not greater thanthen

log2 log3 _ log5 log p
-1 -1 5-1 ps—1
" _dx X = 9(x) S oax)
=¢ +/ xS—1 S/ XI5(x5 — 1)2 dx+ Of{x~°(logx)*}.  (328)

But it is known that

X%'D 1
- +0(x}) (329)

x—@(x):ﬁ—l—x%—l—z%p—z

wherep is a complex root ot (s). By arguments similar to those of Section 42 we can
show that

X%P—S / 1 X%p
—— = [ xSy —dx
2 p(30—3) 2 p

Hence

1

Z Xﬂg —1-s x2” xzh—s 1s
/xl—s(xs—l)Z dx_/o{x ZT}dX_O Zp(%p—s) = O(x479).

Similarly

> x/,—ﬂ XPS xP=2s XP=S 1o
/xl‘s(xs—l)zdxzZp(p—5)+o<zp(p—25)) =2 o).
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Hence (328) may be replaced by

log2 log 3 log5 logp
23-1 3F—-1 5-1 ps—1

ot X} 4 x3
=C -s | ——— dx
+f tS 1 /xl—s(xs— 1)2

- +O(xz 2 4 xiS 330
SY0 4O i), (330)
It can easily be shown that
§'(s)
- 331
(9) (330)
when the error term ig(1).
65. Let
S00=-s2, (p—s)'
Then
-s 1 1
X)| <s =s.x27° . 332
S001 Z’ —9) Z:«/{p(l—p)(,o—S)(l—,o—S)} (332)

If mandn are any two positive numbers, then it is evident thay/inn lies betweenr%
and?.
n

1 .
Hence)_ LIS lies betweery (1) and x (s) where

1 1
X0 =) o TeA =9 i F s
1 1

1 1 L
:1_25(ZP—S+Zl—p—s>Zzs_i/z' (333)

We can show as in Section 41 that

1 2s-1 1 1r'(3) ')
Zs—p_SZ—s_ilogn—i_éF(%)+§(S)' (339
Hence
_ 2 1 @) L ee
X(S)—Sz_ +23—1{F(§)+2§() Iogn} (335)
so that

x(0)=x1)=2+y —log4r. (336)
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By elementary algebra, it can easily be shown thatifandn, be not negative an@, be
the geometric mean between andn, then

Gi+Go+Ga+--</im+m+m+- - }Hng+np+---} (337)
unlessit = T2 =8 = ...
From this it follows that
1
> <Vix@x©)}. (338)

Ve =p)(p—9A—p —9)}

The following method leads to still closer approximation. It is easy to see thaaiidn
are positive, then 4/mnis the geometric mean between

1 8 1 8
— 4+ —— and — 4+ —— 339
3m+3(m+3n) 3n+3(3m+n) (339)
1y
and SO lies between both. Hence
1 .
Z lies between
Ve =p)(p—9)A—p —9)}
1 1 2 1
- — 4+ - and
329(1—0) 3Zp(1—p)+§(52—3)
1 1 2 1
= + = 340
3Z(p_s)(1_p_s) Szp(l—pw%(sz—s) (340
and is also less than the geometric melagtween these two in virtue of (337)
1 1 1-s+¢?
3 i =x{ +VA-s+ )} and
p(d—p)+3(2—59) 2
Z 1 {1+\/(1—35+332)}
=X
p(L—p)+3(s?—s) 2
1.
1 _ 1 7} 2—s +§ 2 s 2731 2—s 3+...
A—p@-90-p-—9) pd—p 2pA-p) 8|pl-p) 32| p(1-p)
112 L 1 1#es 325t of@os )’
3p=p)  3pa-p+32-9 »,A-p) 2pA-p) 8|pA-p) 32| p(1-p)
} 1 +§ 1 _ 1 7}52—5 +§ 2 s 27171 2 —s 8
3p-p+P2—-s 3pa-p+32-9 »d-p) 2pA-p)  8|pd-p) 32| p(1-p)

Since the first value gf (1 — p) is about 200 we see that the geometric mean is a much closer approximation than
either.
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Hence
Z =
J{p(l p)(p -\ (1-p—9))

lies between

x(l) {1+\/(1 3s+ 3s?) } and
— 2
}x(S)+— {1+,/(1 S+ s9) } (341)

and is also less than the geometric mean between these two.
66. Inthis and the following few sections it is always understood thiatthe largest prime
not greater tham. It can easily be shown that

