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Let Z* denote the set of positive integers and T be a non-empty subset of Z"x Z". Let y: T —Z" be a mapping

such that for each n in Z* L W {x,y) =-'n_-has ‘a finite number of solutions, If F denotes the set of arithmetic

functions, for £, g in F, fyg is defined by (fyg) (n) = 2 )8 0} for each n in Z'. If v satisfies the
yixy)=n .

max condition Qiz., w{x.y)2 {x, y} forall (x,Y)e T, in 1989, V. Sitaramaiah proved that the commutative ring
F.+ ¥ possesses unity if and only if w is onto. In the present paper, we show that this result holds well
ifresbective of the max coﬁdition. We ‘also show -that if w -is multiplicativity préﬁerviné and onto (F, +, W)
- possesses unity which is also multipiiéative. ‘This a_:_iswersr a quesﬁoh of V. Sitaramaizh and M. V. Subbarao

raised in 1994,

Key Words : Arithmetic Function; Lehmer’s-y Product;Unity; Muitiplicativity Preserving

i. INTRODUCTION

As usual, an arithmetic function is a complex-valued function defined on the set of positive intégers-
Z*. The set of all arithmetic functions will be denoted by F. Let T be a non-empty subset of

Z+xZ+ and T—-)Z’r be a mapping satisfying the followmg

*Research partially supported by CNRS, Institut Girard Desargues, UMR. 5028,
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For each ne Z', w(x,y)=n has a finite number of solutions. (11

The statements "(y,z)e T and (x, ¥ (y,z)}e T' and "(x,y)e T and (y(x,y),2)e T are
equivalent, when one of these conditions hold, we have '

| W w0, ) = Wi ), 2).
It | \ |
(x,y)e T, then {y,x)e T and ¥(x,y)=w(y,x), _ . (123)

for f,ge F, the y-product of f and g denotéd by fwg is defined by'

Fwg) ()= 2 f(x)g(y)
w(x, y) n

for each ne Z*. The bmary operatlon l,tr in (1 4) is due to D. H. Lehmerl.

Using (1.1)}-(1.3) it is not difficult to show that (F,+, y)-is a commutative ring, where ‘+’
denotes the pointwise addition. .

In 1989, V. Sitaramaiah proved the following.
Theorem 1.5° (Theorem 22)y — Let v satisfy (1.1)-(1.3) and w(x,y) Z2max {x, y} for ali

(x,y) e T. Then the commutative ring (F,+, ¥) possesses the unity if and only if for each ke Z‘+
W (x, k)=k has a solution. In such a case, if g stands for the unity, then

Tg=1- Y g, if wk b=k | o (L6
‘ W(x,k)=k . . .
x<k
and 20 = 0, if wik k)+k ‘ _ 7 - o (LD

In this paper, we prove (see Theorem 3.1) the above result without assurﬁingl the condition
"W(x,y) 2max {x, y} for all (x,y)e T" (this condition will be referred to as max condition in the
sequel). The proof of Theorem 1.5 was divided into two cases (see ); in case 1 the max condition
played an important role; in the present paper, we suppress this by using complete induction on an
appropriate ‘candidate’. The second case of the proofs of Theorem 1.5 and 3.1 is same exceptrfor '

few modifications.

"~ As usual an arithmetic functlon f WhICh is not identically zero is said to be mulupllcanvc '
if f{(mn)=f(m)f(n) for all positive integers m and n which are relatively prime. If |74 satisfies
(1.1)-(1.3), y-in (1.4) is said to be multiplicativity preserving (see [4] and [5]) if fyg is'

muluphcatwe whenever f and g are.

In {5, Sectlon 4], V. Sntarammah and M. V Subbarao expected that if v is multlphcatmty
preserving and onto, then the commutative ring (F, +, ) would possess a unity. which is multiplicative
_ and that it would be possible to find necessary and sufficient conditions for a multiplicative function
to be invertible with respect to 4, in this paper we answer the first part-of the question in affirmative
(see Theorem 3.12) and give a partial solution to the second part (see section 4).
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Section 2 contains preliminaries. The main results are included in sections 3 and 4.

