Popularity of Sets Represented by the Partitions of \boldsymbol{n}

JEAN-LOUIS NICOLAS
jlnicola@in2p3.fr
Institut Girard Desargues, UMR 5028, Bât. 101, Université Claude Bernard (Lyon 1), F-69622 Villeurbanne Cedex, France
MIHÁLY SZALAY*
mszalay@cs.elte.hu
Department of Algebra and Number Theory, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter Sétány 1/C, Hungary

Received July 24, 2001; Accepted August 9, 2002

Abstract. Let us say that a partition of the positive integer n represents $a, 0 \leq a \leq n$, if there is a submultiset of the multiset of the parts whose sum is a. Erdős and Szalay have proved that almost all partitions of n represent all integers $a, 0 \leq a \leq n$. If \mathcal{A} is a finite set of positive integers, let us denote by $\tilde{p}(n, \mathcal{A})$ the number of partitions of n which represent all integers $a, 0 \leq a \leq n, a \notin \mathcal{A}, n-a \notin \mathcal{A}$ but do not represent a for $a \in \mathcal{A}$. For instance, $\tilde{p}(n, \emptyset)$ is the number of partitions of n which represent all integers between 0 and n; the result of Erdős and Szalay can be reformulated as $\tilde{p}(n, \emptyset) \sim p(n)$, where $p(n)$ is the total number of partitions of n. The aim of this paper is the study of $\tilde{p}(n, \mathcal{A})$: we shall compare the values of $\tilde{p}(n, \mathcal{A})$ for small sets \mathcal{A} and we shall give a close formula for $\tilde{p}(n, \mathcal{A})$ when \mathcal{A} is the set of the first k integers.

Key words: partitions, generating functions, asymptotic estimate
2000 Mathematics Subject Classification: Primary-11P81, 11P82

1. Introduction

A partition of an integer n is a sum of positive integers in descending order which add up to n. We shall write:

$$
\begin{equation*}
n=n_{1}+n_{2}+\cdots+n_{t}, \quad n_{1} \geq n_{2} \geq \cdots \geq n_{t} \tag{1.1}
\end{equation*}
$$

We shall denote by $p(n)$ the number of partitions of n. The generating function is well known:

$$
\begin{equation*}
\sum_{n=0}^{\infty} p(n) X^{n}=\prod_{m=1}^{\infty} \frac{1}{1-X^{m}} \tag{1.2}
\end{equation*}
$$

*Research partially supported by French-Hungarian APAPE-OMFB exchange programs F-5/1997, Balaton 98009, F-18/00, Balaton 02798NC, by CNRS, Institut Girard Desargues, UMR 5028 and by Hungarian National Foundation for Scientific Research, Grant No. T029759.

If a satisfies $1 \leq a \leq n-1$, we shall say that the partition (1.1), or, equivalently, the multiset $\left\{n_{1}, n_{2}, \ldots, n_{t}\right\}$ represents a if a can be written as a subsum $n_{i_{1}}+n_{i_{2}}+\cdots+n_{i_{r}}$ (with $1 \leq i_{1}<i_{2}<\cdots<i_{r} \leq t$) of (1.1). A partition which represents all integers between 0 and n is practical. It has been proved in [9] that the number $\tilde{p}(n)$ of practical partitions of n satisfies

$$
\begin{equation*}
\tilde{p}(n) \sim p(n), \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

(the notation $\tilde{p}(n) \sim p(n)$ means that $\tilde{p}(n)=(1+o(1)) p(n)$ or $\tilde{p}(n) / p(n) \rightarrow 1)$.
If a satisfies $1 \leq a \leq n-1$, we shall denote by $R(n, a)$ the number of partitions of n which do not represent a. Clearly, $R(n, a) \leq p(n)-\tilde{p}(n)$ and from (1.3), it follows that $R(n, a)=o(p(n))$ as $n \rightarrow \infty$. The function $R(n, a)$ has been studied in [2-5, 7, 8]. We shall use the result of [3]: for a fixed and $n \rightarrow \infty$, we have

$$
\begin{equation*}
R(n, a) \sim p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\psi(a)} u(a) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi(a)=\lfloor a / 2\rfloor+1, \tag{1.5}
\end{equation*}
$$

($\lfloor x\rfloor$ is the integral part of x) and $u(a)$ is a constant depending on a. We have $u(1)=1$, $u(2)=4, u(3)=3, u(4)=16$. A table of the values of $u(a)$ up to $a=20$ and some information on the asymptotic behaviour of $u(a)$ as $a \rightarrow \infty$ are given in [3].
Let \mathcal{A} be a finite set of positive integers and $|\mathcal{A}|$ be the number of its elements. We shall denote by $r(n, \mathcal{A})$ the number of partitions of n without any parts in \mathcal{A} so that the generating function is

$$
\begin{equation*}
\sum_{n=0}^{\infty} r(n, \mathcal{A}) X^{n}=\prod_{\substack{m=1 \\ m \notin \mathcal{A}}}^{\infty} \frac{1}{1-X^{m}} \tag{1.6}
\end{equation*}
$$

As usual, we shall set $p(0)=r(0, \mathcal{A})=1$, and for $n<0, p(n)=r(n, \mathcal{A})=0$. We shall denote by $r(n, m)$ the number of partitions of n whose parts are at least m, in other terms,

$$
\begin{equation*}
r(n, m)=r(n,\{1,2, \ldots, m-1\}) . \tag{1.7}
\end{equation*}
$$

An asymptotic estimation of $r(n, \mathcal{A})$ is given in [7], which, for a finite set \mathcal{A} gives, as $n \rightarrow \infty$:

$$
\begin{equation*}
r(n, \mathcal{A})=p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{|\mathcal{A}|}\left(\prod_{a \in \mathcal{A}} a\right)\left(1+\frac{O(1)}{\sqrt{n}}\right) \tag{1.8}
\end{equation*}
$$

From (1.7), (1.8) yields, for m fixed and as $n \rightarrow \infty$:

$$
\begin{equation*}
r(n, m)=p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{m-1}(m-1)!\left(1+\frac{O(1)}{\sqrt{n}}\right) \tag{1.9}
\end{equation*}
$$

Two partitions of n are equivalent if they both represent the same integers. The classes of equivalence will be characterized by the sets of integers represented by equivalent partitions. If \mathcal{A} is a finite set of positive integers, a partition of n is \mathcal{A}-practical if it represents all a 's, $1 \leq a \leq n, a \notin \mathcal{A}, n-a \notin \mathcal{A}$ but does not represent a for $a \in \mathcal{A}$; we shall denote by $\tilde{\mathcal{P}}(n, \mathcal{A})$ the set of \mathcal{A}-practical partitions of n; we shall define $\tilde{p}(n, \mathcal{A})=|\tilde{\mathcal{P}}(n, \mathcal{A})|$. In some sense, $\tilde{p}(n, \mathcal{A})$ will measure the popularity of the set \mathcal{A}.

The aim of this paper is the study of $\tilde{p}(n, \mathcal{A})$. First, we shall classify the most popular sets by proving:

Theorem 1. Forn large enough, we have

$$
\begin{aligned}
\tilde{p}(n)= & \tilde{p}(n, \emptyset)>\tilde{p}(n,\{1\})>\tilde{p}(n,\{1,3\})>\tilde{p}(n,\{2\})>\tilde{p}(n,\{1,2\})> \\
& >\tilde{p}(n,\{1,3,5\})>\tilde{p}(n,\{2,5\})>\tilde{p}(n,\{1,2,5\})>\tilde{p}(n,\{1,4\})> \\
& >\tilde{p}(n,\{1,2,4\})>\tilde{p}(n,\{2,3\})>\tilde{p}(n,\{3\})>\tilde{p}(n,\{1,2,3\})>\tilde{p}(n, \mathcal{B})
\end{aligned}
$$

for any finite set \mathcal{B} in $\{1,2, \ldots,\lfloor n / 2\rfloor\}$, different from the sets already mentioned.
M. Deléglise has built a table of the values of $\tilde{p}(n, \mathcal{A})$ for n up to 115 and all possible \mathcal{A} 's; we are pleased to thank him strongly for this work which has been very useful. According to the values of $\tilde{p}(100, \mathcal{A})$, the order of the sets is slightly different:

$$
\begin{aligned}
& \text { Ø, }\{1\},\{1,3\},\{2\},\{1,2\},\{1,3,5\},\{1,4\},\{3\},\{1,2,5\},\{2,3\}, \\
& \quad\{1,3,5,7\},\{4\},\{2,5\},\{1,2,4\},\{1,2,4,7\},\{1,3,5,7,9\}, \ldots .
\end{aligned}
$$

This is due to the fact that the coefficients of the asymptotic expansion of $\tilde{p}(n, \mathcal{A}) / p(n)$ according to the powers of $\frac{\pi}{\sqrt{6 n}}$ are sometimes rather large and, for $n=100, \frac{\pi}{\sqrt{6 n}}$ is not that small.

The proof of Theorem 1 will be given in Section 2. Of course, the method of proof can be extended to compare the values of $\tilde{p}(n, \mathcal{A})$ for a longer list. However, we have not yet succeeded in stating a general theorem comparing $\tilde{p}\left(n, \mathcal{A}_{1}\right)$ and $\tilde{p}\left(n, \mathcal{A}_{2}\right)$ for two given sets \mathcal{A}_{1} and \mathcal{A}_{2} when $n \rightarrow \infty$.

The result (1.3) has been precised in [6] where an asymptotic expansion of $\tilde{p}(n) / p(n)$ has been given. The proof follows from the formula

$$
\begin{equation*}
\tilde{p}(n)=p(n)-\sum_{1 \leq a \leq n / 2} \tilde{p}(a-1) r(n-a+1, a+1) \tag{1.10}
\end{equation*}
$$

In Section 4, we shall prove Theorem 3, which generalizes formula (1.10) to $\tilde{p}(n, \mathcal{A})$ where \mathcal{A} is the set of the first k integers. Unfortunately, the proof is much more complicated than the proof of (1.10) in [6]. Let us introduce the notation:

Definition 1. Let $k \geq 1$ be fixed. For $k+1 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{t}$, we define $a(i)$ (for $i=1, \ldots, t$) with

$$
\begin{equation*}
a(i) \text { is the smallest integer } \geq k+1 \text { not representable by }\left\{n_{1}, \ldots, n_{i}\right\} \tag{1.11}
\end{equation*}
$$

In other words:

$$
\begin{gather*}
a(i) \text { is not representable by }\left\{n_{1}, \ldots, n_{i}\right\} ; \tag{1.12}\\
k+1, k+2, \ldots, a(i)-1 \text { are representable by }\left\{n_{1}, \ldots, n_{i}\right\} . \tag{1.13}
\end{gather*}
$$

Further, for $1 \leq i \leq t$, let

$$
\begin{equation*}
S(i)=\sum_{\substack{j=1 \\ n_{j} \leq a(i)-k-1}}^{i} n_{j} \tag{1.14}
\end{equation*}
$$

Let us observe from the above definition that

$$
\begin{equation*}
a(i) \text { and } S(i) \text { are not decreasing. } \tag{1.15}
\end{equation*}
$$

The behaviour of $a(i)$ and $S(i)$ is precised in Theorem 2 which will be proved in Section 3.
Theorem 2. Let us use the notation of Definition 1. If $i, 1 \leq i \leq t$, satisfies

$$
\begin{equation*}
a(i) \geq 2 k+3 \tag{1.16}
\end{equation*}
$$

we have

$$
\begin{gather*}
a(i) \geq(3 k+2) \frac{k+1}{2}+1 \geq 4 k+2 \geq 3 k+3, \tag{1.17}\\
a(i)+1 \leq S(i), \tag{1.18}
\end{gather*}
$$

and

$$
\begin{equation*}
S(i) \leq a(i)+k ; \tag{1.19}
\end{equation*}
$$

moreover, for $1 \leq i \leq t-1$,

$$
\begin{align*}
& S(i+1)-a(i+1) \\
& \quad= \begin{cases}S(i)-a(i)-1 & n_{i+1}=a(i), a(i)-k \notin\left\{n_{1}, \ldots, n_{i}\right\}, \\
k & a(i)+1<S(i) \leq a(i)+k ; \\
& n_{i+1}=a(i), a(i)-k \in\left\{n_{1}, \ldots, n_{i}\right\}, \\
k & a(i)+1<S(i) \leq a(i)+k ; \\
S(i)-a(i) \quad & n_{i+1}=a(i) \quad \text { and } \quad S(i)=a(i)+1 ;\end{cases} \tag{1.20}
\end{align*}
$$

Theorem 2 will be used to prove Theorem 3. (For $u>v$, the sum from u to v is to be considered 0 .)

