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Abstract. Let us say that a partition of the positive integer n represents a, 0 ≤ a ≤ n, if there is a submultiset
of the multiset of the parts whose sum is a. Erdős and Szalay have proved that almost all partitions of n represent
all integers a, 0 ≤ a ≤ n. If A is a finite set of positive integers, let us denote by p̃(n,A) the number of partitions
of n which represent all integers a, 0 ≤ a ≤ n, a /∈ A, n − a /∈ A but do not represent a for a ∈ A. For instance,
p̃(n, ∅) is the number of partitions of n which represent all integers between 0 and n; the result of Erdős and Szalay
can be reformulated as p̃(n, ∅) ∼ p(n), where p(n) is the total number of partitions of n. The aim of this paper is
the study of p̃(n,A): we shall compare the values of p̃(n,A) for small sets A and we shall give a close formula
for p̃(n,A) when A is the set of the first k integers.
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1. Introduction

A partition of an integer n is a sum of positive integers in descending order which add up
to n. We shall write:

n = n1 + n2 + · · · + nt , n1 ≥ n2 ≥ · · · ≥ nt . (1.1)

We shall denote by p(n) the number of partitions of n. The generating function is well
known:

∞∑
n=0

p(n)Xn =
∞∏

m=1

1

1 − Xm
· (1.2)
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If a satisfies 1 ≤ a ≤ n−1, we shall say that the partition (1.1), or, equivalently, the multiset
{n1, n2, . . . , nt } represents a if a can be written as a subsum ni1 + ni2 + · · · + nir (with
1 ≤ i1 < i2 < · · · < ir ≤ t) of (1.1). A partition which represents all integers between 0
and n is practical. It has been proved in [9] that the number p̃(n) of practical partitions of
n satisfies

p̃(n) ∼ p(n), n → ∞ (1.3)

(the notation p̃(n) ∼ p(n) means that p̃(n) = (1 + o(1)) p(n) or p̃(n)/p(n) → 1).
If a satisfies 1 ≤ a ≤ n − 1, we shall denote by R(n, a) the number of partitions of n

which do not represent a. Clearly, R(n, a) ≤ p(n) − p̃(n) and from (1.3), it follows that
R(n, a) = o(p(n)) as n → ∞. The function R(n, a) has been studied in [2–5, 7, 8]. We
shall use the result of [3]: for a fixed and n → ∞, we have

R(n, a) ∼ p(n)

(
π√
6n

)ψ(a)

u(a) (1.4)

where

ψ(a) = 
a/2� + 1, (1.5)

(
x� is the integral part of x) and u(a) is a constant depending on a. We have u(1) = 1,
u(2) = 4, u(3) = 3, u(4) = 16. A table of the values of u(a) up to a = 20 and some
information on the asymptotic behaviour of u(a) as a → ∞ are given in [3].

Let A be a finite set of positive integers and |A| be the number of its elements. We shall
denote by r (n,A) the number of partitions of n without any parts in A so that the generating
function is

∞∑
n=0

r (n,A)Xn =
∞∏

m=1
m /∈A

1

1 − Xm
· (1.6)

As usual, we shall set p(0) = r (0,A) = 1, and for n < 0, p(n) = r (n,A) = 0. We shall
denote by r (n, m) the number of partitions of n whose parts are at least m, in other terms,

r (n, m) = r (n, {1, 2, . . . , m − 1}) . (1.7)

An asymptotic estimation of r (n,A) is given in [7], which, for a finite set A gives, as
n → ∞:

r (n,A) = p(n)

(
π√
6n

)|A| (∏
a∈A

a

) (
1 + O(1)√

n

)
. (1.8)

From (1.7), (1.8) yields, for m fixed and as n → ∞:

r (n, m) = p(n)

(
π√
6n

)m−1

(m − 1)!

(
1 + O(1)√

n

)
. (1.9)
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Two partitions of n are equivalent if they both represent the same integers. The classes of
equivalence will be characterized by the sets of integers represented by equivalent partitions.
If A is a finite set of positive integers, a partition of n is A-practical if it represents all a’s,
1 ≤ a ≤ n, a /∈ A, n − a /∈ A but does not represent a for a ∈ A; we shall denote by
P̃(n,A) the set of A-practical partitions of n; we shall define p̃(n,A) = |P̃(n,A)|. In some
sense, p̃(n,A) will measure the popularity of the set A.

The aim of this paper is the study of p̃(n,A). First, we shall classify the most popular
sets by proving:

Theorem 1. For n large enough, we have

p̃(n) = p̃(n, ∅) > p̃(n, {1}) > p̃(n, {1, 3}) > p̃(n, {2}) > p̃(n, {1, 2}) >

> p̃(n, {1, 3, 5}) > p̃(n, {2, 5}) > p̃(n, {1, 2, 5}) > p̃(n, {1, 4}) >

> p̃(n, {1, 2, 4}) > p̃(n, {2, 3}) > p̃(n, {3}) > p̃(n, {1, 2, 3}) > p̃(n,B)

for any finite set B in {1, 2, . . . , 
n/2�}, different from the sets already mentioned.

M. Deléglise has built a table of the values of p̃(n,A) for n up to 115 and all possibleA’s;
we are pleased to thank him strongly for this work which has been very useful. According
to the values of p̃(100,A), the order of the sets is slightly different:

∅, {1}, {1, 3}, {2}, {1, 2}, {1, 3, 5}, {1, 4}, {3}, {1, 2, 5}, {2, 3},
{1, 3, 5, 7}, {4}, {2, 5}, {1, 2, 4}, {1, 2, 4, 7}, {1, 3, 5, 7, 9}, . . . .

This is due to the fact that the coefficients of the asymptotic expansion of p̃(n,A)/p(n)
according to the powers of π√

6n
are sometimes rather large and, for n = 100, π√

6n
is not that

small.
The proof of Theorem 1 will be given in Section 2. Of course, the method of proof can

be extended to compare the values of p̃(n,A) for a longer list. However, we have not yet
succeeded in stating a general theorem comparing p̃(n,A1) and p̃(n,A2) for two given sets
A1 and A2 when n → ∞.

The result (1.3) has been precised in [6] where an asymptotic expansion of p̃(n)/p(n)
has been given. The proof follows from the formula

p̃(n) = p(n) −
∑

1≤a≤n/2

p̃(a − 1)r (n − a + 1, a + 1). (1.10)

In Section 4, we shall prove Theorem 3, which generalizes formula (1.10) to p̃(n,A) where
A is the set of the first k integers. Unfortunately, the proof is much more complicated than
the proof of (1.10) in [6]. Let us introduce the notation:

Definition 1. Let k ≥ 1 be fixed. For k + 1 ≤ n1 ≤ n2 ≤ · · · ≤ nt , we define a(i) (for
i = 1, . . . , t) with

a(i) is the smallest integer ≥ k + 1 not representable by {n1, . . . , ni }. (1.11)
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In other words:

a(i) is not representable by {n1, . . . , ni }; (1.12)

k + 1, k + 2, . . . , a(i) − 1 are representable by {n1, . . . , ni }. (1.13)

Further, for 1 ≤ i ≤ t , let

S(i) =
i∑

j=1
n j ≤a(i)−k−1

n j . (1.14)

Let us observe from the above definition that

a(i) and S(i) are not decreasing. (1.15)

The behaviour of a(i) and S(i) is precised in Theorem 2 which will be proved in Section 3.

Theorem 2. Let us use the notation of Definition 1. If i, 1 ≤ i ≤ t, satisfies

a(i) ≥ 2k + 3, (1.16)

we have

a(i) ≥ (3k + 2)
k + 1

2
+ 1 ≥ 4k + 2 ≥ 3k + 3, (1.17)

a(i) + 1 ≤ S(i), (1.18)

and

S(i) ≤ a(i) + k; (1.19)

moreover, for 1 ≤ i ≤ t − 1,

S(i + 1) − a(i + 1)

=




S(i) − a(i) − 1 ni+1 = a(i), a(i) − k /∈ {n1, . . . , ni },
a(i) + 1 < S(i) ≤ a(i) + k;

k ni+1 = a(i), a(i) − k ∈ {n1, . . . , ni },
a(i) + 1 < S(i) ≤ a(i) + k;

k ni+1 = a(i) and S(i) = a(i) + 1;

S(i) − a(i) otherwise.