2. PRELIMINARIES

First we have
Lemma 2.1 (cf. [3], Lemma 2.1) — ge F is an Identlty with respcct to y, that is
fwg=ffor all fe F if and only if, for any fixed k, ne Z",

) 1 ifn=k ' |
Z g (x) "'{ 0 ifn;ék . (2.2)
winn) =k : ,

For each ke Z, let Sk denote the set defined by
S = {J;: vix,ky=k}. . A : - . .« (2.3)

Lemma 2.4 (cf. [3], Lemma 2.1) — We have

() a,be S,=>y(ab)es,

@) If ac 5, then S, S,

(iii) !;I(a bhy=k=S c_:S and Sngk
Remark 2.5 : If S, is non-empty, for a,be §, if we define a yb= t,rf(a b), then (1) of
" Lemma 2.4 shows that y is a binary operation on S, Also, by (1.1) and (1.2) it follows that
- (S ¥) is a finite semi-group. Thus (Sk,'l,v) contains an idempotent element if S, # ¢; this means that

‘we can find a positive integer ¢ in S, such that re §,

Lemma 2.6 (cf. [5], Theorem_ 3.1) — Let !;/ be muitiplicativity preserving and for each
r : 7 7

ke Z%, v, ky=k has a solution, Let x= H p; % and y= H p, » Where p,, p,, ...,pr are distinct
i=1 i=1 "

primes, @; and f3; are non-negative integers for i =1, 2, ey T Then we.ha\_re

, (x,y)€ T and only if (p;", pf DeTfori=12 ..,r , - 27
If - | S -. . . 7

) 8 (o, f. .
xeT then winy)= [] p,-P:(“' A _ | . (28

i=1
where for any prime p,
9 (o, B) is a unique non-ncgatlve integer defined. for non-negatwe mtcgcrs o B such that

% pp) € T and satisfies

pp‘“ﬁ’-w(p T S . @9
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qu each integer
Y20, Gp- (o, =7 has a ﬁnite‘nufnber of solutions. .. (2.10)-
8, (o /=0 if and dnly if §=ﬂ=ol | : | . 211
For each fz 0, |
8, (e7) =7 has a solution. - - . . (212)

6,(xPp=6,B0). s - (2.13)
For non-negative integers @, B,y the statements "%, p?) e T, (p% pep (_ﬁ’ 7)) eT and
"%, pﬁ)e T and (pep @h) pheT -a:e'equivaleﬁt; when one of these conditions holds, we have
8, (a6, (B, ) =96, (& B).Y)- ' - (2.14)
Lemma 2.15 (cf. [5], Theorem 3.2) — Let ¢ TcZ'xZ' be such that
(x,y) e T if and only if (v,x) e T. S - (2.15)

¥ x and y are as given in Lemma 2.6, then (x,y)€ T if and only if
e P , , o
;) e_rT fori=1,2, ..,r .. {2.16)
Further, for each prime p and non-negative integers o and f such that (% pﬁ) eT, let
' BP (0, B) be a non-negative integer saﬁsfying (2.9)-(2.14). If for (x,y) € T, w(x, y) is defined by (2.8),

then yr‘is multiplicativity preserving and for each k€ Z', w(x, k)=k has a solution. -

3. EXISTENCE OF THE UNITY

In this section we prove _
Theorem 3.1 —The conimutative ring (F,+ ¥) possesses unity if and only if for each
ke Z', y(x,ky=k has a solution. R '

PROOF : If (F,+, W) possesses unity, by (2.2) for each ke Z" the equation W (x, k) =k must

- have a solution. Conversely, we asrsume that for each ke Z°, wix, k)=k has a solution so that the

set S, defined in (2.3) is non-empty. We define the arithmetic function g as follows :

gk = 0 if ke S. - o - (3.2)
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If kg S,, we define g(k) by complete induction on the cardinality of the sets S,. For each
ne Z', let P(n) denote the proposition that g can be defined on sets S, o{k} such that

Z g(x)= 1, whenever [ S, I=n.

X € Sk

If n =1 so that ‘Sk = {k}, we define g(k) = 1, and hence P (1) is ttme; Assume that P(m)
is true for 1<m<n. Let i§,1=n+1 and Sk;{k}. We define g(k} by the identity

l=gly+ Y g , . (3.3)

x€ S,k('\SI
x#k

By Lemma 24, x€ Sk implies ngSk. Als ke Sx if xe Sk and ﬁc,#_.k.'For, if ke Sx, we
must have y(x, k) =x. But xe S, implies  that y(x, %)=k so that x = k. ‘This is a contradiction
since x#k. Thus if xe S, and x#k,ISxI<ISk1. By our induction hypothesis g(x) in the sum on

the right hand side of (2.2) is a known quantity and hence g(k) can be found from (3.3). Again by
(3.2) and (3.3), ' _ :

1= Y g | | .. (3.4)

x€ Sk

The induction is complete. o ‘
Having defined g, we now claim that g is the unity in (F,+, ¥). By Léemma 2.1 and the
identity (3.4), we need to only show that if n#k, then

Y sw=0. | R | - (35)
yn) =k .