Theorem 3. Let k be a positive integer, and $\mathcal{A}=\{1,2, \ldots, k\}$. For $n \geq(3 k+4) \frac{k+1}{2}+1$, we have:

$$
\begin{align*}
\tilde{p}(n, \mathcal{A})= & r\left(n-(3 k+2) \frac{k+1}{2}, k+1\right) \\
& -r\left(n-(3 k+2) \frac{k+1}{2},\{1,2, \ldots, k, k+1,2 k+2\}\right) \\
& -\sum_{a=(3 k+2) \frac{k+1}{2}+1}^{\lfloor n / 2\rfloor}\left\{\sum_{j=0}^{k-1} \tilde{p}(a+k-j, \mathcal{A})\right. \\
& \left.\times r\left(n-k-1-a(j+1)+\frac{(j+1)(j+2)}{2},\{1,2, \ldots, a-k-1, a\}\right)\right\} . \tag{1.21}
\end{align*}
$$

Theorem 3 can be used to calculate recursively $\tilde{p}(n, \mathcal{A})$, since it is not difficult to compute $r(n, \mathcal{A})$ (use, for instance, formula (2.11) below). Unfortunately, we have not succeeded in extending Theorem 3 to any finite set \mathcal{A}. However, after the proof of Theorem 3, we shall give similar formulas for $\tilde{p}(n,\{2\}), \tilde{p}(n,\{1,3\})$ and $\tilde{p}(n,\{1,3,5\})$.

We thank the referee for several valuable suggestions.

2. Proof of Theorem 1

We shall start by proving:

Lemma 1. Let $R(n, a)$ be the number of partitions of n which do not represent a, and let us set

$$
\begin{equation*}
\bar{R}(n, a)=R(n, a)+R(n, a+1)+\cdots+R(n,\lfloor n / 2\rfloor)=\sum_{b=a}^{\lfloor n / 2\rfloor} R(n, b) \tag{2.1}
\end{equation*}
$$

Then for a fixed and $n \rightarrow \infty$, we have

$$
\begin{equation*}
\bar{R}(n, a)=O\left(p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\psi(a)}\right) \tag{2.2}
\end{equation*}
$$

where $\psi(a)$ is defined by (1.5). More precisely,

$$
\bar{R}(n, a) \sim R(n, a)+R(n, a+1)
$$

For odd $a, \bar{R}(n, a) \sim R(n, a)$.

Proof: We shall use a result mainly due to J. Dixmier (cf. [5]) in the form given in [11], Theorem 3: for n large enough and

$$
\begin{equation*}
0.18 \sqrt{n} \leq a \leq n-0.18 \sqrt{n} \tag{2.3}
\end{equation*}
$$

the following inequality holds

$$
\begin{equation*}
\log (R(n, a)) \leq 2.431 \sqrt{n} \tag{2.4}
\end{equation*}
$$

We shall also use the result of [2], p. 44: if $\lambda=a / \sqrt{n}$, then

$$
\begin{equation*}
\log (R(n, a)) \leq\left(c+\frac{\pi^{2}}{6 c}+\frac{\lambda}{2} \log \left(1-e^{-c \lambda}\right)\right) \sqrt{n} \tag{2.5}
\end{equation*}
$$

where c is any positive real number.
By using (2.5) with $c=\frac{\pi}{\sqrt{6}}$, and observing that, for x real, $1-e^{-x} \leq x$, we get

$$
\log R(n, b) \leq \pi \sqrt{\frac{2 n}{3}}+\frac{b}{2} \log \left(\frac{\pi b}{\sqrt{6 n}}\right)
$$

or, in other terms

$$
\begin{equation*}
R(n, b) \leq e^{\pi \sqrt{\frac{2 n}{3}}} v(b) \tag{2.6}
\end{equation*}
$$

with

$$
\begin{equation*}
v(b)=\left(\frac{\pi}{\sqrt{6 n}}\right)^{b / 2} b^{b / 2} \tag{2.7}
\end{equation*}
$$

We have

$$
\frac{v(b+1)}{v(b)}=\left(\frac{\pi(b+1)}{\sqrt{6 n}}\right)^{1 / 2}\left(1+\frac{1}{b}\right)^{b / 2} \leq\left(\frac{e \pi(b+1)}{\sqrt{6 n}}\right)^{1 / 2}
$$

so that, for $b+1 \leq 0.18 \sqrt{n}$,

$$
\begin{equation*}
\frac{v(b+1)}{v(b)} \leq\left(\frac{0.18 e \pi}{\sqrt{6}}\right)^{1 / 2} \leq 0.8 \tag{2.8}
\end{equation*}
$$

Let us write

$$
\bar{R}(n, a)=\sum_{b=a}^{a+7}+\sum_{b=a+8}^{\lfloor 0.18 \sqrt{n}\rfloor}+\sum_{0.18 \sqrt{n}<b \leq n / 2} R(n, b) \stackrel{\text { def }}{=} S_{1}+S_{2}+S_{3} .
$$

From (2.4), we get

$$
S_{3} \leq \frac{n}{2} \exp (2.431 \sqrt{n})=O\left(p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\psi(a+1)+\frac{1}{2}}\right),
$$

since a is fixed, and from [10],

$$
\begin{equation*}
p(n)=\frac{e^{\pi \sqrt{2 n / 3}}}{4 \sqrt{3} n}\left(1+\frac{O(1)}{\sqrt{n}}\right), \quad \pi \sqrt{2 / 3}=2.56 \ldots \tag{2.9}
\end{equation*}
$$

From (2.6) and (2.8) it follows

$$
\begin{equation*}
S_{2} \leq e^{\pi \sqrt{\frac{2 n}{3}}} v(a+8)\left(1+(.8)+(.8)^{2}+\cdots\right)=5 e^{\pi \sqrt{\frac{2 n}{3}}} v(a+8) \tag{2.10}
\end{equation*}
$$

The definition (1.5) implies $\psi(a) \leq 1+a / 2$; since a is fixed, by (2.7) and (2.9), (2.10) yields

$$
S_{2}=O(n p(n) v(a+8))=O\left(n p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\frac{a+8}{2}}\right)=O\left(p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\psi(a+1)+\frac{1}{2}}\right)
$$

Finally, by (1.4), it is easily seen that

$$
S_{1} \sim R(n, a)+R(n, a+1)=O\left(p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{\psi(a)}\right),
$$

which completes the proof of Lemma 1.

Remark. The constant in (2.4) can be improved for two reasons: (2.5) is slightly better than the upper bound of $R(n, \lambda \sqrt{n})$ used in the proof of Theorem 3 of [11], and J.-C. Aval (cf. [1]) has improved a key lemma of [5]. Unfortunately, these two improvements do not allow to decrease very much the constant in (2.4). The couple of numbers $(0.18,2.431)$ in (2.3) and (2.4) can, for instance, be replaced by $(0.18,2.422),(0.2,2.415),(0.3,2.391)$ or (0.4, 2.378).

To prove Theorem 1, we shall give an asymptotic equivalent of $\tilde{p}(n, \mathcal{A})$ for all the sets \mathcal{A} considered in the statement. If $\tilde{p}(n, \mathcal{A}) \sim \tilde{p}\left(n, \mathcal{A}^{\prime}\right)$, we shall study the difference $\tilde{p}(n, \mathcal{A})-\tilde{p}\left(n, \mathcal{A}^{\prime}\right)$.
For any finite set \mathcal{A}, it is possible to find an asymptotic expansion of any order of $r(n, \mathcal{A}) / p(n)$. Indeed, from the generating functions (1.2) and (1.6), it follows that

$$
\sum_{n=0}^{\infty} r(n, \mathcal{A}) X^{n}=\left(\sum_{n=0}^{\infty} p(n) X^{n}\right) \prod_{a \in \mathcal{A}}\left(1-X^{a}\right)
$$

So, if we expand the polynomial

$$
\prod_{a \in \mathcal{A}}\left(1-X^{a}\right)=\sum_{m} w_{m} X^{m}
$$

we can write $r(n, \mathcal{A})$ as a linear combination of the $p(n-m)$'s:

$$
\begin{equation*}
r(n, \mathcal{A})=\sum_{m} w_{m} p(n-m) \tag{2.11}
\end{equation*}
$$

But, from the famous formula of Hardy and Ramanujan for $p(n)$ (cf. [10]), for m fixed and $n \rightarrow \infty$, it is possible to expand $p(n-m) / p(n)$ according to the powers of $1 / \sqrt{n}$, as explained in [6]. However the method is a bit technical and needs a computer. Here, we shall prove Theorem 1 by using only the asymptotic estimations (1.8) and (1.9), and the following formula, which follows from (1.6): if $\ell \notin \mathcal{A}$,

$$
\begin{equation*}
r(n, \mathcal{A})-r(n-\ell, \mathcal{A})=r(n, \mathcal{A} \cup\{\ell\}) \tag{2.12}
\end{equation*}
$$

Formulas (2.12) and (1.8) imply for fixed ℓ :

$$
\begin{equation*}
r(n, \mathcal{A})-r(n-\ell, \mathcal{A})=p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{|\mathcal{A}|+1}\left(\ell \prod_{a \in \mathcal{A}} a\right)\left(1+\frac{O(1)}{\sqrt{n}}\right) \tag{2.13}
\end{equation*}
$$

In fact, the method used in [7] to prove (1.8) shows that the relation (2.13) above still holds, even if $\ell \in \mathcal{A}$.