/W) dt _S/ R ST CIC0) i (403) e

X =
ts—1 x1-s(xs — 1)2 1-s 1-2s
Xl—3s Xl—4s Xl—ns
L~ ey A
2sx3~S  3sxs~S  Adsx: %S
- - — o(x:% 342
T2 1.3 1.4 TO) (342)
wheren = [2 + £].
It follows from (330) and (342) that > 0, then
log 2 log 3 log5 log p
2-1 3F-1 5-1 ps —
(s D (X 1-s B (X 1-2s X1—3s X1—4s Xl—ns
:_4()+{()} +{()} " " p X"
z(s) 1-s 1-2s 1-3s 1-4s 1—ns
2sx:~S  3sxsS  4sxz—2 1 2
— — — O(x27% 4 x3~s 343
T-2s 1-35 145 TS0 FOKTEHXT) (343)
wheren = [2 —|—
Whens =1, ; % or Z we must take the limit of the right hand side wheapproaches
1,2, 2 or 1. We shall consider the following cases:
Casel.O<s < %
log 2 log 3 log5 logp
» 1 F_1 517 tTp_
D (X 1-s B (X 1-2s X1—3s X1—4s
_ OO ooy N L
1-s 1-2s 1-3 1-4s
XIS 2gx:—S  3sx3S
+ S22 s+ 0(xE), (344)

l1-ns 1-2s 1-3s

wheren = [2 + %
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Casells = ;
log2 log3 log5
2¢71 3t Gl
4
3

Caselll.s > 1

log 2 log 3 log5
g n g " g

25-1 3
_ e

1 5-1

{0()()}175 X172S _ zsx%fs

logp

log p

ps —

1

11

p4
(90} + 2/ {0(X)] + 3xF — 3xT + %Iogx +S:(x) + O(D). (345)

1
x1-35 _ 3gx3—S

¢(s)

1-s

1-2s

67. Makings — 1 in (346), and remembering that

lim {
s—1

1-s

v

RO
1-s (9

wherey is the Eulerian constant, we have

log2 log3

log5

2-1 3-1

From (332) we k

log 2

5-1

1-3s

}:Iogv—y
log p
p—-1

= 1099 (0 =y +2¢ 7 + gx + S0 + O(x74).

now that

VXISi(X)| <24y —log(4r) = .046- --

approximately, for all positive values af
Whens > 1, (346) reduces to

log 3 log5

2s-1

F-1 5-1

(s) ooyt

25 x2S

log p
pe-1

3sx3~S

(s 1-

S

2s—-1

3s—

T TS0 +0(xi79)

Writing O(xz-5) for S(x) in (343), we see that, & > 0, then

log 2 log

3

log5

-1 -

_ {6

1

55_

1

ooy

logp

p—1

Xl—ZS

Xl—3$

(s

lens

1—-ns

whenn = [1+ X].

1-s
25Xz S
1-2s

1-2s

+ O(x%’s)

1-3s '

137

+ S0 + O(xi79).

(346)

(347)

(348)

(349)

(350)
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Now the following three cases arise:

Casel. O<s< 3

log 2 log 3 log5 log p
13 1511 Tp_1
{ﬁ(x)}l—s Xl—ZS X1—3S Xl—ns 1g
1-s T1-asti—ast tioasTOKT) @S
wheren =[1 + £].
Casells= 3
log 2 log3 log5 logp 1
+ + R =2/{0(X)}+ = logx+ O().
S R N
352

Case lll.s > 3

log2 log3 log5 logp (9 , (PO} 1
> 1TF 17517 Tp-1- e 1-s TOX7)
(353)
68. We shall now consider the product
(1-291-391-5%---1-p).
It can easily be shown that
Xa+bs 1 . a4bs
/a—i-bst_BLl(X ) (354)
whereLi (x) is the principal value of} |o%? and that
1) x2S
/ S0 ds= > =+ o{ (Iogx)Z}’ (355)

Now remembering (354) and (355) and integrating (343) with respes;tu@ see that if
s > 0, then
log{(1-2"%)(1-3%(1-5%)---(1—p )}
=—mgw®|—uwWW*—%uuk%—éuuP%—~~

X2~ + S(x) {X%S}
- o)
log x (log x)2

1 1
— S Li¢ ™) 4 5L (x279) (356)

wheren =[1+ Z].
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Now the following three cases arise.
Casel.O<s < 3
log{(1-2"%)(1-3%)(1-57%)--- (1 - p°)}
= —Li{g ()} - %Li (xHS) - —Li (x7%) —