Let ne Z" and n#k We distinguish two cases:

Case 1 — Let ne §,. Let P(m) denote the proposition that (3.5) holds for all k#n such '
that S, |=m. Let |5 i=1. If the sum in (3.5) is non-empty, we can assume that x appearing in-
this sum is in S, since g(x) = 0 if xe §,. Also, by Lemma _2.4, ‘W{x, n) =k implies ngSk and
S, C S

Since x€ S, and ne §,, both x and n are in §; so that by Lemma.5 24, k=y(x,n)e §,.

Since 1§, 1=1, we must have §;, = {k}. Since SﬁgS = {k}, ne §, implies that n = k This is a

contradiction to n#k.'Thus the sum in (3.5) is an empty sum so that (3.5) holds. Thus P (1) is
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true. We assume that P(m) is true for 1<m<r. Let 1S, 1=r+1 If y(x,n)=k has a solution, as

above it follows that ke Sk and ne SngSk. Hence we can assume that

S, = {nkxp, %9, 0%, 1} ] .. (3.6)

where © x;€{n, k} for i =1,2 o, =1
.

If x€ S, then since ne S, ¥(x n) € §;. Hence by (3.4) and (3.6), we have

r—1 :
1= gW= Y g@+ 2 s+ X D g® . - (37)

x€ Sk xeSk xXe Sk j=1 xeSk
wlnn)=n wix,n=k '.V(x.nJ=xj

In each sum on thé right-hand side of (3.7), by (3.2) we can assume that xe S, Also, if
a€ S, y(x,n)=a implies x€ S, =S, so that xe §,. Therefore '

' ' o . r—1
1= 3 g@= Y g+ 2 g@w+ Y X g®

xe S, wix,n)=n . wnn)=k j=t wEmm=x

r-1 -
=Y e+ Y @+ Y Y g

X€E Sn yix,n)=k - j=1 l;/(x,n)=xj

r—1 : :
=1+ 2 @+ X Y e . (3.8)
,,W(x,n)_=k - j=1 l;/(.i:,n)=xj - ‘

Now, xj;tn and ke ij for 1<j<r-1. Since ke §, and ijc__:S, it f_qllowskhat

IijI<|SkI=r+ 1. By the induction hypothesis, Z gx)=0, for 1< ij— 1; (3.5) follows from -

yinn=x

this and (3.8).

Case 2 — Let ne S, and n#k. Since S, is' non-empty, by Remark 2.5 we can find
te §, such that t€ S, Clearly, t#n. The remaining part of the proof of this case is almo.st same
as that in [3, Theorem 2.3]. In (3.5), we can assume that'xe S;: so that w(x,n)=k implies
xe§ ¢S, and §, c§, (by Lemma 2.4). Hence we can assume that x appearing in the sum in (3.5)
is in S;. Since te 5,C 5, S, x€ S5, implieé that y(x,?) € S;. Morcover, if y(x,n) =k, then we

Calso have k=w(x )=y, ywtn)=yw(w(k ), 1), so that w(x 1) is also a soiution of
‘V(}’, n)'_‘k' V ! . : -
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Let Xps Xg, i X, be all the elements of Sk satisfying wix,n)=k for i = 1, 2, o T Since

te Sn,‘ W (t, n)=n. This together with n#k implies that x,#¢ for i = 1, 2, ... r. We have

2 g(x)—Z TR | | ~.(39)

wix,ny=k i=l yn)=k
’ ’ I,V(x,r):xj

Also, for i = 1, 2, ..., r, W(x, f)=x; and ¥ (x, n) =k implies

k=wx, )=y (yx0,n=yk v n)=yxn),

so that from (3.9) we obtain

Y, gw= Y Y . L G10)

ly(x.n)=k - i=1 W(I,t)=xi

Since z€ S, and t#x, for i = 1, 2, .., r it follows from Case | that each term on the
right—hand side of (3.10) vanishes. Hence (3.5) follows. The proof of Theorem 3.1 is complete.

It has been shown in [5, Lemma 2.2] that the statements (a)  is onto (b) Given ke Z*,
W (x, k) =k has a solution, are equivalent, where v satisfies (1.1)-(1.3). Hence we can restate Theorem
3.1 as :

Theorem 3.11 — The commutative ring (F, +, ¥) possesses unity if and only If Y is onto.