It follows from (2.9) that, for m fixed and $n \rightarrow \infty$,

$$
\begin{equation*}
p(n-m)=p(n)\left(1+\frac{O(1)}{\sqrt{n}}\right), \tag{2.14}
\end{equation*}
$$

and, from (1.8) and (2.14), that, for any finite set \mathcal{A}, m fixed and $n \rightarrow \infty$,

$$
\begin{equation*}
r(n-m, \mathcal{A})=r(n, \mathcal{A})\left(1+\frac{O(1)}{\sqrt{n}}\right) \tag{2.15}
\end{equation*}
$$

We shall use the obvious relations:

$$
\begin{equation*}
\tilde{p}(n, \mathcal{A}) \leq r(n, \mathcal{A}) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{p}(n, \mathcal{A}) \leq R(n, \max (\mathcal{A})), \tag{2.17}
\end{equation*}
$$

which, together with (1.8) or (1.4), will give an upper bound for $\tilde{p}(n, \mathcal{A})$.
We are now ready to estimate $\tilde{p}(n, \mathcal{A})$, as $n \rightarrow \infty$, for the different sets \mathcal{A} considered in Theorem 1.

- $\mathcal{A}=\emptyset$. We know from [9] (cf. (1.3)) that

$$
\begin{equation*}
\tilde{p}(n, \emptyset)=\tilde{p}(n) \sim p(n) . \tag{2.18}
\end{equation*}
$$

- $\mathcal{A}=\{1\}$. From (2.16) we have

$$
\begin{equation*}
\tilde{p}(n,\{1\}) \leq r(n,\{1\})=r(n, 2) \tag{2.19}
\end{equation*}
$$

Moreover, to get $\tilde{\mathcal{P}}(n,\{1\})$ from the set of partitions without any part equal to 1 , we have to take off all the partitions which do not represent any of the integers $2,3, \ldots,\lfloor n / 2\rfloor$. Therefore, with the notation of Lemma 1

$$
\begin{equation*}
\tilde{p}(n,\{1\}) \geq r(n, 2)-\bar{R}(n, 2) . \tag{2.20}
\end{equation*}
$$

Then, it follows from (2.19), (2.20), (1.9) and Lemma 1:

$$
\begin{equation*}
\tilde{p}(n,\{1\})=r(n, 2)+O(\bar{R}(n, 2))=r(n, 2)+O\left(\frac{p(n)}{n}\right) \sim p(n) \frac{\pi}{\sqrt{6 n}} \tag{2.21}
\end{equation*}
$$

- $\mathcal{A}=\{1,3\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,3\})$ should not contain any part equal to 1 or 3 , but it should contain at least one part equal to 2 to represent 2 . Thus

$$
\begin{equation*}
\tilde{p}(n,\{1,3\}) \leq r(n-2,\{1,3\}) \tag{2.22}
\end{equation*}
$$

Moreover, to get $\tilde{\mathcal{P}}(n,\{1,3\})$, we have to take off the partitions which do not represent any of the numbers between 4 and $\lfloor n / 2\rfloor$. Therefore,

$$
\begin{equation*}
\tilde{p}(n,\{1,3\}) \geq r(n-2,\{1,3\})-\bar{R}(n, 4) \tag{2.23}
\end{equation*}
$$

Then, it follows from (2.22), (2.23), (2.15), (1.8) and Lemma 1:

$$
\begin{equation*}
\tilde{p}(n,\{1,3\})=r(n-2,\{1,3\})+O\left(p(n) n^{-3 / 2}\right) \sim 3 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{2} \tag{2.24}
\end{equation*}
$$

- $\mathcal{A}=\{2\}$. To represent $1,3,4$ and 5 but not 2 , a partition of n should contain one and only one part equal to 1 , should not contain any part equal to 2 , should contain at least one part equal to 3 and either one part equal to 4 or one part equal to 5 . Thus

$$
\begin{equation*}
\tilde{p}(n,\{2\}) \leq r(n-4,3)-r(n-4,\{1,2,4,5\}) \tag{2.25}
\end{equation*}
$$

Moreover, to get $\tilde{\mathcal{P}}(n,\{2\})$, we have to take off the partitions which do not represent any of the numbers between 6 and $\lfloor n / 2\rfloor$. Therefore,

$$
\begin{equation*}
\tilde{p}(n,\{2\}) \geq r(n-4,3)-r(n-4,\{1,2,4,5\})-\bar{R}(n, 6) . \tag{2.26}
\end{equation*}
$$

Then, it follows from (2.25), (2.26), (2.15), (1.8), (1.9) and Lemma 1:

$$
\begin{equation*}
\tilde{p}(n,\{2\})=r(n-4,3)+O\left(p(n) n^{-2}\right) \sim 2 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{2} . \tag{2.27}
\end{equation*}
$$

- $\mathcal{A}=\{1,2\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,2\})$ should not contain any part equal to 1 or 2 , but it should contain at least one part equal to $3,4,5$ to represent 3,4 and 5 . Thus

$$
\begin{equation*}
\tilde{p}(n,\{1,2\}) \leq r(n-12,3) \tag{2.28}
\end{equation*}
$$

Moreover, to get $\tilde{\mathcal{P}}(n,\{1,2\})$, we have to take off the partitions which do not represent any of the numbers between 6 and $\lfloor n / 2\rfloor$. Therefore,

$$
\begin{equation*}
\tilde{p}(n,\{1,2\}) \geq r(n-12,3)-\bar{R}(n, 6) \tag{2.29}
\end{equation*}
$$

Then, it follows from (2.28), (2.29), (2.15), (1.9) and Lemma 1:

$$
\begin{equation*}
\tilde{p}(n,\{1,2\})=r(n-12,3)+O\left(p(n) n^{-2}\right) \sim 2 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{2} \tag{2.30}
\end{equation*}
$$

Since, from (2.27) and (2.30), $\tilde{p}(n,\{2\}) \sim \tilde{p}(n,\{1,2\})$, we evaluate their difference by (2.13) and (2.14):

$$
\begin{aligned}
\tilde{p}(n,\{2\})-\tilde{p}(n,\{1,2\})= & r(n-4,3)-r(n-12,3)+O\left(p(n) n^{-2}\right) \\
& \sim 16 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3}>0
\end{aligned}
$$

- $\mathcal{A}=\{1,3,5\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,3,5\})$ should not contain any part equal to 1,3 or 5 , but to represent 2 and 4 , it should contain either at least two parts equal to 2 or one (and only one) part equal to 2 and at least one part equal to 4 . Thus

$$
\begin{equation*}
\tilde{p}(n,\{1,3,5\})=r(n-4,\{1,3,5\})+r(n-6,\{1,2,3,5\})-\theta \bar{R}(n, 6), \tag{2.31}
\end{equation*}
$$

where, from now on, θ will denote a real number satisfying $0 \leq \theta \leq 1$. From (2.15), (1.8) and Lemma 1, (2.31) implies

$$
\begin{equation*}
\tilde{p}(n,\{1,3,5\}) \sim 15 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.32}
\end{equation*}
$$

- $\mathcal{A}=\{2,5\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{2,5\})$ should contain one (and only one) part equal to 1 , should not contain any part equal to 2 or 5 , should contain at least one part equal to 3 ; to represent 6 it should contain either at least two parts equal to 3 or one (and only one) part equal to 3 and at least one part equal to 6 . Note that such a partition represents also $4=1+3$ and $7=1+6$. Thus

$$
\begin{align*}
\tilde{p}(n,\{2,5\})= & r(n-7,\{1,2,5\})+r(n-10,\{1,2,3,5\})-\theta \bar{R}(n, 8) \\
& \sim 10 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.33}
\end{align*}
$$

- $\mathcal{A}=\{1,2,5\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,2,5\})$ should not contain any part equal to 1,2 or 5 , but to represent 3,4 and 7 , it should contain at least one part equal to 3 and one part equal to 4 ; to represent 6 it should contain either at least two parts equal to 3 or one (and only one) part equal to 3 and at least one part equal to 6 . Thus

$$
\begin{align*}
\tilde{p}(n,\{1,2,5\})= & r(n-10,\{1,2,5\})+r(n-13,\{1,2,3,5\})-\theta \bar{R}(n, 8) \\
& \sim 10 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} \tag{2.34}
\end{align*}
$$

Further, from (2.34) and (2.33), we have by using (2.13), (2.14), (1.8) and Lemma 1

$$
\begin{aligned}
& \tilde{p}(n,\{2,5\})-\tilde{p}(n,\{1,2,5\})=r(n-7,\{1,2,5\})+r(n-10,\{1,2,3,5\}) \\
& \quad-r(n-10,\{1,2,5\})-r(n-13,\{1,2,3,5\})+(2 \theta-1) \bar{R}(n, 8) \\
& \quad \sim r(n-7,\{1,2,3,5\}) \sim 30 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{4}>0
\end{aligned}
$$

- $\mathcal{A}=\{1,4\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,4\})$ should contain one (and only one) part equal to 2 , should not contain any part equal to 1 or 4 , should contain at least one part equal to 3 ; to represent 6 it should contain either at least two parts equal to 3 or one (and only one) part equal to 3 and at least one part equal to 6 . Such a partition will represent 7 , if it contains one part equal to 5 or 7 . Thus

$$
\begin{align*}
\tilde{p}(n,\{1,4\})= & r(n-8,\{1,2,4\})+r(n-11,5) \\
& -r(n-8,\{1,2,4,5,7\})-r(n-11,\{1,2,3,4,5,7\})-\theta \bar{R}(n, 8) \\
& \sim 8 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.35}
\end{align*}
$$

- $\mathcal{A}=\{1,2,4\}$. Similarly,

$$
\begin{align*}
\tilde{p}(n,\{1,2,4\})= & r(n-18,\{1,2,4\})+r(n-21,5)-\theta \bar{R}(n, 8) \\
& \sim 8 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.36}
\end{align*}
$$

We have to compare $\tilde{p}(n,\{1,4\})$ and $\tilde{p}(n,\{1,2,4\})$: from (2.35) and (2.36), it follows

$$
\begin{aligned}
\tilde{p}(n,\{1,4\})-\tilde{p}(n,\{1,2,4\})= & r(n-8,\{1,2,4\})+r(n-11,5) \\
& -r(n-8,\{1,2,4,5,7\})-r(n-11,\{1,2,3,4,5,7\}) \\
& -r(n-18,\{1,2,4\})-r(n-21,5)+(2 \theta-1) \bar{R}(n, 8) \\
& \sim 80 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{4}>0 .
\end{aligned}
$$

- $\mathcal{A}=\{2,3\}$. To represent all integers between 1 and 7 except 2 and 3 , a partition of n should have one (and only one) part equal to 1 , no part equal to 2 or 3 , at least one part
equal to 4 , and either one part equal to 6 or parts equal to 5 and 7 . Therefore

$$
\begin{align*}
\tilde{p}(n,\{2,3\})= & r(n-11,4)+r(n-17,\{1,2,3,6\})-\theta \bar{R}(n, 8) \\
& \sim 6 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.37}
\end{align*}
$$

