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Small values of the Euler function and the Riemann
hypothesis

by

Jean-Louis Nicolas (Lyon)

À André Schinzel pour son 75ème anniversaire,
en très amical hommage

1. Introduction. Let ϕ be the Euler function. In 1903, it was proved
by E. Landau (cf. [5, §59] and [4, Theorem 328]) that

lim sup
n→∞

n

ϕ(n) log log n
= eγ = 1.7810724179 . . .

where γ = 0.5772156649 . . . is Euler’s constant.
In 1962, J. B. Rosser and L. Schoenfeld proved (cf. [9, Theorem 15])

(1.1)
n

ϕ(n)
≤ eγ log logn+

2.51

log logn

for n ≥ 3 and asked if there exist an infinite number of n such that n/ϕ(n) >
eγ log log n. In [6] (cf. also [7]), I answered this question in the affirmative.
Soon after, A. Schinzel told me that he had worked unsuccessfully on this
question, which made me very proud to have solved it.

For k ≥ 1, pk denotes the kth prime and

Nk = 2 · 3 · 5 · . . . · pk
the primorial number of order k. In [6], it is proved that the Riemann hy-
pothesis (for short RH) is equivalent to

∀k ≥ 1,
Nk

ϕ(Nk)
> eγ log logNk.

The aim of the present paper is to make the results of [6] more precise by
estimating the quantity

(1.2) c(n) =

(
n

ϕ(n)
− eγ log log n

)√
log n.
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Let us denote by ρ a generic root of the Riemann ζ function satisfying
0 < <(ρ) < 1. Under RH, 1 − ρ = ρ. It is convenient to define (cf. [2, p.
159])

(1.3) β =
∑
ρ

1

ρ(1− ρ)
= 2 + γ − log π − 2 log 2 = 0.0461914179 . . . .

We shall prove

Theorem 1.1. Under the Riemann hypothesis (RH ) we have

lim sup
n→∞

c(n) = eγ(2 + β) = 3.6444150964 . . . ,(1.4)

∀n ≥ N120569 = 2 · 3 · . . . · 1591883, c(n) < eγ(2 + β),(1.5)

∀n ≥ 2, c(n) ≤ c(N66) = c(2 · 3 · . . . · 317) = 4.0628356921 . . . ,(1.6)

∀k ≥ 1, c(Nk) ≥ c(N1) = c(2) = 2.2085892614 . . . .(1.7)

We keep the notation of [6]. For a real x ≥ 2, the usual Chebyshev
functions are denoted by

(1.8) θ(x) =
∑
p≤x

log p and ψ(x) =
∑
pm≤x

log p.

We set

(1.9) f(x) = eγ log θ(x)
∏
p≤x

(1− 1/p).

Mertens’s formula yields limx→∞ f(x) = 1. In [6, Th. 3(c)] it is shown that,
if RH fails, there exists b, 0 < b < 1/2, such that

(1.10) log f(x) = Ω±(x−b).

For pk ≤ x < pk+1, we have f(x) = eγ log log(Nk)
ϕ(Nk)
Nk
· When k → ∞, by

observing that the Taylor development about 1 yields log f(pk) ∼ f(pk)−1,
we get

log f(pk) ∼ f(pk)− 1 =
ϕ(Nk)

Nk

c(Nk)√
logNk

∼ e−γ

log logNk

c(Nk)√
logNk

,

and it follows from (1.10) that, if RH does not hold, then

lim inf
n→∞

c(n) = −∞ and lim sup
n→∞

c(n) = +∞.

Therefore, from Theorem 1.1, we deduce:

Corollary 1.1. Each of the four assertions (1.4) to (1.7) is equivalent
to the Riemann hypothesis.

1.1. Notation and results used. If θ(x) and ψ(x) are the Chebyshev
functions defined by (1.8), we set

(1.11) R(x) = ψ(x)− x and S(x) = θ(x)− x.
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Under RH, we shall use the upper bound (cf. [10, (6.3)])

(1.12) x ≥ 599 ⇒ |S(x)| ≤ T (x) :=
1

8π

√
x log2 x.

P. Dusart (cf. [1, Table 6.6]) has shown that

(1.13) θ(x) < x for x ≤ 8 · 1011,

thus improving the result of R. P. Brent who has checked (1.13) for x < 1011

(cf. [10, p. 360]). We shall also use (cf. [9, Theorem 10])

(1.14) θ(x) ≥ 0.84 x ≥ 4
5x for x ≥ 101.