2sx27° S(X )
(1-2s) Iogx Iogx

—%Li(x1*”5)+ Ofx X275/ (log x)2 b (357)

wheren = [1 + 2—15]. Makings — % in (356) and remembering that

lim {Li 1+ h) —log [h| } =y (358)

wherey is the Eulerian constant, we have
Casells= 3

1

1-30-H-%) -7
l+S%(X) O(1)
__&<) p{ (V600 + g (Iogx)z}' (359
It may be observed that

1 1 1

— = 360
weae(3) = -Gt At 200

Case lll.s > 3

1
1-2351-33%51-5%---1—pd

_ . 1s 2sX3~S S(X) X3S
_ IC(S)Iexp[u{(G(x)) 1+ o s +o{(logx)2”. (361)

Remembering (358) and makisg— 1 in (361) we obtain

1 2
R s oy e e =ey{logz9(x)+7+31( T

It follows from this and (347) that
e
<1—%)(1—%)<1—%)--~(1—%>
_ log2 log3 log p 1
2-13-17 7z +o(ﬁlogp)'

(363)
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69. We shall consider the order &f. Puttingr = 1 in (319) we have

B Iog(1+xl‘5)_
o log x4
and so
gl D gy —sO+D)
Xr logxy. = 1_r7xrfsr (364)
Let
% =x'".
Then we have
—st(1+3)
et 1=X
(1 + Xl S) = S
—st,
1-—x;

From this we can easily deduce that

| 1
=1+ o9t +O{7}.

slogx; (log x1)?2
Hence
X = %" {rl/“s) - O(Io;x1> }; (365)
and so
X ~ (r¥oxg) " (366)
Putting’ = 2 in (311) we see that the greatest possible valueisf
2, = S'?fgi +00) = 'E)%le 'Oflgogggl + o). (367)
Again
log N = 9 (x1) + 9 (X2) + 9 (Xa) + - - - = ¥ (X1) + X2 + O(x"°) (368)

in virtue of (366). It follows from Section 68 and the definitionIdf (x), that, if sr and
s(r + 1) are not equal to 1, then

g(sn

I () = | === €20,
¢{s(r + 1)}
and consequently
M1 06) = | Do) (369)
¢{s(r + 1}
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in virtue of (366). But ifsr or s(r + 1) is unity, it can easily be shown that

¢{s(r — 1)}

O(x;%l’s)
[0 £ 2) e . (370)

I 1 X ) T (X ) T 11 (Xp 1) =

70. We shall now consider the order 3 __(N) i.e., the maximum order af_s(N). It
follows from (317) that if 3 # 1, then

1
3 (N) = Ma(xp)Ma(xp) [£(35)|€°% (371)
in virtue of (367), (369) and (370). But ifs3= 1, we can easily show, by using (362), that
Y (N) = T (x) TTp(xp) 0109 109%0), (372)

It follows from Section 68 that

(9) - 1-s 1. 1-2s
1S + Li{6(x1)} 2|-|{13‘(X1)}

1. "
+ LB o) = - ( n)

1 x2~° 4 S(x) o{ X2 ° ]

log M1 (x1) = log ‘

Li {9 (x)} "

(373)

1-s
- ELI () + logx, (logxy)?

wheren = [1 + £]; and also that, if 8 1, then,

_ §(25) i (y1-2s Xl%_‘S .
log I»(x2) = log ’—§(3s) + Li(x~%%) + O{ logx)? } (374)

andwhen8=1

i ful-2s Xlé_s
log Ma(x2) = Li (x5 %) + O{ (log )2 } (375)

It follows from (371)—(375) that

|Og Z—S(N) = |Og |§'(S)| + Li {ﬂ(xl)}l—s _ ELI {ﬁ(xl)}l_zs

="
n

+ %Li (B (x)}%. . — Li{d ()} "

=y (xffs) +Li (%) + (376)

x; "+ S00) x;
5 171+o{17}

log x; (logx1)?
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wheren = [1 + 2—15]. But from (368) it is clear that, ifh > 0 then

Li {9 (x)}¥™s = Li { logN — X, + O( 1/3)}1—ms

= Li{(log N — (1~ m9xzlog N) ™™+ O(x; ™)}

ms
X2(logN)~ n O(xffms).