- $\mathcal{A}=\{3\}$. To represent all integers between 1 and 7 except 3, a partition of n should have two (and only two) parts equal to 1 , no part equal to 2 or 3 , at least one part equal to 4 , and at least one part equal to 5,6 or 7 . Therefore

$$
\begin{align*}
\tilde{p}(n,\{3\})= & r(n-6,4)-r(n-6,\{1,2,3,5,6,7\})-\theta \bar{R}(n, 8) \\
& \sim 6 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} . \tag{2.38}
\end{align*}
$$

We estimate:

$$
\begin{aligned}
\tilde{p}(n,\{2,3\})-\tilde{p}(n,\{3\})= & r(n-11,4)-r(n-6,4)+r(n-17,\{1,2,3,6\}) \\
& +r(n-6,\{1,2,3,5,6,7\})+(2 \theta-1) \bar{R}(n, 8) \\
& \sim(-30+36) p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{4}=6 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{4}>0 .
\end{aligned}
$$

- $\mathcal{A}=\{1,2,3\}$. A partition belonging to $\tilde{\mathcal{P}}(n,\{1,2,3\})$ should not contain any part equal to 1,2 or 3 , but to represent $4,5,6$ and 7 , it should contain at least one part equal to 4,5 , 6 and 7. Therefore

$$
\begin{equation*}
\tilde{p}(n,\{1,2,3\})=r(n-22,4)-\theta \bar{R}(n, 8) \sim 6 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{3} \tag{2.39}
\end{equation*}
$$

We estimate:

$$
\begin{aligned}
\tilde{p}(n,\{3\})-\tilde{p}(n,\{1,2,3\})= & r(n-6,4)-r(n-6,\{1,2,3,5,6,7\}) \\
& -r(n-22,4)+(2 \theta-1) \bar{R}(n, 8) \\
& \sim 96 p(n)\left(\frac{\pi}{\sqrt{6 n}}\right)^{4}>0 .
\end{aligned}
$$

- $\mathcal{A}=\mathcal{B}$. It suffices to show that, for any other finite set \mathcal{B} in $\{1,2, \ldots,\lfloor n / 2\rfloor\}$, the following upper bound holds:

$$
\begin{equation*}
\tilde{p}(n, \mathcal{B})=O\left(p(n) n^{-2}\right) \tag{2.40}
\end{equation*}
$$

If $\max (\mathcal{B}) \geq 6$, then (2.40) is satisfied from (2.17) and Lemma 1. If $\max (\mathcal{B}) \leq 5$ and $|\mathcal{B}| \geq 4$ then (2.40) is satisfied from (2.16) and (1.8). For the remaining sets, (2.40) will follow from (1.9) and from the upper bounds given in the array below:

$\mathcal{A}=$	$\tilde{p}(n, \mathcal{A}) \leq$	$\mathcal{A}=$	$\tilde{p}(n, \mathcal{A}) \leq$
$\{4\}$	$2 r(n-3,5)$	$\{1,3,4\}$	$r(n-2,5)$
$\{2,4\}$	0	$\{3,4,5\}$	$r(n-2,6)$
$\{3,4\}$	$r(n-2,5)$	$\{2,4,5\}$	0
$\{5\}$	$2 r(n-4,6)$	$\{2,3,4\}$	$r(n-1,5)$
$\{1,5\}$	0	$\{1,4,5\}$	0
$\{3,5\}$	0	$\{2,3,5\}$	0
$\{4,5\}$	$2 r(n-3,6)$		

So, the proof of Theorem 1 is completed.

3. Proof of Theorem 2

3.1. Proof of Theorem 2 (1.17)

We start by proving the following lemma:
Lemma 2. For an arbitrary positive integer $n \geq 2$,
(a) the numbers represented by the set $\mathcal{A}=\{n, n+1, \ldots, 2 n\}$ are all integers from n to $\frac{3 n+1}{2} n$ and $\frac{3 n+1}{2} n+n$;
(b) the multiset

$$
\mathcal{A}^{\prime}=\{n, \underbrace{n+1, \ldots, n+1}_{m_{n+1}(\geq 1)}, \ldots, \underbrace{2 n-1, \ldots, 2 n-1}_{m_{2 n-1}(\geq 1)}, 2 n\}
$$

represents all integers from n to

$$
M=\frac{3 n+1}{2} n+\left(m_{n+1}-1\right)(n+1)+\cdots+\left(m_{2 n-1}-1\right)(2 n-1)
$$

but does not represent $M+1$;
(c) the multiset $\mathcal{B}=\{n, n, n+1, \ldots, 2 n-1\}$ represents all integers between n and $\frac{3 n-1}{2} n$;
(d) the multiset

$$
\mathcal{B}^{\prime}=\{\underbrace{n, \ldots, n}_{m_{n}(\geq 2)}, \underbrace{n+1, \ldots, n+1}_{m_{n+1}(\geq 1)}, \ldots, \underbrace{2 n-2, \ldots, 2 n-2}_{m_{2 n-2}(\geq 1)}, 2 n-1\}
$$

represents all integers from n to

$$
M=\frac{3 n-1}{2} n+\left(m_{n}-2\right) n+\left(m_{n+1}-1\right)(n+1)+\cdots+\left(m_{2 n-2}-1\right)(2 n-2)
$$

but does not represent $M+1$.

Proof of (a): Let k be an integer, $1 \leq k \leq n$, and \mathcal{C} be a subset of \mathcal{A} with k elements. Let us define $\sigma(\mathcal{C})=\sum_{m \in \mathcal{C}} m$. One has

$$
f(k) \leq \sigma(\mathcal{C}) \leq g(k)
$$

where

$$
f(k)=n+n+1+\cdots+n+k-1=k\left(n+\frac{k-1}{2}\right)
$$

and

$$
g(k)=2 n-k+1+\cdots+2 n=k\left(2 n-\frac{k-1}{2}\right) .
$$

Moreover, for any integer $a, f(k) \leq a \leq g(k)$, there is a $\mathcal{C},|\mathcal{C}|=k$, such that $\sigma(\mathcal{C})=a$; this can be seen by the walk of the caterpillar: let us start with $\mathcal{C}_{1}=\{n, \ldots, n+k-1\}$, then increase successively each element from the right to the left by 1 . We get $\mathcal{C}_{2}=$ $\{n, \ldots, n+k-2, n+k\}, \mathcal{C}_{3}=\{n, \ldots, n+k-3, n+k-1, n+k\}, \ldots, \mathcal{C}_{k}=\{n+$ $1, n+2 \ldots, n+k\}$; and start again: $\mathcal{C}_{k+1}=\{n+1, n+2, \ldots, n+k-1, n+k+1\}$ up to $\mathcal{C}_{(n-k+1) k}=\{2 n-k+1, \ldots, 2 n\}$. Clearly, $\sigma\left(\mathcal{C}_{i}\right)$ takes all values between $f(k)$ and $g(k)$.

In order to see that \mathcal{A} represents all integers from $f(1)=n$ to $g(n)=\frac{3 n+1}{2} n$, it suffices to check that

$$
f(k+1) \leq g(k)+1, \quad \text { for } k=1,2, \ldots, n-1
$$

which follows from $g(k)+1-f(k+1)=(k-1)(n-1-k)$.
Finally, since $g(n)=\frac{3 n+1}{2} n$ is the sum of the $|\mathcal{A}|-1$ largest elements of \mathcal{A}, the only subsum of \mathcal{A} which is larger than $g(n)$ is $\sigma(\mathcal{A})=\frac{3 n+1}{2} n+n$, which completes the proof of (a).

Proof of (b): Let us write $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime} \backslash \mathcal{A}=\left\{a_{1}, \ldots, a_{s}\right\}$, with $s=\left(m_{n+1}-1\right)+\cdots+$ ($m_{2 n-1}-1$). Since \mathcal{A}^{\prime} contains \mathcal{A}, it follows from (a) that \mathcal{A}^{\prime} represents all integers from n to $\frac{3 n+1}{2} n \geq 3 n+1$. Further, since $a_{i}, 1 \leq i \leq s$ satisfies $a_{i} \leq 2 n-1 \leq(3 n+1)-n$, the multiset $\mathcal{A} \cup\left\{a_{1}\right\}$ represents all integers from n to $\frac{3 n+1}{2} n+a_{1}$, and so on, the multiset $\mathcal{A}^{\prime}=\left\{a_{1}, \ldots, a_{s}\right\} \cup \mathcal{A}$ represents all integers from n to M. By the same argument as the one at the end of the proof of (a), \mathcal{A}^{\prime} does not represent $M+1, \ldots, M+n-1$ but represents $M+n$.

Proof of (c) and (d): The proof of (c) is similar to the one of (a) with, for $1 \leq k \leq n$, $f(k)=k n+\frac{(k-1)(k-2)}{2}$ and $g(k)=2 k n-\frac{k(k+1)}{2}$, while the proof of (d) is the same as the one of (b).

To prove (1.17), we can suppose that there exists a minimal i_{0} satisfying $a\left(i_{0}\right) \geq 2 k+3$. Then, from (1.11), $n_{1}, \ldots, n_{i_{0}}$ represents $k+1, \ldots, 2 k+2$. Therefore, $k+1, \ldots, 2 k+$ 1 should belong to $\left\{n_{1}=k+1, n_{2},, \ldots, n_{i_{0}}\right\}$; and to represent $2 k+2$, there are two possibilities: either $n_{2} \neq k+1$ and $2 k+2 \in\left\{n_{1}, \ldots, n_{i_{0}}\right\}$ or $n_{2}=k+1$.
(A) For $n_{2} \neq k+1$, then we should have

$$
\begin{equation*}
\{k+1, \ldots, 2 k+2\} \subset\left\{n_{1}, \ldots, n_{i_{0}}\right\} \tag{3.1}
\end{equation*}
$$

and the first elements of the multiset $\left\{n_{1}, \ldots, n_{i_{0}}\right\}$ are

$$
k+1, \underbrace{k+2, \ldots, k+2}_{m_{k+2}(\geq 1)}, \ldots, \underbrace{2 k+1, \ldots, 2 k+1}_{m_{2 k+1}(\geq 1)}, 2 k+2, \ldots
$$

Let us set $i_{1}=1+m_{k+2}+\cdots+m_{2 k+1}+1$. We have $i_{1} \leq i_{0}$ and $n_{i_{1}}=2 k+2$. From Lemma 2(b), $\left\{n_{1}=k+1, n_{2}, \ldots, n_{i_{1}}\right\}$ represents all integers from $k+1$ to

$$
M=\frac{3(k+1)^{2}}{2}+\frac{k+1}{2}+(k+2)\left(m_{k+2}-1\right)+\cdots+(2 k+1)\left(m_{2 k+1}-1\right)
$$

but does not represent $M+1$. So, from (1.11),

$$
a\left(i_{1}\right)=M+1 \geq \frac{3(k+1)^{2}}{2}+\frac{k+1}{2}+1=(3 k+4) \frac{k+1}{2}+1>3 k+3,
$$

so that, from the minimality of i_{0}, we have $i_{1}=i_{0}$, and, from (1.14),

$$
S\left(i_{0}\right)=S\left(i_{1}\right)=k+1+m_{k+2}(k+2)+\cdots+m_{2 k+1}(2 k+1)+2 k+2=a\left(i_{0}\right)+k
$$