As in [6], we define the integrals

K(x) =

∞�

x

S(t)

t2

(
1

log t
+

1

log2 t

)
dt,(1.15)

J(x) =

∞�

x

R(t)

t2

(
1

log t
+

1

log2 t

)
dt,(1.16)

and, for <(z) < 1,

(1.17) Fz(x) =

∞�

x

tz−2
(

1

log t
+

1

log2 t

)
dt.

We also set, for x ≥ 1,

(1.18) W (x) =
∑
ρ

xi=(ρ)

ρ(1− ρ)
,

so that, under RH, from (1.3) we have

(1.19) |W (x)| ≤ β =
∑
ρ

1

ρ(1− ρ)
·

We often implicitly use the following result: for a and b positive, the function

(1.20) t 7→ loga t

tb
is decreasing for t > ea/b

and

(1.21) max
t≥1

loga t

tb
=

(
a

eb

)a
.

Organization of the article. In Section 2, the results of [6] about f(x)
are revised so as to get effective upper and lower bounds for both log f(x)
and 1/f(x)−1 under RH (cf. Proposition 2.1). In Section 3, we study c(Nk)
and c(n) in terms of f(pk). Section 4 is devoted to the proof of Theorem 1.1.
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2. Estimate of log(f(x)). The following lemma is Proposition 1 of [6].

Lemma 2.1. For x ≥ 121, we have

(2.1) K(x)− S2(x)

x2 log x
≤ log f(x) ≤ K(x) +

1

2(x− 1)
.

The next lemma is a slight improvement of Lemma 1 of [6].

Lemma 2.2. Let x be a real number, x > 1. For <(z) < 1, we have

(2.2) Fz(x) =
xz−1

(1− z) log x
+ rz(x) with rz(x) =

∞�

x

− ztz−2

(1− z) log2 t
dt

and, if <(z) = 1/2,

(2.3) |rz(x)| ≤ 1

|1− z|
√
x log2 x

(
1 +

4

log x

)
.

Moreover, for z = 1/2, we have

(2.4)
2√

x log x
− 2
√
x log2 x

≤ F1/2(x) ≤ 2√
x log x

− 2
√
x log2 x

+
8

√
x log3 x

and, for z = 1/3,

(2.5) 0 ≤ F1/3(x) ≤ 3

2x2/3 log x
·

Proof. The proof of (2.2) is easy by taking the derivative. By partial
summation, we get

(2.6) rz(x) = − z

1− z

(
xz−1

(1− z) log2 x
+

∞�

x

2 tz−2

(z − 1) log3 t
dt

)
.

If we assume <(z) = 1/2, we have 1− z = z and

|rz(x)| ≤ 1

|1− z|
√
x log2 x

+
2

|1− z| log3 x

∞�

x

t−3/2 dt,

which yields (2.3). The estimates (2.4) follow from (2.2) and (2.6) by choos-
ing z = 1/2, while (2.5) follows from (2.2) since r1/3 is negative.

To estimate the difference J(x) − K(x), we need Lemma 2.4 below,
which, under RH, is an improvement of Propositions 3.1 and 3.2 of [1]
(obtained without assuming RH). The following lemma will be useful for
proving Lemma 2.4.

Lemma 2.3. Let κ= κ(x) =
⌊ log x
log 2

⌋
the largest integer such that x1/κ≥ 2.

For x ≥ 16, set

H(x) = 1 +
κ∑
k=4

x1/k−1/3,
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and for x ≥ 4,

L(x) =
κ∑
k=2

`k(x) with `k(x) =
T (x1/k)

x1/3
=

log2 x

8π k2x1/3−1/(2k)
·

Then

(i) H(x) ≤ H(2j) for j ≥ 9 and x ≥ 2j.
(ii) L(x) ≤ L(2j) for j ≥ 35 and x ≥ 2j.

Proof. The function H is continuous and decreasing on [2j , 2j+1); so, to
show (i), it suffices to prove that for j ≥ 9,

(2.7) H(2j) ≥ H(2j+1).