Theorem 3.12 — If v is multtplzcatzwty preservmg and onto, then the commutatwe ring
(F, +, ) possesses ‘unity which is multiplicative. :

PROOF : By Theorem 3.11, (F,+, ¥) possesses unity. Only we need to show that the unity
is multiplicative. Instead of proving that the unity is multiplicative, we use the method of proof of
Theorem 3.1 to construct a unity, which is multiplicative. By Lemmas 2.6 and 2.15, we can assume
that 7, w and Gp are as given in Lemma 2.5, We fix a prime p and write 9p=9 for conv;:nience.

For integers x>0, define the sets E, by E, = {3: 8(f, &) = e}. Since y is onto, E, is not empty
for each @20. In view of (2.10)-(2.14), Lemma 2.4 and Remark 2.5 remain valid with Sy replaced
by E, and v replaced by 6. We define the multiplicative function g by defining g (% at any

20 If a¢ E, we define g (»*)=0. If e E,g(@% is defined by using complete induction on

the sets Ea 50 that

Y ghH=1 | | | - (3.13)

6B a=a
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As in the proof of Theorem 3.1, we can show that for non-negative integers « and y

Y e(H=0 if ary. | . (314)

6(6 )=y

If n= p?' ...‘pf,x’ and k= p¥1 pZ’, where py, ... p, are distinct primes, ¢ti’s and f{'s are

non-negative integers, we have

: r L N
Y osw-I1 % seh={ | 2k
yx,n)=k i=1 8(B, a)=y,

by (3.13) and (3.14). By Lemma 2.2, it follows that g is the unity m (F +, l[f) and since g is also
multlphcanve we obtain Theorem 3. 12

4. UNITS N (F.+, ¥)

After ﬁndmg necessary and sufficient conditions for the existence of umty in the commutative ring
(B ¥), it remains to investigate necessary and sufficient- conditions for the invertibility of an
arithmetic function with respect to y. In the presence of max condition, the following theorem due
to V. Sltatamalah gives such conditions: .

Theorem 4.1 — (Cf. [2], Theorem 22) — Lét (F,+, ¢) be.a commutanve ring with unity
g Let wx,y)2max {x, y} for all {x, y) €T Then fe F is invertible with respect to  if and only

a

Spk):= Y, f(x);ﬁ{) R -_ B
(x,k) k e . ) .

for all ke Z* In such a case, -1 can be computed inductively by

=1,
and. for k22,

"'f’ (k) S (»'c))"l - Y F@F! (y)

vix =k
y<k _

In a way, Theorem 4.2 is a partial solutlon to the problem mentloned in the begmnmg of
section 4; Yet, some thing is remaining viz., to find necessary and sufficient conditions for the
-_"'mverublhty of fe F with respect to ¥ without assumlng the max condition. We shall make an
" attempt to answer this. question partially. ' : '

Suppose that we are given the commutative ring (F + ¥ with unity say g so that y satisfies '
lhe hyp@the&‘ls of Theorem 3.1. A natural way 0 try for f (n) is to con51der the identity
Y )(n)=g (n) for ne Z'. Let us fix a positive mt_egcr n. We have- '
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gW=Cvf m= 3 f@r'o
W(xr J’) =n

= wsm= Y fefT oy, - @43)
_ WLy =n
¥ #n

Let y#n and y(x,y)=n so that 5, 5, If f~' () is known, £~ (n) can be found

from (4.3) if Sf(n)a&O. To find’ f‘1 (yy) we proceed as above. We have

so)=Cwr Hop=Fopsop+ X faiT oy

WX, ¥,) =Y, .
S opSopeT e Y fet Y fe)f o) @)
¥ (x,n) =y, vix, ¥l =y, '
. y2¢yl.)’2ﬁ“’l'

In (4.4), ¥ (x,, n) =y, implies that S,c Sy1 that Sy 1= 3,,- Hence Sf o= Sf(n). -Using this in
(4.4), we obtain ' : -

g =f oS+ e hLy) +H 0y, . (45)
whete  h(@b)= Y fm., i _ .. (46)
' yixay=b o ' ‘ |
ad 0 H0)= Y f@)f oy | . T
WX )=y . ' '
yza&yl,yz#n

Assuming Sf(n);&O, we have from (4;5),‘

Flop=E ey @o-r ' tmhy)-Hy o)
| Using this in (4.3), we obtain after simplification,

gm=f"@EmW-Smy Y fe)heny)
S S YY) =R
) yl#n' - ‘
+ (Sf(n))‘l Y fapgGp - g L @48y
Wy =n | |
y R
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=Sy Y fa)H O )
V’_(x,- yl) =R ) . _ V .
y#n