(1.20)

Theorem 2 will be used to prove Theorem 3. (For u > v, the sum from u to v is to be
considered 0.)
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Theorem 3. Let k be a positive integer, and A = {1, 2, . . . , k}. For n ≥ (3k +4) k+1
2 +1,

we have:

p̃(n,A) = r

(
n − (3k + 2)

k + 1

2
, k + 1

)

− r

(
n − (3k + 2)

k + 1

2
, {1, 2, . . . , k, k + 1, 2k + 2}

)

−

n/2�∑

a=(3k+2) k+1
2 +1

{
k−1∑
j=0

p̃(a + k − j,A)

× r

(
n − k − 1 − a( j + 1) + ( j + 1)( j + 2)

2
, {1, 2, . . . , a − k − 1, a}

)}
.

(1.21)

Theorem 3 can be used to calculate recursively p̃(n,A), since it is not difficult to compute
r (n,A) (use, for instance, formula (2.11) below). Unfortunately, we have not succeeded in
extending Theorem 3 to any finite set A. However, after the proof of Theorem 3, we shall
give similar formulas for p̃(n, {2}), p̃(n, {1, 3}) and p̃(n, {1, 3, 5}).

We thank the referee for several valuable suggestions.

2. Proof of Theorem 1

We shall start by proving:

Lemma 1. Let R(n, a) be the number of partitions of n which do not represent a, and let
us set

R̄(n, a) = R(n, a) + R(n, a + 1) + · · · + R (n, 
n/2�) =

n/2�∑
b=a

R(n, b). (2.1)

Then for a fixed and n → ∞, we have

R̄(n, a) = O

(
p(n)

(
π√
6n

)ψ(a)
)

(2.2)

where ψ(a) is defined by (1.5). More precisely,

R̄(n, a) ∼ R(n, a) + R(n, a + 1).

For odd a, R̄(n, a) ∼ R(n, a).
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Proof: We shall use a result mainly due to J. Dixmier (cf. [5]) in the form given in [11],
Theorem 3: for n large enough and

0.18
√

n ≤ a ≤ n − 0.18
√

n (2.3)

the following inequality holds

log(R(n, a)) ≤ 2.431
√

n. (2.4)

We shall also use the result of [2], p. 44: if λ = a/
√

n, then

log(R(n, a)) ≤
(

c + π2

6c
+ λ

2
log(1 − e−cλ)

) √
n, (2.5)

where c is any positive real number.
By using (2.5) with c = π√

6
, and observing that, for x real, 1 − e−x ≤ x , we get

log R(n, b) ≤ π

√
2n

3
+ b

2
log

(
πb√

6n

)

or, in other terms

R(n, b) ≤ eπ
√

2n
3 v(b) (2.6)

with

v(b) =
(

π√
6n

)b/2

bb/2. (2.7)

We have

v(b + 1)

v(b)
=

(
π (b + 1)√

6n

)1/2 (
1 + 1

b

)b/2

≤
(

eπ (b + 1)√
6n

)1/2

so that, for b + 1 ≤ 0.18
√

n,

v(b + 1)

v(b)
≤

(
0.18eπ√

6

)1/2

≤ 0.8. (2.8)

Let us write

R̄(n, a) =
a+7∑
b=a

+

0.18

√
n�∑

b=a+8

+
∑

0.18
√

n<b≤n/2

R(n, b)
def= S1 + S2 + S3.
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From (2.4), we get

S3 ≤ n

2
exp(2.431

√
n) = O

(
p(n)

(
π√
6n

)ψ(a+1)+ 1
2

)
,

since a is fixed, and from [10],

p(n) = eπ
√

2n/3

4
√

3n

(
1 + O(1)√

n

)
, π

√
2/3 = 2.56 . . . . (2.9)

From (2.6) and (2.8) it follows

S2 ≤ eπ
√

2n
3 v(a + 8)(1 + (.8) + (.8)2 + · · ·) = 5eπ

√
2n
3 v(a + 8). (2.10)

The definition (1.5) implies ψ(a) ≤ 1 + a/2; since a is fixed, by (2.7) and (2.9), (2.10)
yields

S2 = O(np(n)v(a + 8)) = O

(
np(n)

(
π√
6n

) a+8
2

)
= O

(
p(n)

(
π√
6n

)ψ(a+1)+ 1
2

)
.

Finally, by (1.4), it is easily seen that

S1 ∼ R(n, a) + R(n, a + 1) = O

(
p(n)

(
π√
6n

)ψ(a)
)

,

which completes the proof of Lemma 1.

Remark. The constant in (2.4) can be improved for two reasons: (2.5) is slightly better
than the upper bound of R(n, λ

√
n) used in the proof of Theorem 3 of [11], and J.-C. Aval

(cf. [1]) has improved a key lemma of [5]. Unfortunately, these two improvements do not
allow to decrease very much the constant in (2.4). The couple of numbers (0.18, 2.431) in
(2.3) and (2.4) can, for instance, be replaced by (0.18, 2.422), (0.2, 2.415), (0.3, 2.391) or
(0.4, 2.378).

To prove Theorem 1, we shall give an asymptotic equivalent of p̃(n,A) for all the
sets A considered in the statement. If p̃(n,A) ∼ p̃(n,A′), we shall study the difference
p̃(n,A) − p̃(n,A′).

For any finite set A, it is possible to find an asymptotic expansion of any order of
r (n,A)/p(n). Indeed, from the generating functions (1.2) and (1.6), it follows that

∞∑
n=0

r (n,A)Xn =
( ∞∑

n=0

p(n)Xn

) ∏
a∈A

(1 − Xa).
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So, if we expand the polynomial∏
a∈A

(1 − Xa) =
∑

m

wm Xm,

we can write r (n,A) as a linear combination of the p(n − m)’s:

r (n,A) =
∑

m

wm p(n − m). (2.11)

But, from the famous formula of Hardy and Ramanujan for p(n) (cf. [10]), for m fixed
and n → ∞, it is possible to expand p(n − m)/p(n) according to the powers of 1/

√
n,

as explained in [6]. However the method is a bit technical and needs a computer. Here, we
shall prove Theorem 1 by using only the asymptotic estimations (1.8) and (1.9), and the
following formula, which follows from (1.6): if � /∈ A,

r (n,A) − r (n − �,A) = r (n,A ∪ {�}). (2.12)

Formulas (2.12) and (1.8) imply for fixed �:

r (n,A) − r (n − �,A) = p(n)

(
π√
6n

)|A|+1
(

�
∏
a∈A

a

) (
1 + O(1)√

n

)
. (2.13)

In fact, the method used in [7] to prove (1.8) shows that the relation (2.13) above still holds,
even if � ∈ A.

It follows from (2.9) that, for m fixed and n → ∞,

p(n − m) = p(n)

(
1 + O(1)√

n

)
, (2.14)

and, from (1.8) and (2.14), that, for any finite set A, m fixed and n → ∞,

r (n − m,A) = r (n,A)

(
1 + O(1)√

n

)
. (2.15)

We shall use the obvious relations:

p̃(n,A) ≤ r (n,A) (2.16)

and

p̃(n,A) ≤ R(n, max(A)), (2.17)

which, together with (1.8) or (1.4), will give an upper bound for p̃(n,A).
We are now ready to estimate p̃(n,A), as n → ∞, for the different sets A considered in

Theorem 1.
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• A = ∅. We know from [9] (cf. (1.3)) that

p̃(n, ∅) = p̃(n) ∼ p(n). (2.18)

• A = {1}. From (2.16) we have

p̃(n, {1}) ≤ r (n, {1}) = r (n, 2). (2.19)

Moreover, to get P̃(n, {1}) from the set of partitions without any part equal to 1, we have
to take off all the partitions which do not represent any of the integers 2, 3, . . . , 
n/2�.
Therefore, with the notation of Lemma 1

p̃(n, {1}) ≥ r (n, 2) − R̄(n, 2). (2.20)

Then, it follows from (2.19), (2.20), (1.9) and Lemma 1:

p̃(n, {1}) = r (n, 2) + O(R̄(n, 2)) = r (n, 2) + O

(
p(n)

n

)
∼ p(n)

π√
6n

· (2.21)

• A = {1, 3}. A partition belonging to P̃(n, {1, 3}) should not contain any part equal to 1
or 3, but it should contain at least one part equal to 2 to represent 2. Thus

p̃(n, {1, 3}) ≤ r (n − 2, {1, 3}). (2.22)