If 9 ≤ j ≤ 19, we check (2.7) by computation. If j ≥ 20, we have

H(2j)−H(2j+1) =

j∑
k=4

2j(
1
k
− 1

3
)
(
1− 2

1
k
− 1

3
)
− 2

(j+1)( 1
j+1
− 1

3
)

≥ 2j(
1
4
− 1

3
)
(
1− 2

1
4
− 1

3
)
− 2

(j+1)( 1
j+1
− 1

3
)

= 2−j/3[(1− 2−1/12)2j/4 − 22/3],

which proves (2.7) since the above bracket is ≥ (1 − 2−1/12)220/4 − 22/3 =
0.208 . . . and therefore positive.

Let us assume that j ≥ 35 so that 2j ≥ e24. From (1.20), for each k ≥ 2,
x 7→ `k(x) is decreasing for x ≥ 2j so that L is decreasing on [2j , 2j+1), and
to show (ii), it suffices to prove

(2.8) L(2j) ≥ L(2j+1).

We have

L(2j)− L(2j+1) =

j∑
k=2

{`k(2j)− `k(2j+1)} − `j+1(2
j+1)

≥ `2(2j)− `2(2j+1)− `j+1(2
j+1)

=
log2 2

32π
2−j/3{2j/4[j2 − 2−1/12(j + 1)2]− 4 · 21/6}.

For j ≥ 1/(21/12 − 1) = 16.81 . . . , the above square bracket is increasing
in j and positive for j = 35. Therefore, the curly bracket is increasing for
j ≥ 35, and since its value for j = 35 is equal to 744.17 . . . , (2.8) is proved
for j ≥ 35.

Lemma 2.4. Under RH, we have

(2.9) ψ(x)− θ(x) ≥
√
x for x ≥ 121,
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and, for x ≥ 1,

(2.10)
ψ(x)− θ(x)−

√
x

x1/3
≤ 1.332768 . . . ≤ 4

3
·

Proof. For x < 5993, we check (2.9) by computation. Note that 599 is
prime. Let q0 = 1, and let q1 = 4, q2 = 8, q3 = 9, . . . , q1922 = 5993 be the
sequence of powers (with exponent≥ 2) of primes not exceeding 5993. On the
intervals [qi, qi+1), the function ψ−θ is constant and x 7→ (ψ(x)−θ(x))/

√
x

is decreasing. For 11 ≤ i ≤ 1921 (i.e. 121 ≤ qi < qi+1 ≤ 5993), we calculate
δi = (ψ(qi)− θ(qi))/

√
qi+1 and find that min11≤i≤1921 δi = δ1886 = 1.0379 . . .

(q1886 = 206468161 = 143692) while δ10 = 0.9379 . . . < 1 (q10 = 81).
Now, we assume x ≥ 5993, so that, by (1.12),

(2.11) ψ(x)− θ(x) ≥ θ(x1/2) + θ(x1/3) ≥ x1/2 +x1/3−T (x1/2)−T (x1/3).

By using (1.21), we get

T (x1/2)

x1/3
+
T (x1/3)

x1/3
=

1

8π

(
log2 x

4x1/12
+

log2 x

9x1/6

)
≤ 20

πe2
= 0.86157 . . . ,

which, with (2.11), implies

(2.12) ψ(x)− θ(x) ≥
√
x+

(
1− 20

πe2

)
x1/3 ≥

√
x.

The inequality (2.10) is Lemma 3 of [8]. Below we give another proof by
considering three cases according to the values of x.

Case 1: 1≤ x< 232. The largest qi smaller than 232 is q6947 = 4293001441
= 655212. On the intervals [qi, qi+1), the function

G(x) :=
ψ(x)− θ(x)−

√
x

x1/3

is decreasing. By computing G(q0), G(q1), . . . , G(q6947) we get

G(x) ≤ G(q103) = 1.332768 . . . [q103 = 80089 = 2832].

Case 2: 232 ≤ x < 64 · 1022. By using (1.13), we get

ψ(x)− θ(x) =

κ∑
k=2

θ(x1/k) ≤
κ∑
k=2

x1/k

so that Lemma 2.3 implies G(x) ≤ H(x) ≤ H(232) = 1.31731 . . . .

Case 3: x ≥ 64 · 1022 ≥ 279. By (1.12) and (1.13), we get

ψ(x)− θ(x) =

κ∑
k=2

θ(x1/k) ≤
κ∑
k=2

{x1/k + T (x1/k)},

whence, from Lemma 2.3, G(x) ≤ H(x) + L(x) ≤ H(279) + L(279) =
1.32386 . . . .
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Corollary 2.1. For x ≥ 121, we have

(2.13) F1/2(x) ≤ J(x)−K(x) ≤ F1/2(x) + 4
3F1/3(x).