(B) $n_{2}=k+1$. Now, the first elements of the multiset $\left\{n_{1}, \ldots, n_{i_{0}}\right\}$ are

$$
\underbrace{k+1, \ldots, k+1}_{m_{k+1}(\geq 2)}, \underbrace{k+2, \ldots, k+2}_{m_{k+2}(\geq 1)}, \ldots, \underbrace{2 k, \ldots, 2 k}_{m_{2 k}(\geq 1)}, 2 k+1, \ldots .
$$

Let us set $i_{2}=m_{k+1}+m_{k+2}+\cdots+m_{2 k}+1$. We have $i_{2} \leq i_{0}$ and $n_{i_{2}}=2 k+1$. From Lemma 2(d), $\left\{n_{1}, n_{2}, \ldots, n_{i_{2}}\right\}$ represents all integers from $k+1$ to
$M=\frac{3(k+1)^{2}}{2}-\frac{k+1}{2}+(k+1)\left(m_{k+1}-2\right)+(k+2)\left(m_{k+2}-1\right)+\cdots+2 k\left(m_{2 k}-1\right)$,
but does not represent $M+1$. So, from (1.11),

$$
a\left(i_{2}\right)=M+1 \geq \frac{3(k+1)^{2}}{2}-\frac{k+1}{2}+1=(3 k+2) \frac{k+1}{2}+1>3 k+2,
$$

so that, from the minimality of i_{0}, we have $i_{2}=i_{0}$, and, from (1.14),

$$
S\left(i_{0}\right)=S\left(i_{2}\right)=m_{k+1}(k+1)+m_{k+2}(k+2)+\cdots+m_{2 k}(2 k)+2 k+1=a\left(i_{0}\right)+k
$$

In both cases (A) and (B), we have proved

$$
\begin{equation*}
a\left(i_{0}\right) \geq(3 k+2) \frac{k+1}{2}+1 \geq 4 k+2 \geq 3 k+3 \tag{3.2}
\end{equation*}
$$

which, from (1.15), implies (1.17) and

$$
\begin{equation*}
S\left(i_{0}\right)=a\left(i_{0}\right)+k \tag{3.3}
\end{equation*}
$$

3.2. Proof of Theorem 2 (1.18)

From (1.16) and the definition (1.11), $a(i)-k-1$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$, and more precisely by the elements of $\left\{n_{1}, \ldots, n_{i}\right\}$ smaller than $a(i)-k$. Therefore, from (1.14), $a(i)-k-1$ is a subsum of $S(i)$, so that

$$
\begin{equation*}
S(i) \geq a(i)-k-1 \tag{3.4}
\end{equation*}
$$

For the same reasons, $a(i)-k-2$ is a subsum of $S(i)$. So, $S(i)=a(i)-k-1$ is impossible, otherwise $S(i)-(a(i)-k-2)=1$ would be represented by $\left\{n_{1}, \ldots, n_{i}\right\}$. So, from (3.4), we have

$$
\begin{equation*}
S(i)>a(i)-k-1 \tag{3.5}
\end{equation*}
$$

But, since $a(i)-k-1$ is a subsum of $S(i), S(i)-(a(i)-k-1)$ is also a subsum of $S(i)$ and is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$. It follows from (3.5) that $S(i)-(a(i)-k-1) \geq n_{1}=k+1$, in other terms, $S(i) \geq a(i)$. Finally, $S(i) \neq a(i)$ (otherwise $a(i)$ would be represented by $\left\{n_{1}, \ldots, n_{i}\right\}$, so that $S(i) \geq a(i)+1$, which completes the proof of (1.18).

3.3. Proof of Theorem 2 (1.19) and (1.20)

We shall prove together (1.19) and (1.20) by induction on $i \geq i_{0}$. From (3.3), (1.19) is true for $i=i_{0}$. Let us suppose that

$$
\begin{equation*}
i \geq i_{0} \quad \text { and } \quad S(i) \leq a(i)+k \tag{3.6}
\end{equation*}
$$

We shall give the values of $S(i+1)$ and $a(i+1)$; there are different cases:
I. $a(i)-k \leq n_{i+1} \leq a(i)-1$.

From (1.11), $a(i)$ is not representable by $\left\{n_{1}, \ldots, n_{i}\right\}$. So a representation of $a(i)$ by $\left\{n_{1}, \ldots, n_{i+1}\right\}$ should use n_{i+1}. But $1 \leq a(i)-n_{i+1} \leq k$, so that $a(i)$ cannot be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. Consequently, from (1.11) and (1.14), $a(i+1)=a(i), S(i+1)=S(i)$ and $S(i+1) \leq a(i+1)+k$ follows from (3.6).
II. $n_{i+1} \leq a(i)-k-1$.

We have $n_{1} \leq n_{2} \leq \cdots \leq n_{i} \leq n_{i+1} \leq a(i)-k-1$; so it follows from (1.14) that

$$
\begin{equation*}
S(i)=n_{1}+n_{2}+\cdots+n_{i} \tag{3.7}
\end{equation*}
$$

We shall prove that

$$
\begin{equation*}
a(i+1)=a(i)+n_{i+1} . \tag{3.8}
\end{equation*}
$$

Indeed, from (1.11), $k+1, \ldots, a(i)-1$ are represented by $\left\{n_{1}, \ldots, n_{i}\right\}$ and, for $0 \leq j<$ $n_{i+1}, a(i)+j=\left(a(i)+j-n_{i+1}\right)+n_{i+1}$ is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.

To show (3.8), it remains to prove that $a(i)+n_{i+1}$ is not represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. If such a representation did exist, it should not contain n_{i+1} (otherwise $a(i)$ would be represented by $\left\{n_{1}, \ldots, n_{i}\right\}$) so that, from (3.7), $a(i)+n_{i+1}$ is a subsum of $S(i)$ and thus, by our induction hypothesis (3.6)

$$
a(i)+n_{i+1} \leq S(i) \leq a(i)+k<a(i)+n_{1} \leq a(i)+n_{i+1}
$$

which is impossible and so, (3.8) is settled. From (1.14) we have $S(i+1)=n_{1}+n_{2}+$ $\cdots+n_{i+1}$, which implies $S(i+1)-a(i+1)=S(i)-a(i) \leq k$.
III. $n_{i+1}>a(i)$.

This case is easy: clearly, we have $a(i+1)=a(i)$ and $S(i+1)=S(i)$.
IV. $n_{i+1}=a(i)$.

We have $n_{i} \neq a(i)$ (otherwise $a(i)$ would be represented by $\left\{n_{1}, \ldots, n_{i}\right\}$); so, since $n_{i} \leq$ $n_{i+1}=a(i)$, we have

$$
\begin{equation*}
n_{i} \leq a(i)-1 \tag{3.9}
\end{equation*}
$$

IV/1. $n_{i+1}=a(i), a(i)-k \notin\left\{n_{1}, \ldots, n_{i}\right\}, a(i)+1<S(i) \leq a(i)+k(k \geq 2)$.
We want to show

$$
\begin{equation*}
a(i+1)=a(i)+1 \tag{3.10}
\end{equation*}
$$

From the definition (1.11), $k+1, \ldots, a(i)-1$ are represented by $\left\{n_{1}, \ldots, n_{i}\right\} ; a(i)=n_{i+1}$ is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$; so, to prove (3.10), we must show that $a(i)+1$ is not represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. If it was represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$, such a representation could not use n_{i+1}, otherwise, $a(i)+1-n_{i+1}=1$ would be represented by $\left\{n_{1}, \ldots, n_{i}\right\}$. Let us assume that $a(i)+1$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$:

$$
\begin{equation*}
a(i)+1=n_{i_{1}}+\cdots+n_{i_{s}}, \quad 1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq i \tag{3.11}
\end{equation*}
$$

From (3.9), we have $s \geq 2$.

- If $n_{i_{1}}=k+1$, we have $n_{i_{2}}+\cdots+n_{i_{s}}=a(i)-k$ so that $s \geq 3$ (if $s=2, a(i)-k$ would belong to $\left.\left\{n_{1}, \ldots, n_{i}\right\}\right)$; therefore $n_{i_{s}} \leq a(i)-k-1$.
- If $n_{i_{1}} \geq k+2$, we have $n_{i_{2}}+\cdots+n_{i_{s}}=a(i)+1-n_{i_{1}} \leq a(i)-k-1$.

So, in all cases, the representation (3.11) would imply that $n_{i_{s}} \leq a(i)-k-1$, in other terms, from (1.14), $a(i)+1$ would be a subsum of $S(i)$. But, this would imply that $S(i)-(a(i)+1)$ is also a subsum of $S(i)$ and thus either vanishes or is at least $k+1$. But, this is impossible, since it follows from our hypothesis that $0<S(i)-(a(i)+1) \leq k-1$ and the proof of (3.10) is completed.

Finally, from (1.14), $S(i+1)=S(i)$ and $S(i+1)-a(i+1)=S(i)-a(i)-1<k$ hold.

IV/2. $n_{i+1}=a(i), a(i)-k \in\left\{n_{1}, \ldots, n_{i}\right\}, a(i)+1<S(i) \leq a(i)+k(k \geq 2)$.
Now, the multiset $\left\{n_{1}, \ldots, n_{i+1}\right\}$ writes

$$
\begin{align*}
& \{n_{1}, \ldots, \underbrace{a(i)-k, \ldots, a(i)-k}_{m_{k}(\geq 1)}, \underbrace{a(i)-(k-1), \ldots, a(i)-(k-1)}_{m_{k-1}(\geq 0)}, \\
& \quad \ldots, \underbrace{a(i)-1, \ldots, a(i)-1}_{m_{1}(\geq 0)}, a(i)\left(=n_{i+1}\right)\} \tag{3.12}
\end{align*}
$$

and we have

$$
\begin{equation*}
S(i)=a(i)+j_{0}, \quad 2 \leq j_{0} \leq k \tag{3.13}
\end{equation*}
$$

From (1.11) and (1.14), $k+1, \ldots, a(i)-k-1$ are subsums of $S(i)$, and by (1.17), we have $a(i) \geq 3 k+2$, so that $k \leq a(i)-2 k-2$, and, from (3.6), $\frac{1}{2} S(i) \leq \frac{1}{2}(a(i)+k) \leq$ $\frac{1}{2}(a(i)+(a(i)-2 k-2))=a(i)-k-1$. Therefore, each integer from $k+1$ to $S(i)-(k+1)$ can be written u or $S(i)-u$, where $k+1 \leq u \leq a(i)-k-1$, and thus is a subsum of $S(i)$, i.e., from (3.13),

$$
\begin{equation*}
k+1, \ldots, a(i)-k-2+j_{0}, a(i)-k-1+j_{0} \text { are subsums of } S(i) \tag{3.14}
\end{equation*}
$$