Moreover, to get P̃(n, {1, 3}), we have to take off the partitions which do not represent
any of the numbers between 4 and 
n/2�. Therefore,

p̃(n, {1, 3}) ≥ r (n − 2, {1, 3}) − R̄(n, 4). (2.23)

Then, it follows from (2.22), (2.23), (2.15), (1.8) and Lemma 1:

p̃(n, {1, 3}) = r (n − 2, {1, 3}) + O(p(n)n−3/2) ∼ 3p(n)

(
π√
6n

)2

. (2.24)

• A = {2}. To represent 1, 3, 4 and 5 but not 2, a partition of n should contain one and
only one part equal to 1, should not contain any part equal to 2, should contain at least
one part equal to 3 and either one part equal to 4 or one part equal to 5 . Thus

p̃(n, {2}) ≤ r (n − 4, 3) − r (n − 4, {1, 2, 4, 5}). (2.25)

Moreover, to get P̃(n, {2}), we have to take off the partitions which do not represent any
of the numbers between 6 and 
n/2�. Therefore,

p̃(n, {2}) ≥ r (n − 4, 3) − r (n − 4, {1, 2, 4, 5}) − R̄(n, 6). (2.26)

Then, it follows from (2.25), (2.26), (2.15), (1.8), (1.9) and Lemma 1:

p̃(n, {2}) = r (n − 4, 3) + O(p(n)n−2) ∼ 2p(n)

(
π√
6n

)2

. (2.27)
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• A = {1, 2}. A partition belonging to P̃(n, {1, 2}) should not contain any part equal to 1
or 2, but it should contain at least one part equal to 3, 4, 5 to represent 3, 4 and 5. Thus

p̃(n, {1, 2}) ≤ r (n − 12, 3). (2.28)

Moreover, to get P̃(n, {1, 2}), we have to take off the partitions which do not represent
any of the numbers between 6 and 
n/2�. Therefore,

p̃(n, {1, 2}) ≥ r (n − 12, 3) − R̄(n, 6). (2.29)

Then, it follows from (2.28), (2.29), (2.15), (1.9) and Lemma 1:

p̃(n, {1, 2}) = r (n − 12, 3) + O(p(n)n−2) ∼ 2p(n)

(
π√
6n

)2

. (2.30)

Since, from (2.27) and (2.30), p̃(n, {2}) ∼ p̃(n, {1, 2}), we evaluate their difference by
(2.13) and (2.14):

p̃(n, {2}) − p̃(n, {1, 2}) = r (n − 4, 3) − r (n − 12, 3) + O(p(n)n−2)

∼ 16p(n)

(
π√
6n

)3

> 0.

• A = {1, 3, 5}. A partition belonging to P̃(n, {1, 3, 5}) should not contain any part equal
to 1, 3 or 5, but to represent 2 and 4, it should contain either at least two parts equal to
2 or one (and only one) part equal to 2 and at least one part equal to 4. Thus

p̃(n, {1, 3, 5}) = r (n − 4, {1, 3, 5}) + r (n − 6, {1, 2, 3, 5}) − θ R̄(n, 6), (2.31)

where, from now on, θ will denote a real number satisfying 0 ≤ θ ≤ 1. From (2.15),
(1.8) and Lemma 1, (2.31) implies

p̃(n, {1, 3, 5}) ∼ 15p(n)

(
π√
6n

)3

. (2.32)

• A = {2, 5}. A partition belonging to P̃(n, {2, 5}) should contain one (and only one) part
equal to 1, should not contain any part equal to 2 or 5, should contain at least one part
equal to 3; to represent 6 it should contain either at least two parts equal to 3 or one
(and only one) part equal to 3 and at least one part equal to 6. Note that such a partition
represents also 4 = 1 + 3 and 7 = 1 + 6. Thus

p̃(n, {2, 5}) = r (n − 7, {1, 2, 5}) + r (n − 10, {1, 2, 3, 5}) − θ R̄(n, 8)

∼ 10p(n)

(
π√
6n

)3

. (2.33)
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• A = {1, 2, 5}. A partition belonging to P̃(n, {1, 2, 5}) should not contain any part equal
to 1, 2 or 5, but to represent 3, 4 and 7, it should contain at least one part equal to 3 and
one part equal to 4; to represent 6 it should contain either at least two parts equal to 3 or
one (and only one) part equal to 3 and at least one part equal to 6. Thus

p̃(n, {1, 2, 5}) = r (n − 10, {1, 2, 5}) + r (n − 13, {1, 2, 3, 5}) − θ R̄(n, 8)

∼ 10p(n)

(
π√
6n

)3

. (2.34)

Further, from (2.34) and (2.33), we have by using (2.13), (2.14), (1.8) and Lemma 1

p̃(n, {2, 5}) − p̃(n, {1, 2, 5}) = r (n − 7, {1, 2, 5}) + r (n − 10, {1, 2, 3, 5})
−r (n − 10, {1, 2, 5}) − r (n − 13, {1, 2, 3, 5}) + (2θ − 1)R̄(n, 8)

∼ r (n − 7, {1, 2, 3, 5}) ∼ 30p(n)

(
π√
6n

)4

> 0.

• A = {1, 4}. A partition belonging to P̃(n, {1, 4}) should contain one (and only one) part
equal to 2, should not contain any part equal to 1 or 4, should contain at least one part
equal to 3; to represent 6 it should contain either at least two parts equal to 3 or one (and
only one) part equal to 3 and at least one part equal to 6. Such a partition will represent
7, if it contains one part equal to 5 or 7. Thus

p̃(n, {1, 4}) = r (n − 8, {1, 2, 4}) + r (n − 11, 5)

− r (n − 8, {1, 2, 4, 5, 7}) − r (n − 11, {1, 2, 3, 4, 5, 7}) − θ R̄(n, 8)

∼ 8p(n)

(
π√
6n

)3

. (2.35)

• A = {1, 2, 4}. Similarly,

p̃(n, {1, 2, 4}) = r (n − 18, {1, 2, 4}) + r (n − 21, 5) − θ R̄(n, 8)

∼ 8p(n)

(
π√
6n

)3

. (2.36)

We have to compare p̃(n, {1, 4}) and p̃(n, {1, 2, 4}): from (2.35) and (2.36), it follows

p̃(n, {1, 4}) − p̃(n, {1, 2, 4}) = r (n − 8, {1, 2, 4}) + r (n − 11, 5)

−r (n − 8, {1, 2, 4, 5, 7}) − r (n − 11, {1, 2, 3, 4, 5, 7})
−r (n − 18, {1, 2, 4}) − r (n − 21, 5) + (2θ − 1)R̄(n, 8)

∼ 80p(n)

(
π√
6n

)4

> 0.

• A = {2, 3}. To represent all integers between 1 and 7 except 2 and 3, a partition of n
should have one (and only one) part equal to 1, no part equal to 2 or 3, at least one part
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equal to 4, and either one part equal to 6 or parts equal to 5 and 7. Therefore

p̃(n, {2, 3}) = r (n − 11, 4) + r (n − 17, {1, 2, 3, 6}) − θ R̄(n, 8)

∼ 6p(n)

(
π√
6n

)3

. (2.37)

• A = {3}. To represent all integers between 1 and 7 except 3, a partition of n should have
two (and only two) parts equal to 1, no part equal to 2 or 3, at least one part equal to 4,
and at least one part equal to 5, 6 or 7. Therefore

p̃(n, {3}) = r (n − 6, 4) − r (n − 6, {1, 2, 3, 5, 6, 7}) − θ R̄(n, 8)

∼ 6p(n)

(
π√
6n

)3

. (2.38)

We estimate:

p̃(n, {2, 3}) − p̃(n, {3}) = r (n − 11, 4) − r (n − 6, 4) + r (n − 17, {1, 2, 3, 6})
+ r (n − 6, {1, 2, 3, 5, 6, 7}) + (2θ − 1)R̄(n, 8)

∼ (−30 + 36)p(n)

(
π√
6n

)4

= 6p(n)

(
π√
6n

)4

> 0.