The following lemma is an improvement of [6, Proposition 2].

Lemma 2.5. Assume that RH holds. For x > 1, we may write

(2.14) J(x) = − W (x)√
x log x

− J1(x)− J2(x)

with

(2.15) 0 < J1(x) ≤ log(2π)

x log x
and |J2(x)| ≤ β

√
x log2 x

(
1 +

4

log x

)
.

Proof. In [6, (17)–(19)], for x > 1, it is proved that

J(x) = −
∑
ρ

1

ρ
Fρ(x)− J1(x)

with J1 satisfying 0 < J1(x) ≤ log(2π)
x log x ·

Now, by Lemma 2.2, we have Fρ(x) = xρ−1

(1−ρ) log x + rρ(x), which yields

(2.14) by setting J2(x) =
∑

ρ(1/ρ)rρ(x). Further, from (2.3) and (1.3), we
get the upper bound for |J2(x)| given in (2.15).

Proposition 2.1. Under RH, for x ≥ x0 = 109, we have

(2.16) −2 +W (x)√
x log x

+
0.055
√
x log2 x

≤ log f(x) ≤ −2 +W (x)√
x log x

+
2.062
√
x log2 x

and

(2.17)
2 +W (x)√
x log x

− 2.062
√
x log2 x

≤ 1

f(x)
− 1 ≤ 2 +W (x)√

x log x
− 0.054
√
x log2 x

·

Proof. By collecting the information from (2.1), (1.12), (2.13), (2.14),
(2.15), (2.4) and (2.5), for x ≥ 599, we get

log f(x) ≥ −W (x) + 2√
x log x

+
2− β
√
x log2 x

− 8 + 4β
√
x log3 x

(2.18)

− log(2π)

x log x
− 2

x2/3 log x
− log3 x

64π2 x

and

(2.19) log f(x) ≤ −W (x) + 2√
x log x

+
2 + β
√
x log2 x

+
4β

√
x log3 x

+
1

2(x− 1)
·
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Since x ≥ x0 = 109, (2.18) and (2.19) imply respectively

log f(x) ≥ −W (x) + 2√
x log x

+
1

√
x log2 x

(
2− β − 8 + 4β

log x0
(2.20)

− log(2π) log x0√
x0

− 2 log x0

x
1/6
0

− log5 x0
64π2

√
x0

)
and

(2.21) log f(x) ≤ −W (x) + 2√
x log x

+
1

√
x log2 x

(
2+β+

4β

log x0
+

√
x0 log2 x0

2(x0 − 1)

)
,

which proves (2.16).
Setting v = − log f(x), it follows from (2.16), (1.19) and (1.3) that

v ≤ W (x) + 2√
x log x

≤ 2 + β√
x log x

≤ v0 :=
2 + β√
x0 log x0

= 0.00000312 . . . .

By Taylor’s formula, we have ev − 1 ≥ v, which, with (2.16), provides the
lower bound of (2.17), and

ev − 1− v ≤ ev0

2
v2 ≤ ev0(2 + β)2

2x log2 x
≤ ev0(2 + β)2

2
√
x0
√
x log2 x

=
0.0000662 . . .
√
x log2 x

,

which implies the upper bound in (2.17).

3. Bounding c(n)

Lemma 3.1. Let n and k be two integers satisfying n ≥ 2 and k ≥ 1.
Assume that either the number j = ω(n) of distinct prime factors of n is
equal to k, or Nk ≤ n < Nk+1. Then

(3.1) c(n) ≤ c(Nk).

Proof. It follows from our hypothesis that n ≥ Nk and j ≤ k. Let us write
n = qα1

1 . . . q
αj
j (with q1 < · · · < qj as defined in the proof of Lemma 2.4).

We have

n

ϕ(n)
=

j∏
i=1

1

1− 1/qi
≤

j∏
i=1

1

1− 1/pi
≤

k∏
i=1

1

1− 1/pi
=

Nk

ϕ(Nk)
,

which yields

(3.2) c(n) ≤
(

Nk

ϕ(Nk)
− eγ log logn

)√
log n =: h(n)

and h(n) can be extended to all real n. Further,

d

dn
h(n) =

1

2n
√

log n

(
Nk

ϕ(Nk)
− eγ log log n− 2eγ

)
≤ 1

2n
√

log n

(
Nk

ϕ(Nk)
− eγ log logNk − 2eγ

)
.