For $j_{0}<k, a(i)-u, 1 \leq u \leq k-j_{0}$, is not a subsum of $S(i)$ (otherwise $S(i)-(a(i)-u)=$ $j_{0}+u \leq k$ would be a subsum of $\left.S(i)\right)$; as it is, from (1.11), represented by $\left\{n_{1}, \ldots, n_{i}\right\}$ its representation needs a part larger than $a(i)-k-1$, but this part is the only one, since $a(i)-u-(a(i)-k)=k-u \leq k$, thus

$$
\begin{equation*}
m_{k-j_{0}} \geq 1, \ldots, m_{1} \geq 1 \tag{3.15}
\end{equation*}
$$

We shall now prove the following assertion
Assertion 1. With the notation of (3.12) and (3.13), we have

$$
\begin{equation*}
a(i+1)=2 a(i)+j_{0}-k+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.16}
\end{equation*}
$$

Proof of Assertion 1: In order to prove (3.16), from (1.11), we first have to show that each N satisfying

$$
\begin{equation*}
k+1 \leq N<2 a(i)+j_{0}-k+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.17}
\end{equation*}
$$

can be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. For such an N, there exist u_{1}, \ldots, u_{k} and a minimal V such that

$$
\begin{equation*}
N=V+\sum_{j=1}^{k} u_{j}(a(i)-j) \tag{3.18}
\end{equation*}
$$

with

$$
V \geq 0 ; \quad 0 \leq u_{j} \leq m_{j}, \quad j=1, \ldots, k-1 ; \quad 0 \leq u_{k}<m_{k}
$$

We shall consider several cases:
(a) $V=0$. Here, from (3.12), (3.18) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(b) $1 \leq V \leq k$. Since from (3.17), $N \geq k+1$, there exists a minimal j_{1} such that, in (3.18), $u_{j_{1}} \geq 1$.
($\left.\mathrm{b}_{1}\right) 1 \leq j_{1}<V$. We have $j_{1}<k$, so we can write

$$
\begin{align*}
N= & V+k-j_{1}+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right) \\
& +\sum_{j=j_{1}+1}^{k-1} u_{j}(a(i)-j)+\left(u_{k}+1\right)(a(i)-k) . \tag{3.19}
\end{align*}
$$

The first term on the right hand side of (3.19) satisfies from (1.17)

$$
k+1 \leq V+k-j_{1} \leq 2 k-1 \leq a(i)-k-1
$$

and so, is a subsum of $S(i)$; since, in (3.18), u_{k} has been chosen smaller than $m_{k},(3.19)$ is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
$\left(\mathrm{b}_{2}\right) j_{1}=V$. We write

$$
N=a(i)+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right)+\sum_{j=j_{1}+1}^{k} u_{j}(a(i)-j)
$$

and, since $a(i)=n_{i+1}, N$ is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
$\left(\mathrm{b}_{3}\right) V<j_{1} \leq k$. We write

$$
\begin{equation*}
N=V+a(i)-j_{1}+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right)+\sum_{j=j_{1}+1}^{k} u_{j}(a(i)-j) \tag{3.20}
\end{equation*}
$$

If we set $j_{1}-V=j^{\prime}$, we have $1 \leq j^{\prime}<j_{1} \leq k$ and (3.20) becomes

$$
\begin{equation*}
N=a(i)-j^{\prime}+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right)+\sum_{j=j_{1}+1}^{k} u_{j}(a(i)-j) . \tag{3.21}
\end{equation*}
$$

But, from (1.11), $a(i)-j^{\prime}$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$. Since, for $j_{1} \leq j \leq k$, we have $1 \leq a(i)-j^{\prime}-(a(i)-j)=j-j^{\prime} \leq k-1$, such a representation cannot use any part $a(i)-j, j_{1} \leq j \leq k$, and (3.21) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(c) $k+1 \leq V \leq a(i)-k-1$. From (1.11) and (1.14), V is a subsum of $S(i)$, and so, (3.18) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(d) $a(i)-k \leq V \leq a(i)-1$.
(d_{1}) If $u_{1}=u_{2}=\cdots=u_{k}=0$, from (1.11), $N=V$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(d_{2}) If $u_{1}=u_{2}=\cdots=u_{k}=0$ does not hold, there exists a maximal $j_{2}, 1 \leq j_{2} \leq k$, such that $u_{j_{2}} \neq 0$. We write

$$
\begin{align*}
N & =V+\sum_{j=1}^{j_{2}} u_{j}(a(i)-j) \\
& =n_{i+1}+\left(V-j_{2}\right)+\sum_{j=1}^{j_{2}-1} u_{j}(a(i)-j)+\left(u_{j_{2}}-1\right)\left(a(i)-j_{2}\right) \tag{3.22}
\end{align*}
$$

We have from (1.17)

$$
k+1<a(i)-2 k \leq V-j_{2} \leq a(i)-\left(j_{2}+1\right)
$$

so, from (1.11), $V-j_{2}$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$ without using any part $a(i)-j$, $j \leq j_{2}$ and (3.22) is a representation of N by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(e) $V=a(i)$. Since $a(i)=n_{i+1},(3.18)$ is a representation of N by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(f) $a(i)+1 \leq V \leq 2 a(i)-2 k-1$. Since u_{k} has been chosen smaller than m_{k} in (3.18), we write

$$
\begin{equation*}
N=V-(a(i)-k)+\sum_{j=1}^{k-1} u_{j}(a(i)-j)+\left(u_{k}+1\right)(a(i)-k) . \tag{3.23}
\end{equation*}
$$

Here we have $k+1 \leq V-(a(i)-k) \leq a(i)-k-1$, and (3.23) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(g) $2 a(i)-2 k \leq V \leq 2 a(i)-k-1+j_{0}$. In (3.18) we write $V=n_{i+1}+V-a(i)$. From (1.17), we have $k+1<a(i)-2 k \leq V-a(i) \leq a(i)-k-1+j_{0}$, so that, from (3.14), $V-a(i)$ is a subsum of $S(i)$ and (3.18) is a representation of N by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(h) $V \geq 2 a(i)-k+j_{0}$. Here, from (3.13) and (1.17), we have $V \geq a(i)+2 k+6>$ $a(i)-1$, and since we have chosen V minimal, we have $u_{1}=m_{1}, \ldots, u_{k-1}=m_{k-1}$ and $u_{k}=m_{k}-1$. Then (3.18) can be written

$$
\begin{equation*}
N=V-(a(i)-k)+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.24}
\end{equation*}
$$

Let us set $V^{\prime}=V-(a(i)-k)$ so that $V^{\prime} \geq a(i)+j_{0}$. From (3.17) and (3.24), it follows

$$
\begin{equation*}
a(i)+j_{0} \leq V^{\prime}<2 a(i)+j_{0}-k \tag{3.25}
\end{equation*}
$$

We distinguish three cases:
$\left(\mathrm{h}_{1}\right) V^{\prime}=a(i)+j_{0}$. From (3.13) and (3.24), we have $N=S(i)+\sum_{j=1}^{k} m_{j}(a(i)-j)$ and so, N is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$.
$\left(\mathrm{h}_{2}\right) a(i)+j_{0}+1 \leq V^{\prime} \leq a(i)+k$ (and $\left.j_{0}<k\right)$. We write $V^{\prime}=a(i)+j_{0}+\ell$, $1 \leq \ell \leq k-j_{0}$, so that, from (3.15), $m_{\ell} \geq 1$. We have

$$
N=V^{\prime}+a(i)-\ell+\cdots+\left(m_{\ell}-1\right)(a(i)-\ell)+\cdots
$$

and since, from (3.13), $V^{\prime}+a(i)-\ell=n_{i+1}+S(i), N$ is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
$\left(\mathrm{h}_{3}\right) a(i)+k+1 \leq V^{\prime} \leq 2 a(i)+j_{0}-k-1$. Here we have

$$
k+1 \leq V^{\prime}-n_{i+1} \leq a(i)-k-1+j_{0}
$$

so, from (3.14), $V^{\prime}-n_{i+1}$ is a subsum of $S(i)$ and N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
So, we have proved that each N satisfying (3.17) is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$; to prove (3.16), it remains to show that

$$
\begin{equation*}
2 a(i)+j_{0}-k+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.26}
\end{equation*}
$$

cannot be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. But, from (3.12), (1.14) and (3.13), we get

$$
\begin{align*}
n_{1}+\cdots+n_{i+1} & =S(i)+\sum_{j=1}^{k} m_{j}(a(i)-j)+n_{i+1} \\
& =2 a(i)+j_{0}+\sum_{j=1}^{k} m_{j}(a(i)-j) \\
& =k+\left(2 a(i)+j_{0}-k+\sum_{j=1}^{k} m_{j}(a(i)-j)\right) \tag{3.27}
\end{align*}
$$

so that (3.26) cannot be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$, and the proof of Assertion 1 is completed.

Since, from (3.16), (3.13) and (1.17),

$$
a(i+1)-k-1 \geq 2 a(i)+j_{0}-2 k-1>2 a(i)-2 k-1>a(i)=n_{i+1}
$$

it follows from (1.14) that $S(i+1)=n_{1}+\cdots+n_{i+1}$ and thus, from (3.16) and (3.27), that $S(i+1)=a(i+1)+k$.

IV/3. $n_{i+1}=a(i), S(i)=a(i)+1(k \geq 1)$. In this case,

$$
\begin{equation*}
k+1, \ldots, a(i)-k-1, a(i)-k=S(i)-(k+1) \text { are subsums of } S(i) \tag{3.28}
\end{equation*}
$$

but, for $k \geq 2, a(i)-(k-1)=S(i)-k, \ldots, a(i)-1=S(i)-2$ cannot be subsums of $S(i)$. So, if $a(i)-u, 1 \leq u \leq k-1$, is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$, such a representation needs a part $a(i)-j, u \leq j \leq k$. But, since $a(i)-u-(a(i)-j) \leq k$, this is the only one. Consequently,

$$
\begin{equation*}
a(i)-(k-1), a(i)-(k-2), \ldots, a(i)-1 \in\left\{n_{1}, \ldots, n_{i}\right\} \tag{3.29}
\end{equation*}
$$

and from (3.9), the multiset $\left\{n_{1}, \ldots, n_{i+1}\right\}$ can be written:

$$
\begin{align*}
& \{n_{1}, \ldots, \underbrace{a(i)-k, \ldots, a(i)-k}_{m_{k}(\geq 0)}, \underbrace{a(i)-(k-1), \ldots, a(i)-(k-1)}_{m_{k-1}(\geq 1)}, \\
& \quad \ldots, \underbrace{a(i)-1, \ldots, a(i)-1}_{m_{1}(\geq 1)}, a(i)\left(=n_{i+1}\right)\} \tag{3.30}
\end{align*}
$$

with $m_{1}(\geq 0)$ for $k=1$. We shall now prove the following assertion
Assertion 2. With the notation of (3.30), we have

$$
\begin{equation*}
a(i+1)=2 a(i)-k+1+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.31}
\end{equation*}
$$

Proof of Assertion 2: The proof looks like the proof of Assertion 1; that is why we shall omit some details.