• A = {1, 2, 3}. A partition belonging to P̃(n, {1, 2, 3}) should not contain any part equal
to 1, 2 or 3, but to represent 4, 5, 6 and 7, it should contain at least one part equal to 4, 5,
6 and 7. Therefore

p̃(n, {1, 2, 3}) = r (n − 22, 4) − θ R̄(n, 8) ∼ 6p(n)

(
π√
6n

)3

. (2.39)

We estimate:

p̃(n, {3}) − p̃(n, {1, 2, 3}) = r (n − 6, 4) − r (n − 6, {1, 2, 3, 5, 6, 7})
− r (n − 22, 4) + (2θ − 1)R̄(n, 8)

∼ 96p(n)

(
π√
6n

)4

> 0.

• A = B. It suffices to show that, for any other finite set B in {1, 2, . . . , 
n/2�}, the
following upper bound holds:

p̃(n,B) = O(p(n)n−2). (2.40)

If max(B) ≥ 6, then (2.40) is satisfied from (2.17) and Lemma 1. If max(B) ≤ 5 and
|B| ≥ 4 then (2.40) is satisfied from (2.16) and (1.8). For the remaining sets, (2.40) will
follow from (1.9) and from the upper bounds given in the array below:
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A = p̃(n,A) ≤ A = p̃(n,A) ≤

{4} 2r (n − 3, 5) {1, 3, 4} r (n − 2, 5)

{2, 4} 0 {3, 4, 5} r (n − 2, 6)

{3, 4} r (n − 2, 5) {2, 4, 5} 0

{5} 2r (n − 4, 6) {2, 3, 4} r (n − 1, 5)

{1, 5} 0 {1, 4, 5} 0

{3, 5} 0 {2, 3, 5} 0

{4, 5} 2r (n − 3, 6)

So, the proof of Theorem 1 is completed.

3. Proof of Theorem 2

3.1. Proof of Theorem 2 (1.17)

We start by proving the following lemma:

Lemma 2. For an arbitrary positive integer n ≥ 2,

(a) the numbers represented by the set A = {n, n + 1, . . . , 2n} are all integers from n to
3n+1

2 n and 3n+1
2 n + n;

(b) the multiset

A′ = {n, n + 1, . . . , n + 1︸ ︷︷ ︸
mn+1 (≥1)

, . . . , 2n − 1, . . . , 2n − 1︸ ︷︷ ︸
m2n−1 (≥1)

, 2n}

represents all integers from n to

M = 3n + 1

2
n + (mn+1 − 1)(n + 1) + · · · + (m2n−1 − 1)(2n − 1)

but does not represent M + 1;
(c) the multiset B = {n, n, n +1, . . . , 2n −1} represents all integers between n and 3n−1

2 n;
(d) the multiset

B′ = {n, . . . , n︸ ︷︷ ︸
mn (≥2)

, n + 1, . . . , n + 1︸ ︷︷ ︸
mn+1 (≥1)

, . . . , 2n − 2, . . . , 2n − 2︸ ︷︷ ︸
m2n−2 (≥1)

, 2n − 1}

represents all integers from n to

M = 3n − 1

2
n + (mn − 2)n + (mn+1 − 1)(n + 1) + · · · + (m2n−2 − 1)(2n − 2)

but does not represent M + 1.
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Proof of (a): Let k be an integer, 1 ≤ k ≤ n, and C be a subset of A with k elements. Let
us define σ (C) = ∑

m∈C m. One has

f (k) ≤ σ (C) ≤ g(k)

where

f (k) = n + n + 1 + · · · + n + k − 1 = k

(
n + k − 1

2

)

and

g(k) = 2n − k + 1 + · · · + 2n = k

(
2n − k − 1

2

)
.

Moreover, for any integer a, f (k) ≤ a ≤ g(k), there is a C, |C| = k, such that σ (C) = a;
this can be seen by the walk of the caterpillar: let us start with C1 = {n, . . . , n + k − 1},
then increase successively each element from the right to the left by 1. We get C2 =
{n, . . . , n + k − 2, n + k}, C3 = {n, . . . , n + k − 3, n + k − 1, n + k}, . . ., Ck = {n +
1, n + 2 . . . , n + k}; and start again: Ck+1 = {n + 1, n + 2, . . . , n + k − 1, n + k + 1} up to
C(n−k+1)k = {2n − k + 1, . . . , 2n}. Clearly, σ (Ci ) takes all values between f (k) and g(k).

In order to see that A represents all integers from f (1) = n to g(n) = 3n+1
2 n, it suffices

to check that

f (k + 1) ≤ g(k) + 1, for k = 1, 2, . . . , n − 1

which follows from g(k) + 1 − f (k + 1) = (k − 1)(n − 1 − k).
Finally, since g(n) = 3n+1

2 n is the sum of the |A| − 1 largest elements of A, the only
subsum of A which is larger than g(n) is σ (A) = 3n+1

2 n + n, which completes the proof
of (a).

Proof of (b): Let us write A′′ = A′ \ A = {a1, . . . , as}, with s = (mn+1 − 1) + · · · +
(m2n−1 − 1). Since A′ contains A, it follows from (a) that A′ represents all integers from
n to 3n+1

2 n ≥ 3n + 1. Further, since ai , 1 ≤ i ≤ s satisfies ai ≤ 2n − 1 ≤ (3n + 1) − n,
the multiset A ∪ {a1} represents all integers from n to 3n+1

2 n + a1, and so on, the multiset
A′ = {a1, . . . , as} ∪A represents all integers from n to M . By the same argument as the
one at the end of the proof of (a), A′ does not represent M +1, . . . , M +n −1 but represents
M + n.

Proof of (c) and (d): The proof of (c) is similar to the one of (a) with, for 1 ≤ k ≤ n,
f (k) = kn + (k−1)(k−2)

2 and g(k) = 2kn − k(k+1)
2 , while the proof of (d) is the same as the

one of (b).

To prove (1.17), we can suppose that there exists a minimal i0 satisfying a(i0) ≥ 2k + 3.
Then, from (1.11), n1, . . . , ni0 represents k + 1, . . . , 2k + 2. Therefore, k + 1, . . . , 2k +
1 should belong to {n1 = k + 1, n2, , . . . , ni0}; and to represent 2k + 2, there are two
possibilities: either n2 �= k + 1 and 2k + 2 ∈ {n1, . . . , ni0} or n2 = k + 1.
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(A) For n2 �= k + 1, then we should have

{k + 1, . . . , 2k + 2} ⊂ {
n1, . . . , ni0

}
, (3.1)

and the first elements of the multiset {n1, . . . , ni0} are

k + 1, k + 2, . . . , k + 2︸ ︷︷ ︸
mk+2 (≥1)

, . . . , 2k + 1, . . . , 2k + 1︸ ︷︷ ︸
m2k+1 (≥1)

, 2k + 2, . . . .

Let us set i1 = 1 + mk+2 + · · · + m2k+1 + 1. We have i1 ≤ i0 and ni1 = 2k + 2. From
Lemma 2(b), {n1 = k + 1, n2, . . . , ni1} represents all integers from k + 1 to

M = 3(k + 1)2

2
+ k + 1

2
+ (k + 2)(mk+2 − 1) + · · · + (2k + 1)(m2k+1 − 1),

but does not represent M + 1. So, from (1.11),

a(i1) = M + 1 ≥ 3(k + 1)2

2
+ k + 1

2
+ 1 = (3k + 4)

k + 1

2
+ 1 > 3k + 3,

so that, from the minimality of i0, we have i1 = i0, and, from (1.14),

S(i0) = S(i1) = k + 1 + mk+2(k + 2) + · · · + m2k+1(2k + 1) + 2k + 2 = a(i0) + k.

(B) n2 = k + 1. Now, the first elements of the multiset {n1, . . . , ni0} are

k + 1, . . . , k + 1︸ ︷︷ ︸
mk+1 (≥2)

, k + 2, . . . , k + 2︸ ︷︷ ︸
mk+2 (≥1)

, . . . , 2k, . . . , 2k︸ ︷︷ ︸
m2k (≥1)

, 2k + 1, . . . .

Let us set i2 = mk+1 + mk+2 + · · · + m2k + 1. We have i2 ≤ i0 and ni2 = 2k + 1. From
Lemma 2(d), {n1, n2, . . . , ni2} represents all integers from k + 1 to

M = 3(k + 1)2

2
− k + 1

2
+ (k + 1)(mk+1 − 2) + (k + 2)(mk+2 − 1) + · · · + 2k(m2k − 1),

but does not represent M + 1. So, from (1.11),

a(i2) = M + 1 ≥ 3(k + 1)2

2
− k + 1

2
+ 1 = (3k + 2)

k + 1

2
+ 1 > 3k + 2,

so that, from the minimality of i0, we have i2 = i0, and, from (1.14),

S(i0) = S(i2) = mk+1(k + 1) + mk+2(k + 2) + · · · + m2k(2k) + 2k + 1 = a(i0) + k.