Small values of the Euler function 319

If k = 1 or 2, it is easy to see that the expression in parentheses is negative,
while, if k ≥ 3, by (1.1), it is smaller than 2.51

log logNk
− 2eγ , which is also

negative because log logNk ≥ log log 30 = 1.22 . . . . Therefore, h(n) ≤ h(Nk)
= c(Nk), which, with (3.2), completes the proof of Lemma 3.1.

Proposition 3.1. Assume that x0 = 109 ≤ pk ≤ x < pk+1. Under RH,
we have

(3.3) c(Nk) ≤ eγ(2 +W (x))− 0.07

log x
≤ eγ(2 + β)− 0.07

log x

and

(3.4) c(Nk) ≥ eγ(2 +W (x))− 3.7

log x
≥ eγ(2− β)− 3.7

log x
·

Proof. From (1.2) and (1.9), we get

(3.5) c(Nk) = eγ
√
θ(x)(log θ(x))

(
1

f(x)
− 1

)
·

By the fundamental theorem of calculus, (1.14) and (1.12), we have

|
√
θ(x) log θ(x)−

√
x log x| =

∣∣∣∣ θ(x)�
x

log t+ 2

2
√
t

dt

∣∣∣∣ ≤ |θ(x)− x| log(4x/5) + 2

2
√

4x/5

≤
√

5

4
T (x)

log x+ 2√
x

=

√
5

32π
(log2 x)(log x+ 2),

whence ∣∣∣∣
√
θ(x) log θ(x)√
x log x

− 1

∣∣∣∣ ≤ √5(log2 x)(log x+ 2)

32π
√
x log x

≤
√

5(log2 x0)(log x0 + 2)

32π
√
x0 log x

≤ 0.0069

log x
·

Therefore, (3.5), (2.17) and (1.19) yield

c(Nk) ≤ eγ
(

2 +W (x)− 0.054

log x

)(
1 +

0.0069

log x

)
≤ eγ(2 +W (x))− eγ

log x
(0.054− 0.0069(2 + β)),

which proves (3.3). The proof of (3.4) is similar.

4. Proof of Theorem 1.1. It follows from (3.1), (3.3) and (3.4) that

lim sup
n→∞

c(n) = eγ
(

2 + lim sup
x→∞

W (x)
)
.

As observed in [6, p. 383], by the pigeonhole principle (cf. [3, §2.11] or
[4, §11.12]), one can show that lim supx→∞W (x) = β, which proves (1.4).
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To show the other items of Theorem 1.1, we first consider k0 = 50847534,
the number of primes up to x0 = 109. For all k ≤ k0, we have calculated
c(Nk) in Maple with 30 decimal digits, so that we may think that the first
ten are correct.

We have found that for k1 = 120568 < k ≤ k0, we have c(Nk) < eγ(2+β)
(while c(Nk1) = 3.6444180 . . . > eγ(2 + β)) and for 1 ≤ k ≤ k0, we have
c(N1) = c(2) ≤ c(Nk) ≤ c(N66).

Further, for k > k0, (3.3) implies c(Nk) < eγ(2 + β) < c(N66), which,
together with Lemma 3.1, proves (1.5) and (1.6).

As a challenge, for k1 = 120568, I ask what is the largest number M such
that M < Nk1+1 and c(M) ≥ eγ(2 + β). Note that M > Nk1 since, for n =
Nk1−1pk1+1, we have c(n) = 3.6444178 . . . > eγ(2 + β). Another challenge is
to determine all the n’s satisfying n < Nk1+1 and c(n) > eγ(2 + β).

Finally, for k > k0, (3.4) implies

c(Nk) ≥ eγ(2− β)− 3.7

log(109)
= 3.30 . . . > c(2),

which completes the proof of (1.7) and of Theorem 1.1.

It is not known if lim infx→∞W (x) = −β. Let ρ1 = 1/2 + it1 with
t1 = 14.13472 . . . be the first zero of ζ. By using a theorem of Landau
(cf. [3, Th. 6.1 and §2.4]), it is possible to prove that lim infx→∞W (x) ≤
−1/(ρ1(1− ρ1)) = −0.00499 . . . . A smaller upper bound is desired.

An interesting question is the following: assume that RH fails. Is it possi-
ble to get an upper bound for k such that k > k0 and either c(Nk) > eγ(2+β)
or c(Nk) < c(2)?
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207–218.

[8] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Rie-
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