I 1-ms __
= Li(logN) logIogN

By arguments similar to those of Section 42 we can show that
S(x1) = S{logN + O(yX1(logx1)?)} = Si(log N) + O{x; °(logx1)*}.
Hence

|OQZ,S(N) =log |¢(s)| + Li(logN)*—s — }Li(log N2 4 %Li (log N)1=38

(_ b Li(log N)+"s — Li(log N)Z S

(log N)TS + S(logN)
loglogN
x2(logN)~ { (logN)z S }
- o)
loglogN (loglogN)2

LI( 1- ZS)

(377)

wheren = [1 + X] and
/X7 J(ogN
_ 21/(23)\/— +0 — 21/ /(Iog N)+ O w (378)
loax: 09Xy loglogN

in virtue of (365).
71. Let us consider the order §f _(N) in the following three cases.

Casel.O<s < 1.
Here we have

1 1_g
LidlogNy}-s = 109N o{ (logN): 2}.
(3 —s)loglogN (loglogN)
1-2s 1-2s
Li (x-25) — X5 o X2
™) = (1—2s) Iogx2+ {(Iogxz)2

B 21/(25)(|Og N)%—s o{ (log N)——s }
(1—-2s)loglogN (loglogN)2 |
X(logN)=  2Y/@9)(jogN)2—s o (logN)z~s
log logN - loglogN {(Iog logN)?2 }
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It follows from these and (377) that

1 1
—1i 1- i 1-2 f 1-3
log E _(N)=Li(logN) S—§L|(IogN) S—|—§L|(Iog N)i—ss

R (_nl)n Li(log N)1—"s
25(2® — 1)(logN):~*  S(log N) (logN):~s
(1 —2s)loglogN loglogN O{ (loglogN)? } (379)

wheren = [1+ 2—13]. Remembering (358) and (378) and mak&g> % in (377) we have
Casells= 3.

Yo (N)= _Tﬁg“(%) exp{ Li/(ogN) +

2log2—1+ Si(logN) o)
loglogN (loglog N)Z}
(380)

Caselll.s > 3.

25(2Y/?9 — 1) (log N)%‘s}

_ . 1-s _
Y (N =) exp{L' (logN) 2s—1  loglogN

S(log N) (log N3~
log logN O{(Iog IogN)Z}' (381)
Now makings — 1 in this we have
2(W2-1) O(1) }
N) =¢€"{ loglogN — —— logN . (382
Zfl( )=¢ { 9109 (logN) *Sillog )+,/(IogN)IogIogN (382)

Hence
I_|_m{ Zil(N) — € log IogN}‘/(Iog N) > —e’(2v/2+ y — log4r) = —1.558

approximately and

m{ Zil(N) — € log IogN},/(Iog N) < —e’(2v/2—4—y +log4r) = —1.393

approximately.
The maximum order ofs(N) is easily obtained by multiplying the values »f_.(N)

by NS. It may be interesting to see thgt — xll/r ass — oo; and ultimatelyN assumes
the form

@7 D (VD) +9 06" 4
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that is to say the form of a generalised superior highly composite number approaches that
of the least common multiple of the natural numbers whibrcomes infinitely large.

The maximum order af_s(N) without assuming the prime number theorem is obtained
by changing logN to logNe®® in all the preceding results. In particular

Zil(N) = ¢&’{loglogN + O(1)}. (383)
72. Let
(1+29+29* +29° + - )* = 1+ 8{Qa(1)q + Q4(D9” + Qa(3)q° + - - }.

Then, by means of elliptic functions, we can show that

Qs(D)g + Q4(2)q% + Qs> + - - (384)
. q 292 3q° 4q*
— 1_q + _‘]__|_q2+ ]__q3+ 1+q4_|_...
q 20 33 4q*

- 1—q+l—q2+1—q3+1—|—q4+m

44 8 8 1 12
S I I R |

But

292 3q3
9 , 4 , =
1-qg 1-¢2 1-¢°

It follows that

+- =011+ 019 + 019 + - - .

Q4(N) < 01(N) (385)
for all values ofN. It also follows from (384) that
(1—=4790(9)5(5 - 1) = 17°Qa() +27°Qa(2) +3°Qu@) +--- . (386)
Let
N = 2%3%5% ... p

wherea, > 0. Then, the coefficient ofN in

292 3q°
is
N1—2—5‘2‘11—3—a3—11—5‘35—1m1—p—ap—l_
1-21 1-31 1-51 1-p1t”’
and that in

4q4 N 8q8 12q12

1_q4 1_q8+1_q12+
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is 0 whenN is not a multiple of 4 and
1-2211_3a&l]_5a&l 1 _pal
1-21 1-31 1-51 ~1_pt

whenN is a multiple of 4. From this and (384) it follows that,Nf is not a multiple of 4,
then