In both cases (A) and (B), we have proved

a(i0) ≥ (3k + 2)
k + 1

2
+ 1 ≥ 4k + 2 ≥ 3k + 3 (3.2)
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which, from (1.15), implies (1.17) and

S(i0) = a(i0) + k. (3.3)

3.2. Proof of Theorem 2 (1.18)

From (1.16) and the definition (1.11), a(i) − k − 1 is represented by {n1, . . . , ni }, and more
precisely by the elements of {n1, . . . , ni } smaller than a(i) − k. Therefore, from (1.14),
a(i) − k − 1 is a subsum of S(i), so that

S(i) ≥ a(i) − k − 1. (3.4)

For the same reasons, a(i)−k −2 is a subsum of S(i). So, S(i) = a(i)−k −1 is impossible,
otherwise S(i) − (a(i) − k − 2) = 1 would be represented by {n1, . . . , ni }. So, from (3.4),
we have

S(i) > a(i) − k − 1. (3.5)

But, since a(i)−k −1 is a subsum of S(i), S(i)− (a(i)−k −1) is also a subsum of S(i) and
is represented by {n1, . . . , ni }. It follows from (3.5) that S(i)− (a(i)−k −1) ≥ n1 = k +1,
in other terms, S(i) ≥ a(i). Finally, S(i) �= a(i) (otherwise a(i) would be represented by
{n1, . . . , ni }), so that S(i) ≥ a(i) + 1, which completes the proof of (1.18).

3.3. Proof of Theorem 2 (1.19) and (1.20)

We shall prove together (1.19) and (1.20) by induction on i ≥ i0. From (3.3), (1.19) is true
for i = i0. Let us suppose that

i ≥ i0 and S(i) ≤ a(i) + k. (3.6)

We shall give the values of S(i + 1) and a(i + 1); there are different cases:

I. a(i) − k ≤ ni+1 ≤ a(i) − 1.

From (1.11), a(i) is not representable by {n1, . . . , ni }. So a representation of a(i) by
{n1, . . . , ni+1} should use ni+1. But 1 ≤ a(i) − ni+1 ≤ k, so that a(i) cannot be represented
by {n1, . . . , ni+1}. Consequently, from (1.11) and (1.14), a(i + 1) = a(i), S(i + 1) = S(i)
and S(i + 1) ≤ a(i + 1) + k follows from (3.6).

II. ni+1 ≤ a(i) − k − 1.

We have n1 ≤ n2 ≤ · · · ≤ ni ≤ ni+1 ≤ a(i) − k − 1; so it follows from (1.14) that

S(i) = n1 + n2 + · · · + ni . (3.7)
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We shall prove that

a(i + 1) = a(i) + ni+1. (3.8)

Indeed, from (1.11), k + 1, . . . , a(i) − 1 are represented by {n1, . . . , ni } and, for 0 ≤ j <

ni+1, a(i) + j = (a(i) + j − ni+1) + ni+1 is represented by {n1, . . . , ni+1}.
To show (3.8), it remains to prove that a(i) + ni+1 is not represented by {n1, . . . , ni+1}.

If such a representation did exist, it should not contain ni+1 (otherwise a(i) would be
represented by {n1, . . . , ni }) so that, from (3.7), a(i) + ni+1 is a subsum of S(i) and thus,
by our induction hypothesis (3.6)

a(i) + ni+1 ≤ S(i) ≤ a(i) + k < a(i) + n1 ≤ a(i) + ni+1

which is impossible and so, (3.8) is settled. From (1.14) we have S(i + 1) = n1 + n2 +
· · · + ni+1, which implies S(i + 1) − a(i + 1) = S(i) − a(i) ≤ k.

III. ni+1 > a(i).

This case is easy: clearly, we have a(i + 1) = a(i) and S(i + 1) = S(i).

IV. ni+1 = a(i).

We have ni �= a(i) (otherwise a(i) would be represented by {n1, . . . , ni }); so, since ni ≤
ni+1 = a(i), we have

ni ≤ a(i) − 1. (3.9)

IV/1. ni+1 = a(i), a(i) − k /∈ {n1, . . . , ni }, a(i) + 1 < S(i) ≤ a(i) + k (k ≥ 2).
We want to show

a(i + 1) = a(i) + 1. (3.10)

From the definition (1.11), k + 1, . . . , a(i) − 1 are represented by {n1, . . . , ni }; a(i) = ni+1

is represented by {n1, . . . , ni+1}; so, to prove (3.10), we must show that a(i) + 1 is not
represented by {n1, . . . , ni+1}. If it was represented by {n1, . . . , ni+1}, such a representation
could not use ni+1, otherwise, a(i) + 1 − ni+1 = 1 would be represented by {n1, . . . , ni }.
Let us assume that a(i) + 1 is represented by {n1, . . . , ni }:

a(i) + 1 = ni1 + · · · + nis , 1 ≤ i1 < i2 < · · · < is ≤ i. (3.11)

From (3.9), we have s ≥ 2.
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• If ni1 = k + 1, we have ni2 + · · · + nis = a(i) − k so that s ≥ 3 (if s = 2, a(i) − k would
belong to {n1, . . . , ni }); therefore nis ≤ a(i) − k − 1.

• If ni1 ≥ k + 2, we have ni2 + · · · + nis = a(i) + 1 − ni1 ≤ a(i) − k − 1.

So, in all cases, the representation (3.11) would imply that nis ≤ a(i) − k − 1, in
other terms, from (1.14), a(i) + 1 would be a subsum of S(i). But, this would imply that
S(i) − (a(i) + 1) is also a subsum of S(i) and thus either vanishes or is at least k + 1. But,
this is impossible, since it follows from our hypothesis that 0 < S(i) − (a(i) + 1) ≤ k − 1
and the proof of (3.10) is completed.

Finally, from (1.14), S(i + 1) = S(i) and S(i + 1) −a(i + 1) = S(i) −a(i) − 1 < k hold.

IV/2. ni+1 = a(i), a(i) − k ∈ {n1, . . . , ni }, a(i) + 1 < S(i) ≤ a(i) + k (k ≥ 2).

Now, the multiset {n1, . . . , ni+1} writes

{n1, . . . , a(i) − k, . . . , a(i) − k︸ ︷︷ ︸
mk (≥1)

, a(i) − (k − 1), . . . , a(i) − (k − 1)︸ ︷︷ ︸
mk−1 (≥0)

,

. . . , a(i) − 1, . . . , a(i) − 1︸ ︷︷ ︸
m1 (≥0)

, a(i)(= ni+1)} (3.12)

and we have

S(i) = a(i) + j0, 2 ≤ j0 ≤ k. (3.13)

From (1.11) and (1.14), k + 1, . . . , a(i) − k − 1 are subsums of S(i), and by (1.17), we
have a(i) ≥ 3k + 2, so that k ≤ a(i) − 2k − 2, and, from (3.6), 1

2 S(i) ≤ 1
2 (a(i) + k) ≤

1
2 (a(i)+ (a(i)−2k −2)) = a(i)−k −1. Therefore, each integer from k +1 to S(i)− (k +1)
can be written u or S(i) − u, where k + 1 ≤ u ≤ a(i) − k − 1, and thus is a subsum of S(i),
i.e., from (3.13),

k + 1, . . . , a(i) − k − 2 + j0, a(i) − k − 1 + j0 are subsums of S(i). (3.14)

For j0 < k, a(i)−u, 1 ≤ u ≤ k − j0, is not a subsum of S(i) (otherwise S(i)− (a(i)−u) =
j0 + u ≤ k would be a subsum of S(i)); as it is, from (1.11), represented by {n1, . . . , ni }
its representation needs a part larger than a(i) − k − 1, but this part is the only one, since
a(i) − u − (a(i) − k) = k − u ≤ k, thus

mk− j0 ≥ 1, . . . , m1 ≥ 1. (3.15)

We shall now prove the following assertion

Assertion 1. With the notation of (3.12) and (3.13), we have

a(i + 1) = 2a(i) + j0 − k +
k∑

j=1

m j (a(i) − j). (3.16)
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Proof of Assertion 1: In order to prove (3.16), from (1.11), we first have to show that
each N satisfying

k + 1 ≤ N < 2a(i) + j0 − k +
k∑

j=1

m j (a(i) − j) (3.17)

can be represented by {n1, . . . , ni+1}. For such an N , there exist u1, . . . , uk and a minimal
V such that

N = V +
k∑

j=1

u j (a(i) − j) (3.18)

with

V ≥ 0; 0 ≤ u j ≤ m j , j = 1, . . . , k − 1; 0 ≤ uk < mk .