At this stage, we can impose some sufficient cdn_ditions to find f -1 (n). For example, if the

sum in (4.9). vanishes, Sf(n);tO and the coefficient of f"1 (n) in (4.8). is non-zero, we can find

f -1 (). However, to calculate f -1 (n) these need not be the only sufficient conditions. If we continue-
further, that is, finding f~ 1_(yz)' from g (y,) = (’f v 1) (¥5), substituting this into (4.7) and fhe

resulting expression for H, (y,) in (4.9), we obtain after simplification,

g@=r W Sm-GE Y fephmy
o Wy =n
' yl #n

+ S Y Y, FE)fE) k()
' Vix.y)=n  ¥x,y)=y,
Y Vo€ Opmy

st Y feeep-6ert Y Y fe)ie)e0y)
‘V(xlvy[) =n - W(xlv}'l) =n V’(-xz! yz) =y1
yEa yp#n ¥y & (o m)

L

et Y fepftey Y fa)hGLy)

] W(xlsy1)=n- . ‘ . -' w(xzsy2)=y1
yl #n - ' J’ZE (}'lr")
+ (.sf(n))‘2 Y, fe) Y f)H; O | . (4.10)
V’(xlvyi):n' W(x 1)’2)3.?1 . . -
yl.#n ‘ ¥, & )
where Hyo)= 3, fo)f '),
WxL Y=Y,
Y3 € 0pyph)

IfL={y:yy =n}, 5’1’ Yo ¥3 and n appearing in the above sums are pairwise distinct
elements of L. Hence |L124. Thus if m = LI, proceeding as above and s_ince H, (ym_l):O,_ we

obtain after simplification,
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m-—1

gm=1"1m (Sm+ X ST X fe)fay) - fa)hny)
- j=1 V=Y,
Y€ U Yy ety )
15ks)

m;l
D INCH VAR OO A
j=1 Y5y =Y

. yke 0,0'y]’ ""yk_l)
1<ksj

(f(xl)fr(xz) ftx])) g 0’1)} ' ' . (4.11)

m-1 m-1

IED DI AC RS Y

r=32 j=r : W(xk’yk)=yk—1
Y€ gy Y )
1gksj
F@) o fEDF 0, DRy, . (412)

where y, =n. Hence it would be possible to find f~! (n) if
@ Sp(n)#0. - (4.13)

(6) The coefficient of £~ (n) in (4.11) is non-zero. (414

() The coefficient of 7' (y,_,) in (4.12) vanishes for
r=23 .,m-1 - .. (4.15)

, Although we could arrive at a set of sufficient conditions, honestly speaking, it is not easy
to verify them. At present we do not know whether the conditions (4.13)-(4.15) are also necessary.
As mentioned in the introduction, Sitaramaiah and Subbarao (cf. {5] Section 4) expected that if v
is multiplicativity preserving and onto it would be possible to find necessary and sufficient conditions
for a multiplicative function to be invertible with respect to y. One may note that a partial solution
‘has been given above not only for a multiplicative function but for any arithmetic function.

~ To find f~!in particular examples, it would be convenient to use the procedure to arrive
‘at (4.11) than wsing (4.11).. We illustrate this in the following two examples discussed in [3, Remarks
2.1 and 2.2].

Example 4.16 — Let T# {1, 2), 2, D} \J {(kk):k22} and won T be‘déﬁned by
Syl ﬁ)z w(2,1)=1 and y{k k)=k for k22. Then  satisfies (1.1)-(1.3) and ¥ does not satisfy
the max conditiqn. Further - is -onto. Also, Sy = {2} and S, = {k} for k>2. Thus if g is the
érithmetic function defined by g(1) = 0 and g(k) = 1 for k=2, then g is the unity in (F, +, y). If

fis in F, we have
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0=g M=y HW= Y FOf lo=fOf @+ @F M . @17)
'!;r(x,y)=1_ ’ ‘

and in 5 similar way for kZI 2,
=g ®=FfOf ®. | . (418

From (4.17) and '(4.18) it is clear tﬁat f =1 exists if and only if f(k)#0 for all k22.

Remark 419 : In [3, Remark 2.1] it has been mentioned that the commutative ring
(F +, W) in example 4.16 does not contain unity which is incorrect. :

_ Example 420 — Let T = {(2k,2k), 2k, 2k-1), (2k-1,2k): ke Z'} and W on T be defmcd. '
by vy = mm {x, y} It can be shown that w satisfies (1.1)-(1.3) and v is onto. Also,

S =8y _1= "{2k}. Therefore g€ F defined by g(2k = 1 and g2k - 1) = 0 for ke Z* is the unity

in (F,+, y). It can also be shown that fe F is invertible with respect to y if and only if
f(2k)#0 for alt ke Z". '
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