N

1— 2—a2—1 1— 3—a3—1 1— 5—a5—1 1— p—ap—l

N)=N e : 387
Qa(N) 1-21 1-31 1-51 1-pt (387)
and if N is a multiple of 4, then
1-2%171 3611 531 1_pal
Q4(N) = 3N P (388)

1-21 1-31 1-51 ~~1_pt°

It is easy to see from (387) and (388) that, in order QatN) should be of maximum
order,a; must be 1. From (382) we see that the maximum ordepgaiN) is

3 2(v2-1) o) }
-e’1loglogN — — logN 389
4e { 0giog (logN) * Silog )+ v (logN)loglogN (389)
3 o)
= -¢e’1loglogN + ——— 1.
2° { 0glogl V/(log N)}

It may be observed that, N is not a multiple of 4, then
Q4(N) = 01(N);
and if N is a multiple of 4, then

3o1(N
QuN) = o™
73. Let
(1+29+29*+29° +--)° = 1+ 12(Qe(1)q + Q6(D4” + Qe(3)q° + -+ }.

Then, by means of elliptic functions, we can show that

Qs(1)a + Q6(9? + Q33 + - --
4 12 222 323 1 12 323 525

_ A Yo 29 @ o \_ q @ S
3\1+9%2 1+4+9* 1+4¢°

3

1-q 1-¢® 1—-¢°
(390)

But

5
3lo2(Da + 02(20° + 02(3)q° + - -}

4 12 222 323 1 12 222 323
= — q q + q 4+ .. q + q + q + ...
3|1-q 1-¢2 1-¢° 3|1-q 1-¢2 1-¢
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It follows that

502(N) — 2
Qe(N) = 220 =2 (391)
for all values ofN. It also follows from (390) that
4 1 —s —s —S
5((8— 2)61(s) — éE(S)Cl(S— 2)=17Qe(1) +27°Qe(2) +37Q6(3) +--- .
(392)

Let
N = 2%3%5% ... p%,

wherea;, > 0. Then from (390) we can show, as in the previous section, thafiN2be
of the form 4 + 1, then

—ap—1

0 I Tl G D Ml Tt 0 B Sl (G ot A
122 1432 1-52 1-(-p%p2
(393)

Qs(N) = =

and if 272N be of the form 4 — 1, then

1 + (22)—612—1 1— (_32)—(;13—1 1— (52)—&15—1 1— {(_1)9%1 pZ}*ap*l

1-22 14372 1-572 1- (=% p-2
(394)

Qs(N) = N?

It follows from (393) and (394) that, in order th&s(N) should be of maximum order,
2 %N must be of the formd — 1 anday, as, a7, a11, ... must be 03,7,11,... being
primes of the form 4 — 1. But all these cannot be satisfied at the same time sirfedN2
cannot be of the formrt— 1, whenag, a7, a1, . .. are all zeros. So let us retain a single
prime of the form 4 — 1 in the end, that is to say, the largest prime of the form-41 not
exceedingp. Thus we see that, in order th@s(N) should be of maximum ordeN must
be of the form

5%. 13 17%7... p?.pf

wherepis a prime of the formd + 1 andp’ is the prime of the formd — 1 next above or
below p; and consequently

1—5-2@+D) 1 _ 13-2@st+D) 1— p—Z(ap+l)

_ N—2
1-52  1-132 T-pz =)

5
Qs(N) = §N2
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From this we can show that the maximum ordef®f(N) is

147

5N2 2 (2IogN)+o{‘Dgl,3il/o(g‘U';—m} 5N2{1+ 1-I_l

) O(loglogN) }
log N,/ (logN)

(zm¢
31-2)(1-)(-H)(1-%) - 30-3)0 —%z)( ) (1-

where 5, 13, 17,. . are the primes of the formnd+ 1
74. Let

1+29+29°+29°+-- )8
= 1+ 16{Qs(1)q + Q29 + Qs3> + - - -}.

Then, by means of elliptic functions, we can show that

Qs(1)q + Qs(2)q? + Qa3 +
13 23 2 33 3 43 4
SR T I N LA E
1+q 1-¢2 1+4+¢® 1-¢g*

But

o3(1)q + 03(29% + 03> + - - -
13q 23q2 33q3

S1 gt tice T

It follows that

Qs(N) < a3(N)

for all values ofN. It can also be shown from (396) that

1—2° 4+ 479)(9)5(s— 3) = Qa(D1™° + Qs(D2° + Qa(33 ™ +---.