We shall consider several cases:
(a) V = 0. Here, from (3.12), (3.18) is a representation of N by {n1, . . . , ni }.
(b) 1 ≤ V ≤ k. Since from (3.17), N ≥ k + 1, there exists a minimal j1 such that, in

(3.18), u j1 ≥ 1.
(b1) 1 ≤ j1 < V . We have j1 < k, so we can write

N = V + k − j1 + (
u j1 − 1

)
(a(i) − j1)

+
k−1∑

j= j1+1

u j (a(i) − j) + (uk + 1)(a(i) − k). (3.19)

The first term on the right hand side of (3.19) satisfies from (1.17)

k + 1 ≤ V + k − j1 ≤ 2k − 1 ≤ a(i) − k − 1

and so, is a subsum of S(i); since, in (3.18), uk has been chosen smaller than mk , (3.19) is
a representation of N by {n1, . . . , ni }.

(b2) j1 = V . We write

N = a(i) + (
u j1 − 1

)
(a(i) − j1) +

k∑
j= j1+1

u j (a(i) − j)

and, since a(i) = ni+1, N is represented by {n1, . . . , ni+1}.
(b3) V < j1 ≤ k. We write

N = V + a(i) − j1 + (
u j1 − 1

)
(a(i) − j1) +

k∑
j= j1+1

u j (a(i) − j). (3.20)
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If we set j1 − V = j ′, we have 1 ≤ j ′ < j1 ≤ k and (3.20) becomes

N = a(i) − j ′ + (
u j1 − 1

)
(a(i) − j1) +

k∑
j= j1+1

u j (a(i) − j). (3.21)

But, from (1.11), a(i) − j ′ is represented by {n1, . . . , ni }. Since, for j1 ≤ j ≤ k, we have
1 ≤ a(i) − j ′ − (a(i) − j) = j − j ′ ≤ k − 1, such a representation cannot use any part
a(i) − j , j1 ≤ j ≤ k, and (3.21) is a representation of N by {n1, . . . , ni }.

(c) k + 1 ≤ V ≤ a(i) − k − 1. From (1.11) and (1.14), V is a subsum of S(i), and so,
(3.18) is a representation of N by {n1, . . . , ni }.

(d) a(i) − k ≤ V ≤ a(i) − 1.
(d1) If u1 = u2 = · · · = uk = 0, from (1.11), N = V is represented by {n1, . . . , ni }.
(d2) If u1 = u2 = · · · = uk = 0 does not hold, there exists a maximal j2, 1 ≤ j2 ≤ k,

such that u j2 �= 0. We write

N = V +
j2∑

j=1

u j (a(i) − j)

= ni+1 + (V − j2) +
j2−1∑
j=1

u j (a(i) − j) + (
u j2 − 1

)
(a(i) − j2). (3.22)

We have from (1.17)

k + 1 < a(i) − 2k ≤ V − j2 ≤ a(i) − ( j2 + 1),

so, from (1.11), V − j2 is represented by {n1, . . . , ni } without using any part a(i) − j ,
j ≤ j2 and (3.22) is a representation of N by {n1, . . . , ni+1}.

(e) V = a(i). Since a(i) = ni+1, (3.18) is a representation of N by {n1, . . . , ni+1}.
(f) a(i) + 1 ≤ V ≤ 2a(i) − 2k − 1. Since uk has been chosen smaller than mk in (3.18),

we write

N = V − (a(i) − k) +
k−1∑
j=1

u j (a(i) − j) + (uk + 1)(a(i) − k). (3.23)

Here we have k + 1 ≤ V − (a(i) − k) ≤ a(i) − k − 1, and (3.23) is a representation of N
by {n1, . . . , ni }.

(g) 2a(i) − 2k ≤ V ≤ 2a(i) − k − 1 + j0. In (3.18) we write V = ni+1 + V − a(i). From
(1.17), we have k + 1 < a(i) − 2k ≤ V − a(i) ≤ a(i) − k − 1 + j0, so that, from (3.14),
V − a(i) is a subsum of S(i) and (3.18) is a representation of N by {n1, . . . , ni+1}.

(h) V ≥ 2a(i) − k + j0. Here, from (3.13) and (1.17), we have V ≥ a(i) + 2k + 6 >

a(i) − 1, and since we have chosen V minimal, we have u1 = m1, . . . , uk−1 = mk−1 and
uk = mk − 1. Then (3.18) can be written

N = V − (a(i) − k) +
k∑

j=1

m j (a(i) − j). (3.24)
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Let us set V ′ = V − (a(i) − k) so that V ′ ≥ a(i) + j0. From (3.17) and (3.24), it follows

a(i) + j0 ≤ V ′ < 2a(i) + j0 − k. (3.25)

We distinguish three cases:
(h1) V ′ = a(i) + j0. From (3.13) and (3.24), we have N = S(i) + ∑k

j=1 m j (a(i) − j)
and so, N is represented by {n1, . . . , ni }.

(h2) a(i) + j0 + 1 ≤ V ′ ≤ a(i) + k (and j0 < k). We write V ′ = a(i) + j0 + �,
1 ≤ � ≤ k − j0, so that, from (3.15), m� ≥ 1. We have

N = V ′ + a(i) − � + · · · + (m� − 1)(a(i) − �) + · · ·

and since, from (3.13), V ′ + a(i) − � = ni+1 + S(i), N is represented by {n1, . . . , ni+1}.
(h3) a(i) + k + 1 ≤ V ′ ≤ 2a(i) + j0 − k − 1. Here we have

k + 1 ≤ V ′ − ni+1 ≤ a(i) − k − 1 + j0;

so, from (3.14), V ′ − ni+1 is a subsum of S(i) and N is represented by {n1, . . . , ni+1}.
So, we have proved that each N satisfying (3.17) is represented by {n1, . . . , ni+1}; to

prove (3.16), it remains to show that

2a(i) + j0 − k +
k∑

j=1

m j (a(i) − j) (3.26)

cannot be represented by {n1, . . . , ni+1}. But, from (3.12), (1.14) and (3.13), we get

n1 + · · · + ni+1 = S(i) +
k∑

j=1

m j (a(i) − j) + ni+1

= 2a(i) + j0 +
k∑

j=1

m j (a(i) − j)

= k +
(

2a(i) + j0 − k +
k∑

j=1

m j (a(i) − j)

)
(3.27)

so that (3.26) cannot be represented by {n1, . . . , ni+1}, and the proof of Assertion 1 is
completed.

Since, from (3.16), (3.13) and (1.17),

a(i + 1) − k − 1 ≥ 2a(i) + j0 − 2k − 1 > 2a(i) − 2k − 1 > a(i) = ni+1,

it follows from (1.14) that S(i + 1) = n1 + · · ·+ ni+1 and thus, from (3.16) and (3.27), that
S(i + 1) = a(i + 1) + k.
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IV/3. ni+1 = a(i), S(i) = a(i) + 1 (k ≥ 1). In this case,

k + 1, . . . , a(i) − k − 1, a(i) − k = S(i) − (k + 1) are subsums of S(i); (3.28)

but, for k ≥ 2, a(i) − (k − 1) = S(i) − k, . . ., a(i) − 1 = S(i) − 2 cannot be subsums of
S(i). So, if a(i) − u, 1 ≤ u ≤ k − 1, is represented by {n1, . . . , ni }, such a representation
needs a part a(i) − j , u ≤ j ≤ k. But, since a(i) − u − (a(i) − j) ≤ k, this is the only one.
Consequently,

a(i) − (k − 1), a(i) − (k − 2), . . . , a(i) − 1 ∈ {n1, . . . , ni } (3.29)

and from (3.9), the multiset {n1, . . . , ni+1} can be written:

{n1, . . . , a(i) − k, . . . , a(i) − k︸ ︷︷ ︸
mk (≥0)

, a(i) − (k − 1), . . . , a(i) − (k − 1)︸ ︷︷ ︸
mk−1 (≥1)

,

. . . , a(i) − 1, . . . , a(i) − 1︸ ︷︷ ︸
m1 (≥1)

, a(i)(= ni+1)} (3.30)

with m1(≥ 0) for k = 1. We shall now prove the following assertion

Assertion 2. With the notation of (3.30), we have

a(i + 1) = 2a(i) − k + 1 +
k∑

j=1

m j (a(i) − j). (3.31)

Proof of Assertion 2: The proof looks like the proof of Assertion 1; that is why we shall
omit some details.