For $k \geq 2$, and

$$
\begin{equation*}
k+1 \leq N<2 a(i)+1-k+\sum_{j=1}^{k} m_{j}(a(i)-j), \tag{3.32}
\end{equation*}
$$

there exist u_{1}, \ldots, u_{k} and a minimal V such that

$$
\begin{equation*}
N=V+\sum_{j=1}^{k} u_{j}(a(i)-j) \tag{3.33}
\end{equation*}
$$

with

$$
V \geq 0 ; \quad 0 \leq u_{k-1}<m_{k-1} ; \quad 0 \leq u_{j} \leq m_{j}, \quad j=1, \ldots, k-2, k
$$

We shall consider several cases:
(a) $V=0$. Here, from (3.30), (3.33) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(b) $1 \leq V \leq k$. There exists a minimal j_{1} such that $u_{j_{1}} \geq 1$.
$\left(\mathrm{b}_{1}\right) 1 \leq j_{1}<V-1(\leq k-1)$. We write

$$
\begin{align*}
N= & V+(k-1)-j_{1}+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right)+\cdots \\
& +\left(u_{k-1}+1\right)(a(i)-(k-1))+\cdots \tag{3.34}
\end{align*}
$$

The first term satisfies from (1.17):

$$
k+1 \leq V+(k-1)-j_{1} \leq 2 k-2 \leq a(i)-k-1
$$

and (3.34) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
$\left(\mathrm{b}_{2}\right) j_{1}=V-1$. We write from (3.33)

$$
N=\underbrace{(a(i)+1)}_{S(i)}+\cdots+\left(u_{V-1}-1\right)(a(i)-(V-1))+\cdots,
$$

and N is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(b_{3}) $j_{1}=V$. We write from (3.33)

$$
N=n_{i+1}+\cdots+\left(u_{V}-1\right)(a(i)-V)+\cdots,
$$

and N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
($\left.\mathrm{b}_{4}\right) V<j_{1} \leq k$. We write from (3.33)

$$
\begin{equation*}
N=\left(a(i)-\left(j_{1}-V\right)\right)+\left(u_{j_{1}}-1\right)\left(a(i)-j_{1}\right)+\cdots \tag{3.35}
\end{equation*}
$$

We have $1 \leq j_{1}-V<j_{1} \leq k$, and, from (3.30), $m_{j_{1}-V} \geq 1 ; u_{j_{1}-V}=0$ follows from the minimality of j_{1}, so that (3.35) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(c) $k+1 \leq V \leq a(i)-k-1$. Here, V is a subsum of $S(i)$, and so, (3.33) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(d) $a(i)-k \leq V \leq a(i)-1$.
(d_{1}) If $u_{1}=u_{2}=\cdots=u_{k}=0, N=V$ is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(d_{2}) If $u_{1}=u_{2}=\cdots=u_{k}=0$ does not hold, there exists a maximal $j_{2}, 1 \leq j_{2} \leq k$, such that $u_{j_{2}} \neq 0$. We write

$$
\begin{align*}
N & =V+\sum_{j=1}^{j_{2}} u_{j}(a(i)-j) \\
& =n_{i+1}+\left(V-j_{2}\right)+\cdots+\left(u_{j_{2}}-1\right)\left(a(i)-j_{2}\right) \tag{3.36}
\end{align*}
$$

We have from (1.17)

$$
k+1<a(i)-2 k \leq V-j_{2} \leq a(i)-\left(j_{2}+1\right)
$$

so, as in the proof of Assertion $1\left(d_{2}\right),(3.36)$ is a representation of N by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(e) $V=a(i)=n_{i+1}$. (3.33) is a representation of N by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(f) $V=a(i)+1=S(i)$. (3.33) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(g) $a(i)+2 \leq V \leq a(i)+k$. We write

$$
N=(V-a(i)+k-1)+\cdots+\left(u_{k-1}+1\right)(a(i)-(k-1))+\cdots .
$$

Here we have $k+1 \leq V-a(i)+k-1 \leq 2 k-1<a(i)-k-1$, and N is represented by $\left\{n_{1}, \ldots, n_{i}\right\}$.
(h) $a(i)+k+1 \leq V \leq 2 a(i)-k$. In (3.33) we write $V=n_{i+1}+V-a(i)$. We have $k+1 \leq V-a(i) \leq a(i)-k$, so that, from (3.28), $V-a(i)$ is a subsum of $S(i)$ and N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(i) $V=2 a(i)-k+1$. We write

$$
N=n_{i+1}+\cdots+\left(u_{k-1}+1\right)(a(i)-(k-1))+\cdots
$$

which shows that N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
(j) $V \geq 2 a(i)-k+2$. Here, we have $V>a(i)-1$, and since we have chosen V minimal, we have $u_{1}=m_{1}, \ldots, u_{k-2}=m_{k-2}, u_{k-1}=m_{k-1}-1$ and $u_{k}=m_{k}$. Then (3.33) can be written

$$
\begin{equation*}
N=V^{\prime}+\sum_{j=1}^{k} m_{j}(a(i)-j), \tag{3.37}
\end{equation*}
$$

with $V^{\prime}=V-(a(i)-(k-1)) \geq a(i)+1$. From (3.32) and (3.37), it follows

$$
\begin{equation*}
a(i)+1 \leq V^{\prime}<2 a(i)-k+1 . \tag{3.38}
\end{equation*}
$$

We distinguish three cases:
(j_{1}) $V^{\prime}=a(i)+1=S(i)$. Here (3.37) is a representation of N by $\left\{n_{1}, \ldots, n_{i}\right\}$.
$\left(\mathrm{j}_{2}\right) a(i)+2 \leq V^{\prime} \leq a(i)+k$. We write $V^{\prime}=a(i)+1+\ell, 1 \leq \ell \leq k-1$, so that, from (3.30), $m_{\ell} \geq 1$. We have

$$
N=n_{i+1}+S(i)+\cdots+\left(m_{\ell}-1\right)(a(i)-\ell)+\cdots
$$

and N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
$\left(\mathrm{j}_{3}\right) a(i)+k+1 \leq V^{\prime} \leq 2 a(i)-k$. Here we have

$$
k+1 \leq V^{\prime}-n_{i+1} \leq a(i)-k
$$

so, from (3.28), $V^{\prime}-n_{i+1}$ is a subsum of $S(i)$ and N is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$.
So, we have proved that each N satisfying (3.32) is represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$; to prove (3.31), it remains to show that

$$
\begin{equation*}
2 a(i)-k+1+\sum_{j=1}^{k} m_{j}(a(i)-j) \tag{3.39}
\end{equation*}
$$

cannot be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$. But, from (3.30),

$$
\begin{align*}
n_{1}+\cdots+n_{i+1} & =S(i)+\sum_{j=1}^{k} m_{j}(a(i)-j)+n_{i+1} \\
& =2 a(i)+1+\sum_{j=1}^{k} m_{j}(a(i)-j) \\
& =k+\left(2 a(i)-k+1+\sum_{j=1}^{k} m_{j}(a(i)-j)\right) \tag{3.40}
\end{align*}
$$

so that (3.39) cannot be represented by $\left\{n_{1}, \ldots, n_{i+1}\right\}$, and the proof of Assertion 2 is completed for $k \geq 2$.

The case $k=1$ can be settled in a similar way with $0 \leq u_{1} \leq m_{1}$ and $0 \leq V<2 a(i)$ considering (a), (b_{3}), (c), (d_{1}), (d_{2}), (e), (f) and (h).

Like in the case IV/2, it is easy to show from (1.14), (3.31) and (3.40) that $S(i+1)=$ $a(i+1)+k$, and the proof of Theorem 2 is completed.

4. Proof of Theorem 3

Before starting the proof of Theorem 3, let us observe that, for $\mathcal{A}=\{1,2, \ldots, k\}, \tilde{p}(n, \mathcal{A})$ is easy to compute for $2 k+2 \leq n \leq(3 k+4) \frac{k+1}{2}$. We have

$$
\tilde{p}(2 k+2, \mathcal{A})=\tilde{p}(2 k+3, \mathcal{A})=\tilde{p}\left((3 k+4) \frac{k+1}{2}, \mathcal{A}\right)=1
$$

and $\tilde{p}(n, \mathcal{A})=0$ for $2 k+4 \leq n \leq(3 k+4) \frac{k+1}{2}-1$.
For $2 k+2 \leq a<n$, let us define $\mathcal{X}(n, a)$ as the set of partitions of n not containing $1,2, \ldots, k$ but representing $k+1, k+2, \ldots, a-1$, further not representing a, and $X(n, a)=|\mathcal{X}(n, a)|$.

A generic partition (1.1) of n, belonging to $\tilde{\mathcal{P}}(n, \mathcal{A})$ should contain no part up to k and, for $n \geq 3 k+2$, should contain parts equal to $k+1, k+2, \ldots, 2 k+1$ in order to represent $k+1, k+2, \ldots, 2 k+1$. The number of such partitions is $r\left(n-(3 k+2) \frac{k+1}{2}, k+1\right)$. Thus, from the definition of $\mathcal{X}(n, a)$, we have

$$
\begin{equation*}
\tilde{p}(n, \mathcal{A})=r\left(n-(3 k+2) \frac{k+1}{2}, k+1\right)-\sum_{a=2 k+2}^{\lfloor n / 2\rfloor} X(n, a) . \tag{4.1}
\end{equation*}
$$

For $n \geq(3 k+4) \frac{k+1}{2}+1$, we have

$$
\begin{equation*}
X(n, 2 k+2)=r\left(n-(3 k+2) \frac{k+1}{2},\{1,2, \ldots, k, k+1,2 k+2\}\right) \tag{4.2}
\end{equation*}
$$

since a partition of $\mathcal{X}(n, 2 k+2)$ should contain $k+1$ exactly once, should contain $k+$ $2, k+3, \ldots, 2 k+1$ at least once and should not contain $2 k+2$.