Let
N = 2%.3% 5% ... pP,
wherea; > 0. Then from (396) we can easily show thatNfis odd, then

1 — 2-3@+D) 1 _ 3-3@s+D 1— p3@+D
1—2-3 1-33  1-p3 "

Qs(N) = N3

and if N is even then

1—15273@+D 1 _ 3-3@s+D) 1— p—3(ap+1)
1_23 133 g

Qs(N) = N*

(395)

(396)

(397)

(398)

(399)

(400)
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Hence the maximum order @g(N) is

£(3)Ne o) 40 (KT

_ 3 - —2 (log N)_5/2>
= ¢(3)N {1+ Li(logN) +O<7IoglogN

or more precisely

6(2Y% — 1)(logN)~>2  S(logN) o< (log N)~5/2 > }
5loglogN log logN (loglogN)2 /|-
(401)

;(3)N3{1+ Li (logN)~2 —

75. There are of course results corresponding to those of Sections 72—74 for the various
powers ofQ where

2 4 5
Q=1+6<1ﬂq - 1ﬁq2+ 1ﬂq4— 1ﬁq5+...>.
Thus for example
(Q)2:1+12<12q+12_q;2+14_q;4+15_q:5+...> (402)
_ 2 > 2 2 4 .
@7=1- q(ll—qq - 12—qq2 14—qq4 - 15—qqs A )
2 2q2 33
+27(1+21q2+1+2qg+q4+1+23+q6+”'>’ (403)
(Q* = 1+24< 11iqq n fiq;z N 13iqq33 +>
+8<13iq:3 N 16iq;6 N 19iq:9 +> 404)

The number of ways in which a number can be expressed in the fofmen?, k2 4124
2m? +2n?, m? + 3n?, andk? +12 4 3m? + 3n? can be found from the following formulae.

(1+29+29"+29° +-- )1+ 29"+ 29° + 29" + - - )

_ q q? q° q’

_1+2<1_q+1_q3 - 1_q7+~--), (405)
(1+29+29* +29° +--)?(1 +29% +29% + 298 4-- . )2

q 207 303 4q*
=1+4 4
+ <1_q2+1_q4+1_q6+1_q8+ , (406)

A+20+29*+29°+ - )1+ 20° + 292 + 297 + - - )

_ q g2 q* q° q’
_1+2<1_q me i e Tig ) (407)
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(1+29+29* +29° + - - )%(1 + 29° + 292 - 27" 4 - - )2

_ q 202 4q* 5q° 79’
_1+4<1+q+1_q2+1_q4+1+q5+1+q7+--- (408)

where 1, 2, 4, 5.. are the natural numbers without the multiples of 3.

Notes

52. The definition of Q2(N) given in italics is missing in [18]. It has been formulated in the same terms as
the definition ofQ2(N) given in Section 55. FoN # 0, 4Q2(N) is the number of pairgx, y)eZ2 such that
X2 + y2 =N
Formula (269) links together Dirichlet’s series and Lambert’s series (see [5], p. 258).
53. Effective upper bounds fa@,(N) can be found in [21], p. 50 for instance:

(log2)(logN) 1-log2 2.40104
loglogN loglogN ~ (loglogN)?2

log Q2(N) <

The maximal order of),(N) is studied in [8], but not so deeply as here. See also [12], pp. 218-219.

54. Foraproof of (276), see [25], p. 22. In (276), we remind the readeptisat zero of the Riemann zeta-function.
Formula (279) has been rediscovered and extended to all arithmetical progressions [23].

56. For a proof of (291), see [25], p. 22. In the definitionRyf(x), between formulas (290) and (291) and in the
definition of ®(N), after formula (294), three misprints in [18] have been corrected, naﬁeﬁé andz X2
have been written instead Q andZ X2 and R>(2logN) instead ofRx(log N).

57. Effective upper bounds fcn‘z(N) can be found in [21], p. 51, for instance:

(log3)(logN) 1 5.5546
1 +
loglogN loglogN ~ (loglogN)2

logdz(N) <

For a more general study dk(n), whenk andn go to infinity, see [3] and [14].
58. The words in italics do not occur in [18] where the definitiorraf(N) and the proof of (301) were missing.
Itis not clear why Ramanujan considered;(N) only with s > 0. Of course he knew that

os(N) = NS0_g(N),

(cf. for instance Section 71, after formula (382)), but $or 0 the generalised highly composite numbers for
os(N) are quite different, and for instance property (303) does not hold for them.