For k ≥ 2, and

k + 1 ≤ N < 2a(i) + 1 − k +
k∑

j=1

m j (a(i) − j), (3.32)

there exist u1, . . . , uk and a minimal V such that

N = V +
k∑

j=1

u j (a(i) − j) (3.33)

with

V ≥ 0; 0 ≤ uk−1 < mk−1; 0 ≤ u j ≤ m j , j = 1, . . . , k − 2, k.

We shall consider several cases:
(a) V = 0. Here, from (3.30), (3.33) is a representation of N by {n1, . . . , ni }.
(b) 1 ≤ V ≤ k. There exists a minimal j1 such that u j1 ≥ 1.
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(b1) 1 ≤ j1 < V − 1 (≤ k − 1). We write

N = V + (k − 1) − j1 + (
u j1 − 1

)
(a(i) − j1) + · · ·

+ (uk−1 + 1)(a(i) − (k − 1)) + · · · . (3.34)

The first term satisfies from (1.17):

k + 1 ≤ V + (k − 1) − j1 ≤ 2k − 2 ≤ a(i) − k − 1

and (3.34) is a representation of N by {n1, . . . , ni }.
(b2) j1 = V − 1. We write from (3.33)

N = (a(i) + 1)︸ ︷︷ ︸
S(i)

+ · · · + (uV −1 − 1)(a(i) − (V − 1)) + · · · ,

and N is represented by {n1, . . . , ni }.
(b3) j1 = V . We write from (3.33)

N = ni+1 + · · · + (uV − 1)(a(i) − V ) + · · · ,

and N is represented by {n1, . . . , ni+1}.
(b4) V < j1 ≤ k. We write from (3.33)

N = (a(i) − ( j1 − V )) + (
u j1 − 1

)
(a(i) − j1) + · · · . (3.35)

We have 1 ≤ j1 − V < j1 ≤ k, and, from (3.30), m j1−V ≥ 1; u j1−V = 0 follows from the
minimality of j1, so that (3.35) is a representation of N by {n1, . . . , ni }.

(c) k+1 ≤ V ≤ a(i) − k−1. Here, V is a subsum of S(i), and so, (3.33) is a representation
of N by {n1, . . . , ni }.

(d) a(i) − k ≤ V ≤ a(i) − 1.
(d1) If u1 = u2 = · · · = uk = 0, N = V is represented by {n1, . . . , ni }.
(d2) If u1 = u2 = · · · = uk = 0 does not hold, there exists a maximal j2, 1 ≤ j2 ≤ k,

such that u j2 �= 0. We write

N = V +
j2∑

j=1

u j (a(i) − j)

= ni+1 + (V − j2) + · · · + (
u j2 − 1

)
(a(i) − j2). (3.36)

We have from (1.17)

k + 1 < a(i) − 2k ≤ V − j2 ≤ a(i) − ( j2 + 1),

so, as in the proof of Assertion 1 (d2), (3.36) is a representation of N by {n1, . . . , ni+1}.
(e) V = a(i) = ni+1. (3.33) is a representation of N by {n1, . . . , ni+1}.
(f) V = a(i) + 1 = S(i). (3.33) is a representation of N by {n1, . . . , ni }.
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(g) a(i) + 2 ≤ V ≤ a(i) + k. We write

N = (V − a(i) + k − 1) + · · · + (uk−1 + 1)(a(i) − (k − 1)) + · · · .

Here we have k + 1 ≤ V − a(i) + k − 1 ≤ 2k − 1 < a(i) − k − 1, and N is represented
by {n1, . . . , ni }.

(h) a(i) + k + 1 ≤ V ≤ 2a(i) − k. In (3.33) we write V = ni+1 + V − a(i). We have
k + 1 ≤ V − a(i) ≤ a(i) − k, so that, from (3.28), V − a(i) is a subsum of S(i) and N is
represented by {n1, . . . , ni+1}.

(i) V = 2a(i) − k + 1. We write

N = ni+1 + · · · + (uk−1 + 1)(a(i) − (k − 1)) + · · ·

which shows that N is represented by {n1, . . . , ni+1}.
(j) V ≥ 2a(i)−k +2. Here, we have V > a(i)−1, and since we have chosen V minimal,

we have u1 = m1, . . . , uk−2 = mk−2, uk−1 = mk−1 − 1 and uk = mk . Then (3.33) can be
written

N = V ′ +
k∑

j=1

m j (a(i) − j), (3.37)

with V ′ = V − (a(i) − (k − 1)) ≥ a(i) + 1. From (3.32) and (3.37), it follows

a(i) + 1 ≤ V ′ < 2a(i) − k + 1. (3.38)

We distinguish three cases:
(j1) V ′ = a(i) + 1 = S(i). Here (3.37) is a representation of N by {n1, . . . , ni }.
(j2) a(i) + 2 ≤ V ′ ≤ a(i) + k. We write V ′ = a(i) + 1 + �, 1 ≤ � ≤ k − 1, so that,

from (3.30), m� ≥ 1. We have

N = ni+1 + S(i) + · · · + (m� − 1)(a(i) − �) + · · ·

and N is represented by {n1, . . . , ni+1}.
(j3) a(i) + k + 1 ≤ V ′ ≤ 2a(i) − k. Here we have

k + 1 ≤ V ′ − ni+1 ≤ a(i) − k;

so, from (3.28), V ′ − ni+1 is a subsum of S(i) and N is represented by {n1, . . . , ni+1}.
So, we have proved that each N satisfying (3.32) is represented by {n1, . . . , ni+1}; to

prove (3.31), it remains to show that

2a(i) − k + 1 +
k∑

j=1

m j (a(i) − j) (3.39)
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cannot be represented by {n1, . . . , ni+1}. But, from (3.30),

n1 + · · · + ni+1 = S(i) +
k∑

j=1

m j (a(i) − j) + ni+1

= 2a(i) + 1 +
k∑

j=1

m j (a(i) − j)

= k +
(

2a(i) − k + 1 +
k∑

j=1

m j (a(i) − j)

)
(3.40)

so that (3.39) cannot be represented by {n1, . . . , ni+1}, and the proof of Assertion 2 is
completed for k ≥ 2.

The case k = 1 can be settled in a similar way with 0 ≤ u1 ≤ m1 and 0 ≤ V < 2a(i)
considering (a), (b3), (c), (d1), (d2), (e), (f) and (h).

Like in the case IV/2, it is easy to show from (1.14), (3.31) and (3.40) that S(i + 1) =
a(i + 1) + k, and the proof of Theorem 2 is completed.

4. Proof of Theorem 3

Before starting the proof of Theorem 3, let us observe that, for A = {1, 2, . . . , k}, p̃(n,A)
is easy to compute for 2k + 2 ≤ n ≤ (3k + 4) k+1

2 . We have

p̃(2k + 2,A) = p̃(2k + 3,A) = p̃

(
(3k + 4)

k + 1

2
,A

)
= 1,

and p̃(n,A) = 0 for 2k + 4 ≤ n ≤ (3k + 4) k+1
2 − 1.

For 2k + 2 ≤ a < n, let us define X (n, a) as the set of partitions of n not contain-
ing 1, 2, . . . , k but representing k + 1, k + 2, . . . , a − 1, further not representing a, and
X (n, a) = |X (n, a)|.

A generic partition (1.1) of n, belonging to P̃(n,A) should contain no part up to k and,
for n ≥ 3k + 2, should contain parts equal to k + 1, k + 2, . . . , 2k + 1 in order to represent
k + 1, k + 2, . . . , 2k + 1. The number of such partitions is r (n − (3k + 2) k+1

2 , k + 1). Thus,
from the definition of X (n, a), we have

p̃(n,A) = r

(
n − (3k + 2)

k + 1

2
, k + 1

)
−


n/2�∑
a=2k+2

X (n, a). (4.1)

For n ≥ (3k + 4) k+1
2 + 1, we have

X (n, 2k + 2) = r

(
n − (3k + 2)

k + 1

2
, {1, 2, . . . , k, k + 1, 2k + 2}

)
(4.2)
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since a partition of X (n, 2k + 2) should contain k + 1 exactly once, should contain k +
2, k + 3, . . . , 2k + 1 at least once and should not contain 2k + 2.