Further, for $a \geq 2 k+3$, if (1.1) is a partition of $\mathcal{X}(n, a), a(t)$ defined by (1.11) satisfies $a(t)=a \geq 2 k+3$, and so, from Theorem 2, it satisfies also $a(t) \geq(3 k+2) \frac{k+1}{2}+1$, so that

$$
\begin{equation*}
X(n, a)=0 \quad \text { for } 2 k+3 \leq a \leq(3 k+2) \frac{k+1}{2} \tag{4.3}
\end{equation*}
$$

In view of applying (4.1), it remains to calculate $X(n, a)$ when

$$
\begin{equation*}
3 k+3 \leq 4 k+2 \leq(3 k+2) \frac{k+1}{2}+1 \leq a \leq \frac{n}{2} \tag{4.4}
\end{equation*}
$$

From now on, we shall assume that (4.4) holds; if the partition (1.1) belongs to $\mathcal{X}(n, a)$, let us define $\ell, 1 \leq \ell \leq t$, by

$$
\begin{equation*}
n_{\ell} \leq a-k-1<n_{\ell+1} \tag{4.5}
\end{equation*}
$$

Note that $\ell=t$ is impossible; indeed, if $n_{t} \leq a-k-1$, we would have from (1.11), (1.14), (1.19) and (4.4)

$$
n=S(t) \leq a(t)+k=a+k \leq n / 2+k
$$

which does not hold since n is supposed to satisfy $n \geq(3 k+4) \frac{k+1}{2}>2 k$. So, we have:

$$
\begin{equation*}
1 \leq \ell<t \tag{4.6}
\end{equation*}
$$

From the definitions (1.11) and (1.14), we have $a(t)=a$ and with (4.5),

$$
\begin{equation*}
S(t)=n_{1}+n_{2}+\cdots+n_{\ell} . \tag{4.7}
\end{equation*}
$$

Since our partition belongs to $\mathcal{X}(n, a)$, the integers $k+1, \ldots, a-k-1$ are represented by $\left\{n_{1}, \ldots, n_{t}\right\}$ and, from (4.5), are represented by $\left\{n_{1}, \ldots, n_{\ell}\right\}$. This implies that $a-k \leq a(\ell)$ and we get from (4.4) and (1.15)

$$
\begin{equation*}
2 k+3 \leq a-k \leq a(\ell) \leq a(t)=a \tag{4.8}
\end{equation*}
$$

By applying Theorem 2 and (1.15), it follows

$$
a-k+1 \leq a(\ell)+1 \leq S(\ell) \leq S(t) \leq a(t)+k=a+k
$$

and

$$
\begin{equation*}
0 \leq S(t)-S(\ell) \leq 2 k-1 \tag{4.9}
\end{equation*}
$$

Comparing (4.7) and

$$
S(\ell)=\sum_{\substack{j=1 \\ n_{j} \leq a(\ell)-k-1}}^{\ell} n_{j}
$$

gives, from (4.5)

$$
S(t)-S(\ell)=\sum_{\substack{j=1 \\ a(\ell)-k \leq n_{j}}}^{\ell} n_{j}
$$

so that, if $S(t)-S(\ell) \neq 0$, we would have from (4.8) and (4.4)

$$
S(t)-S(\ell) \geq a(\ell)-k \geq a-2 k>4 k+1-2 k>2 k-1
$$

which contradicts (4.9). Consequently, $S(t)-S(\ell)=0$ and $n_{\ell} \leq a(\ell)-k-1$. Therefore, it follows from Theorem 2 that

$$
\begin{equation*}
a+1=a(t)+1 \leq S(t)=S(\ell)=n_{1}+n_{2}+\cdots+n_{\ell} \leq a(\ell)+k \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
a(\ell) \geq a-(k-1) \tag{4.11}
\end{equation*}
$$

From (1.11), the multiset $\left\{n_{1}, \ldots, n_{\ell}\right\}$ represents $a(\ell)-1$ and thus, by (4.10), it also represents $n_{1}+\cdots+n_{\ell}-(a(\ell)-1)=S(\ell)-(a(\ell)-1)$. But, from (4.8) and (4.10) we have

$$
a(\ell)-1<a(\ell)+1 \leq a+1 \leq S(\ell)
$$

and therefore, $S(\ell)-(a(\ell)-1)>0$. Since $S(\ell)-(a(\ell)-1)$ is represented by $\left\{n_{1}, \ldots, n_{\ell}\right\}$, we have $S(\ell)-(a(\ell)-1) \geq k+1$; in other terms, $S(\ell) \geq a(\ell)+k$ which, together with (4.10) gives

$$
\begin{equation*}
n_{1}+n_{2}+\cdots+n_{\ell}=a(\ell)+k \tag{4.12}
\end{equation*}
$$

We introduce the set $\mathcal{X}(n, a, j)$ (for $0 \leq j \leq k-1$) which is the subset of $\mathcal{X}(n, a)$ such that

$$
\begin{equation*}
a(\ell)=a-j, \quad 0 \leq j \leq k-1 \tag{4.13}
\end{equation*}
$$

where ℓ is defined by (4.5). From (4.8) and (4.11), it follows that

$$
\mathcal{X}(n, a)=\bigcup_{0 \leq j \leq k-1} \mathcal{X}(n, a, j)
$$

We shall assume that our partition belongs to $\mathcal{X}(n, a, j)$. It follows from (4.12) and (1.14) that

$$
\begin{equation*}
S(\ell)=n_{1}+\cdots+n_{\ell}=a+k-j, \quad n_{\ell} \leq a-k-1-j \tag{4.14}
\end{equation*}
$$

From (1.11) and (4.13),

$$
\begin{equation*}
\text { the multiset }\left\{n_{1}, \ldots, n_{\ell}\right\} \text { represents } k+1, \ldots, a-j-1 \text {. } \tag{4.15}
\end{equation*}
$$

Let us assume that it represents $a-u, 0<u \leq j$. Then, it would also represent $n_{1}+\cdots+$ $n_{\ell}-(a-u)=k-j+u$ by (4.14). But, $1 \leq k-j+u \leq k<n_{1}$, so that
$\left\{n_{1}, \ldots, n_{\ell}\right\}$ does not represent $1,2, \ldots, k, a-j, a-j+1, \ldots, a$.
If $j \geq 1, a-j, a-j+1, \ldots, a-1$ are represented by $\left\{n_{1}, \ldots, n_{t}\right\}$. But, from (4.16), a representation of $a-u, 1 \leq u \leq j$, needs at least one part $n_{r}, \ell+1 \leq r \leq t$. From (4.5), $n_{r} \geq a-k$, and $a-u-n_{r} \leq a-1-(a-k)=k-1$. Thus, $a-u-n_{r}=0$, and

$$
\begin{equation*}
a-j, a-j+1, \ldots, a-1 \in\left\{n_{\ell+1}, \ldots, n_{t}\right\} . \tag{4.17}
\end{equation*}
$$

From (4.14), (4.15) and (4.16), $n_{1}+n_{2}+\cdots+n_{\ell}$ is a partition of $\tilde{\mathcal{P}}(a+k-j, \mathcal{A})$. From (4.17) and (4.5), $n_{\ell+1}+\cdots+n_{t}$ is a partition of $n-(a+k-j)$ which contains $a-j, \ldots, a-1$ and does not contain $1,2, \ldots, a-k-1, a$. The number of such partitions is

$$
\begin{aligned}
& r(n-(a+k-j)-(a-j)-\cdots-(a-1),\{1,2, \ldots, a-k-1, a\}) \\
& \quad=r\left(n-k-1-(j+1) a+\frac{(j+1)(j+2)}{2},\{1,2, \ldots, a-k-1, a\}\right) .
\end{aligned}
$$

Conversely, if a and n satisfy (4.4) then any partition (1.1) of n such that, for some ℓ, $n_{1}+n_{2}+\cdots+n_{\ell} \in \tilde{\mathcal{P}}(a+k-j, \mathcal{A})$ for some $j, 0 \leq j \leq k-1$, and $n_{\ell+1}+\cdots+n_{t}$ is a partition of $n-(a+k-j)$ which contains $a-j, \ldots, a-1$ (if $j \geq 1$) and does not contain $1,2, \ldots, a-k-1, a$ (consequently, ℓ satisfies (4.5)) is a partition of $\mathcal{X}(n, a, j)$ and therefore,

$$
\begin{align*}
X(n, a)= & \sum_{j=0}^{k-1} \tilde{p}(a+k-j, \mathcal{A}) r(n-k-1-(j+1) a \\
& \left.+\frac{(j+1)(j+2)}{2},\{1,2, \ldots, a-k-1, a\}\right) . \tag{4.18}
\end{align*}
$$

Replacing $X(n, a)$ in (4.1) by its value given in (4.2), (4.3) and (4.18) completes the proof of Theorem 3.

We end this paper by writing three formulas looking like (1.21) and giving the value of $\tilde{p}(n, \mathcal{A})$ for $\mathcal{A}=\{2\},\{1,3\},\{1,3,5\}$:

For $n \geq 8$, we have:

$$
\begin{align*}
\tilde{p}(n,\{2\})= & r(n-4,3)-r(n-4,\{1,2,4,5\}) \\
& -\sum_{a=6}^{\lfloor n / 2\rfloor} \tilde{p}(a+2,\{2\}) r(n-a-2,\{1,2, \ldots, a-3, a-1, a\}) . \tag{4.19}
\end{align*}
$$

For $n \geq 10$, we have:

$$
\begin{align*}
\tilde{p}(n,\{1,3\})= & r(n,\{1,3\})-r(n, 4)-r(n-2,5) \\
& -(r(n-2,\{1,3,5\})-r(n-2,6))-r(n-9,\{1,2,3,4,6\}) \\
& -\sum_{a=8}^{\lfloor n / 2\rfloor} \tilde{p}(a+3,\{1,3\}) r(n-a-3,\{1,2, \ldots, a-4, a-2, a\}) . \tag{4.20}
\end{align*}
$$

For $n \geq 17$, we have:

$$
\begin{align*}
& \tilde{p}(n,\{1,3,5\}) \\
&= r(n,\{1,3,5\})-r(n,\{1,2,3,5\})-r(n-2,6)-r(n-4,7) \\
&-(r(n-2,\{1,3,5,7\})-r(n-2,\{1,2,3,4,5,7\})-r(n-4,8)) \\
&-2 r(n-13,\{1,2,3,4,5,6,8\})-2 r(n-15,\{1,2,3,4,5,6,8,10\}) \\
&-\sum_{a=12}^{\lfloor n / 2\rfloor} \tilde{p}(a+5,\{1,3,5\}) r(n-a-5,\{1,2, \ldots, a-6, a-4, a-2, a\}) . \tag{4.21}
\end{align*}
$$

References

1. J.-C. Aval, "On sets represented by partitions," Europ. J. Combinatorics 20 (1999), 317-320.
2. M. Deléglise, P. Erdős, and J.-L. Nicolas, "Sur les ensembles représentés par les partitions d'un entier n," Discrete Math. 200 (1999), 27-48.
3. J. Dixmier, "Sur les sous-sommes d'une partition," Mémoire Soc. Math. France 35 (1988).
4. J. Dixmier, "Sur les sous-sommes d'une partition, III," Bull. Sci. Math. 113 (1989), 125-149.
5. J. Dixmier, "Partitions avec sous-sommes interdites," Bull. Soc. Math. Belgique 42 (1990), 477-500.
6. J. Dixmier and J.-L. Nicolas, "Partitions without small parts," Colloquia Mathematica Societatis János Bolyai 51 (1987), 9-33. Number Theory, Budapest, Hungary.
7. P. Erdős, J.-L. Nicolas, and A. Sárközy, "On the number of partitions of n without a given subsum I," Discrete Math. 75 (1989), 155-166.
8. P. Erdős, J.-L.Nicolas, and A. Sárközy, "On the number of partitions of n without a given subsum II," in Analytic Number Theory (B. Berndt, H. Diamond, H. Halberstam, and A. Hildebrand, eds.), Birkhäuser, 1990, pp. 205-234.
9. P. Erdős and M. Szalay, "On some problems of J. Dénes and P. Turán," Studies in Pure Mathematics to the memory of Paul Turán, Budapest, 1983, pp. 187-212.
10. G. H. Hardy and S. Ramanujan, "Asymptotic formulae in combinatory analysis," Proc. London Math. Soc. (2), $\mathbf{1 7}$ (1918), 75-115, and Collected Papers of S. Ramanujan, pp. 276-309.
11. J.-L. Nicolas and A. Sárközy, "On two partitions problems," Acta Math. Hungar. 77 (1997), 95-121.