59. It would be better to call these numbergieneralised highly composite numbers, because their definition
depends ors. Fors = 1, these numbers have been called superabundant by Alaoglu aosl Efd 1, 4])

and the generalised superior highly composite numbers have been called colossally abundant. The solution of
25 + 45 + 8° = 35 + 9% is approximately 1.6741.

60—61. Fors = 1, the results of these sections are in [1] and [4].

62. The references given here, formula (16) and Section 38 are from [16]. For a geometrical interpretation of
> _s(N), see[12], p. 230. Consider the piecewise linear funaties f (u) such that for all generalised superior

highly composite numberd, f (logN) = logo_s(N), then for allN,

Z_S(N) = exp( f (log N)).
Infinite integrals mean in fact definite integrals. For instance, in formula (3{2@}% dx should be read
fi 20 at
64. Formula (329) is proved in [25] p. 29 from the classical explicit formula in prime number theory.
65. There is a misprint in the last term of formula (340) in [18], but, may be it is only a mistake of copying,
since the next formula is correct. This section belongs to the part of the manuscript which is not handwritten by
Ramanujan in [18].
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Table of largely composite numbers.
n d n d n d
1 1 7560 64 83357 942480 240 43257.1117
*2 2 2 9240 64 3835711 982800 240 %33527.13
3 2 3 10080 72 23257 997920 240 23*57.11
4 3 2 12600 72 $8.32527 1053360 240 $3257.1119
*6 4 23 13860 72 2325711 1081080 256 $33.57.1113
8 4 B 15120 80 2.3°57 1330560 256 23%57.11
10 4 25 18480 80 %35.7.11 1413720 256 $3357.1117
*12 6 23 20160 84 93257 *1441440 288 232571113
18 6 232 25200 90 2.32527 1663200 288 23352.7.11
20 6 25 27720 96 8325711 1801800 288 $32527.1113
24 8 23 30240 9% 523357 1884960 288 23257.1117
30 8 235 32760 96 33257.13 1965600 288 233527.13
36 9 23 36960 96 2.357.11 2106720 288 23257.1119
48 10 23 37800 96 3.33527 2162160 320 %335.7.1113
*60 12 235 40320 96 3.3257 2827440 320 %3%857.1117
72 12 2.3 41580 96 2335711 2882880 336 ©3257.1113
84 12 237 42840 96 3.3257.17 3326400 336 923352711
90 12 2325 43680 96 2.357.13 3603600 360 9325271113
9% 12 23 45360 100 £3%57 *4324320 384 233571113
108 12 23 50400 108 232527 5405400 384 $33527.1113
*120 16 235 *55440 120 2.3257.11 5654880 384 23357.1117
168 16 2.37 65520 120 £3257.13 5765760 384 23257.1113
180 18 2325 75600 120 %33527 6126120 384 23257111317
240 20 235 83160 128 2335711 6320160 384 23357.1119
33 20 237 98280 128 2335713 6486480 400 “%3%5.7.1113
*360 24 B.325 110880 144 23257.11 7207200 432 2325271113
420 24 2357 131040 144 2325713 8648640 448 ©3857.1113
480 24 235 138600 144 23252711 10810800 480 “33.52.7.1113
504 24 3327 151200 144 233527 12252240 480 %3257.111317
540 24 2335 163800 144 23252713 12972960 480 23%57.1113
600 24 3352 166320 160 2335711 13693680 480 “32.57.11.13.19
630 24 23257 196560 160 £3%5.7.13 14137200 480 “33.52.7.1117
660 24 23511 221760 168 23257.11 14414400 504 9325271113
672 24 237 262080 168 2325713 17297280 512 7233571113
720 30 2.35 277200 180 43252711 18378360 512 $3%5.7.111317
840 32 2357 327600 180 43252713 20540520 512 $3357.111319
1080 32 3.335 332640 192 2335711  *21621600 576 233.527.1113
1260 36 23257 360360 192 232571113 24504480 576 $23257.111317
1440 36 2.325 393120 192 2335713 27387360 576 23257.11.1319
1680 40 2357 415800 192 23352711 28274400 576 233527.1117
2160 40 2.35 443520 192 2325711 28828800 576 232.52.7.1113
*2520 48 23257 471240 192 23257.1117 30270240 576 2335721113
3360 48 2.357 480480 192 23571113 30630600 576 232527111317
3780 48 23357 491400 192 23352713 31600800 576 233.52.7.1119
3960 48 3.32511 498960 200 £3%57.11 32432400 600 “3*527.1113
4200 48 33527 554400 216 23252.7.11 36756720 640 “38.57.111317
4320 48 2335 655200 216 23252713 41081040 640 “3%5.7.11.1319
4620 48 235711 665280 224 ©3357.11 43243200 672 ©33527.1113
4680 48 3.32513 *720720 240 932571113 49008960 672 ©3257.111317
*5040 60 2+.3257 831600 240 43352.7.11 54774720 672 93257111319