Further, for a ≥ 2k + 3, if (1.1) is a partition of X (n, a), a(t) defined by (1.11) satisfies
a(t) = a ≥ 2k + 3, and so, from Theorem 2, it satisfies also a(t) ≥ (3k + 2) k+1

2 + 1, so that

X (n, a) = 0 for 2k + 3 ≤ a ≤ (3k + 2)
k + 1

2
· (4.3)

In view of applying (4.1), it remains to calculate X (n, a) when

3k + 3 ≤ 4k + 2 ≤ (3k + 2)
k + 1

2
+ 1 ≤ a ≤ n

2
· (4.4)

From now on, we shall assume that (4.4) holds; if the partition (1.1) belongs to X (n, a), let
us define �, 1 ≤ � ≤ t , by

n� ≤ a − k − 1 < n�+1. (4.5)

Note that � = t is impossible; indeed, if nt ≤ a − k −1, we would have from (1.11), (1.14),
(1.19) and (4.4)

n = S(t) ≤ a(t) + k = a + k ≤ n/2 + k,

which does not hold since n is supposed to satisfy n ≥ (3k + 4) k+1
2 > 2k. So, we have:

1 ≤ � < t. (4.6)

From the definitions (1.11) and (1.14), we have a(t) = a and with (4.5),

S(t) = n1 + n2 + · · · + n�. (4.7)

Since our partition belongs to X (n, a), the integers k + 1, . . . , a − k − 1 are represented by
{n1, . . . , nt } and, from (4.5), are represented by {n1, . . . , n�}. This implies that a −k ≤ a(�)
and we get from (4.4) and (1.15)

2k + 3 ≤ a − k ≤ a(�) ≤ a(t) = a. (4.8)

By applying Theorem 2 and (1.15), it follows

a − k + 1 ≤ a(�) + 1 ≤ S(�) ≤ S(t) ≤ a(t) + k = a + k

and

0 ≤ S(t) − S(�) ≤ 2k − 1. (4.9)

Comparing (4.7) and

S(�) =
�∑

j=1
n j ≤a(�)−k−1

n j
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gives, from (4.5)

S(t) − S(�) =
�∑

j=1
a(�)−k≤n j

n j

so that, if S(t) − S(�) �= 0, we would have from (4.8) and (4.4)

S(t) − S(�) ≥ a(�) − k ≥ a − 2k > 4k + 1 − 2k > 2k − 1

which contradicts (4.9). Consequently, S(t) − S(�) = 0 and n� ≤ a(�) − k − 1. Therefore,
it follows from Theorem 2 that

a + 1 = a(t) + 1 ≤ S(t) = S(�) = n1 + n2 + · · · + n� ≤ a(�) + k (4.10)

and

a(�) ≥ a − (k − 1). (4.11)

From (1.11), the multiset {n1, . . . , n�} represents a(�) − 1 and thus, by (4.10), it also rep-
resents n1 + · · · + n� − (a(�) − 1) = S(�) − (a(�) − 1). But, from (4.8) and (4.10) we have

a(�) − 1 < a(�) + 1 ≤ a + 1 ≤ S(�)

and therefore, S(�)− (a(�)−1) > 0. Since S(�)− (a(�)−1) is represented by {n1, . . . , n�},
we have S(�) − (a(�) − 1) ≥ k + 1; in other terms, S(�) ≥ a(�) + k which, together with
(4.10) gives

n1 + n2 + · · · + n� = a(�) + k. (4.12)

We introduce the set X (n, a, j) (for 0 ≤ j ≤ k − 1) which is the subset of X (n, a) such
that

a(�) = a − j, 0 ≤ j ≤ k − 1 (4.13)

where � is defined by (4.5). From (4.8) and (4.11), it follows that

X (n, a) =
⋃

0≤ j≤k−1

X (n, a, j).

We shall assume that our partition belongs to X (n, a, j). It follows from (4.12) and (1.14)
that

S(�) = n1 + · · · + n� = a + k − j, n� ≤ a − k − 1 − j. (4.14)

From (1.11) and (4.13),

the multiset {n1, . . . , n�} represents k + 1, . . . , a − j − 1. (4.15)
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Let us assume that it represents a − u, 0 < u ≤ j . Then, it would also represent n1 + · · · +
n� − (a − u) = k − j + u by (4.14). But, 1 ≤ k − j + u ≤ k < n1, so that

{n1, . . . , n�} does not represent 1, 2, . . . , k, a − j, a − j + 1, . . . , a. (4.16)

If j ≥ 1, a − j, a − j + 1, . . . , a − 1 are represented by {n1, . . . , nt }. But, from (4.16), a
representation of a − u, 1 ≤ u ≤ j , needs at least one part nr , � + 1 ≤ r ≤ t . From (4.5),
nr ≥ a − k, and a − u − nr ≤ a − 1 − (a − k) = k − 1. Thus, a − u − nr = 0, and

a − j, a − j + 1, . . . , a − 1 ∈ {n�+1, . . . , nt }. (4.17)

From (4.14), (4.15) and (4.16), n1 + n2 + · · · + n� is a partition of P̃(a + k − j,A). From
(4.17) and (4.5), n�+1+· · ·+nt is a partition of n−(a+k− j) which contains a− j, . . . , a−1
and does not contain 1, 2, . . . , a − k − 1, a. The number of such partitions is

r

(
n − (a + k − j) − (a − j) − · · · − (a − 1), {1, 2, . . . , a − k − 1, a}

)

= r

(
n − k − 1 − ( j + 1)a + ( j + 1)( j + 2)

2
, {1, 2, . . . , a − k − 1, a}

)
.

Conversely, if a and n satisfy (4.4) then any partition (1.1) of n such that, for some �,
n1 + n2 + · · · + n� ∈ P̃(a + k − j,A) for some j , 0 ≤ j ≤ k − 1, and n�+1 + · · · + nt

is a partition of n − (a + k − j) which contains a − j, . . . , a − 1 (if j ≥ 1) and does not
contain 1, 2, . . . , a − k − 1, a (consequently, � satisfies (4.5)) is a partition of X (n, a, j)
and therefore,

X (n, a) =
k−1∑
j=0

p̃(a + k − j,A)r

(
n − k − 1 − ( j + 1)a

+ ( j + 1)( j + 2)

2
, {1, 2, . . . , a − k − 1, a}

)
. (4.18)

Replacing X (n, a) in (4.1) by its value given in (4.2), (4.3) and (4.18) completes the proof
of Theorem 3.

We end this paper by writing three formulas looking like (1.21) and giving the value of
p̃(n,A) for A = {2}, {1, 3}, {1, 3, 5}:

For n ≥ 8, we have:

p̃(n, {2}) = r (n − 4, 3) − r (n − 4, {1, 2, 4, 5})

−
�n/2�∑
a=6

p̃(a + 2, {2})r (n − a − 2, {1, 2, . . . , a − 3, a − 1, a}). (4.19)

For n ≥ 10, we have:

p̃(n, {1, 3}) = r (n, {1, 3}) − r (n, 4) − r (n − 2, 5)

− (r (n − 2, {1, 3, 5}) − r (n − 2, 6)) − r (n − 9, {1, 2, 3, 4, 6})

−
�n/2�∑
a=8

p̃(a + 3, {1, 3})r (n − a − 3, {1, 2, . . . , a − 4, a − 2, a}). (4.20)
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For n ≥ 17, we have:

p̃(n, {1, 3, 5})
= r (n, {1, 3, 5}) − r (n, {1, 2, 3, 5}) − r (n − 2, 6) − r (n − 4, 7)

− (r (n − 2, {1, 3, 5, 7}) − r (n − 2, {1, 2, 3, 4, 5, 7}) − r (n − 4, 8))

− 2r (n − 13, {1, 2, 3, 4, 5, 6, 8}) − 2r (n − 15, {1, 2, 3, 4, 5, 6, 8, 10})

−

n/2�∑
a=12

p̃(a + 5, {1, 3, 5})r (n − a − 5, {1, 2, . . . , a − 6, a − 4, a − 2, a}). (4.21)
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