152 NICOLAS AND ROBIN

n d n d
56548800 672 ©33527.1117 232792560 960 23257.11.1317.19
60540480 672 ©33572.11.13 245044800 1008 6232527111317
61261200 720 932527111317 273873600 1008 6232527111319
64864800 720 9345271113 294053760 1024 723357111317
68468400 720 932527111319 328648320 1024 72357111319
73513440 768 $335.7.11.1317 349188840 1024 32335.7.11.1317.19
82162080 768 93357111319 *367567200 1152 233527111317
86486400 768 335271113 410810400 1152 523852.7.11.1319
91891800 768 $3352,7.11.1317 465585120 1152 52257.11.1317.19
98017920 768 $325.7.11.1317 490089600 1152 732527111317
99459360 768 93357111323 497296800 1152 523527111323
102702600 768 $3352.7.11.1319 514594080 1152 538572111317
107442720 768 23357111719 537213600 1152 52352.7.11.17.19
108108000 768 93353.7.1113 547747200 1152 7232527111319
109549440 768 93257111319 551350800 1200 434527111317
110270160 800 $3457.111317 616215600 1200 434527111319
122522400 864 232527111317 698377680 1280 4233 57.11.1317.19
136936800 864 232527111319 735134400 1344 6233527111317
147026880 896 3357111317 821620800 1344 6233527111319
164324160 896 ©3357.111319 931170240 1344 623257.11.1317.19
183783600 960 ©33527.1113.17 994593600 1344 6233527.11.1323
205405200 960 ©3%52.7.11.13.19 1029188160 1344 633572.11.1317
220540320 960 93457111317 1074427200 1344 683527111719

This table has been built to explain the table handwritten by S. Ramanujan which is displayed on p. 150. An
integern is said largely composite ih < n = d(m) < d(n). The numbers marked with one asterisk are
superior highly composite numbers.

Notes (Continued)

The approximations given for/1/mn comes from the Padapproximant o/t in the neighborhood of = 1:

W =YG + sa0n)-

68. There are two formulas (362) in [18], p. 299. Formula (362) can be found in [11]. As observed by Birch (cf.

[2], p- 74), there is some similarity between the calculation of Section 63 to Section 68, and those appearing in [18],

pp. 228-232. In formulas (356) and (387){6 (x)}*~S should be read.i ({6 (x)}*~3), the same fot.i /Tog N in

(380) and for several other formulas.

71. There is a wrong sign in formula (379) of [18], and also in formulas (381) and (382). The two inequalities

following formula (382) were alsowrong. Informula (380), the right coefficientin the right hand sidégs(l/Z)

instead of—+/2¢ (1/2) in [18]. It follows from (382) that under the Riemann hypothesis, andifdarge enough,
n>np= o(n)/n < e loglogn.

It has been shown in [22] that the above relation wigh= 5040 is equivalent to the Riemann hypothesis.

72. Formula (384) is due to Jacobi. For a proof see [5] p. 311. See also [6], pp. 132-160. In formula (389) of

[18], the sign of the second term in the curly bracket was wrong.
73. Formula (390) is proved in [15], p. 198 (90.3). Itis true that if

N = 5%134317%47 ... p? p/

with p’ ~ p, thenQg(N) will have the maximal order (395). But, if we define a superior champiogrthat

is to say anN which maximisesQe(N)N*Z*S for ane > 0, it will be of the above form, witlp’ ~ p\/@. In

(395), the error term was writte@( g N)3/2 o310 ToaN 7 2ieaiogn) 1N [18], cf. [25].

74. Formula (396) is proved in [15§ p. 198 ? 90.4). In formula (401) the sign of the third term in the curly bracket
was wrong in [18]. In [18], the right hand side of (398) was written as the left hand side of (396).
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Table, p. 150: This table calculated by Ramanujan occurs on p. 280 in [18]. It should be compared to the

table of largely composite numbers, p. 151-152. The entry 150840 is not a largely composite number:

150840= 22.3°.5.419 and d(15084Q = 48

while the four numbers 4200, 151200, 415800, 491400 are largely composite and do not appear in the table of

Ramanujan. Largely composite numbers are studied in [9].
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